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Abstract. On 15 January 2022, the Hunga Tonga-Hunga Ha’apai (HTHH) volcano (20.5° S, 175.4° E) erupted, releasing

significant amounts of aerosols, sulfur dioxide (SO2), and water vapor (H2O) into the stratosphere. Due to the general strato-

spheric circulation of the southern hemisphere, this volcanic plume traveled westward and impacted the Indian Ocean and

Reunion (21.1° S, 55.5° E) a few days after the eruption. This study aims to show how the currently available ozone obser-

vations highlight the stratospheric dynamics during the first week following the eruption. The Ozone Mapping and Profiler5

Suite Limb Profiler (OMPS-LP) aerosol extinction profiles were used to investigate the vertical and latitudinal extension of

the volcanic plume over the Indian Ocean. The volcanic aerosol plume was also observed with an aerosol lidar and a sun-

photometer located at Reunion. The impact of this plume on stratospheric ozone was then investigated using MLS (Microwave

Limb Spectrometer), OMI (Ozone Monitoring Instrument), MERRA-2 (Modern-Era Retrospective analysis for Research and

Applications, version 2) and M2-SCREAM (MERRA-2 Stratospheric Composition Reanalysis of Aura MLS) ozone profiles10

and total ozone. The results show that the volcanic plume traveled over Reunion at altitudes ranging from 26.8 to 29.7 km and

spanned more than 20 degrees of latitude over the Indian Ocean. Ozone analyses reveal an ozone mini-hole structure, with the

Total Column Ozone (TCO) anomaly of -15 DU from MERRA-2 covering an area of 12.06×105 km2 on 17 January and 4.94

×105 km2 on 22 January. The ozone profiles from MLS show that a maximum stratospheric column ozone anomaly of -14.66

DU (-6.38 %) was found within the aerosol plume on 20 January.15

1 Introduction

Due to its high oxidizing potential and contribution to the radiative budget, ozone plays an undeniable role in the Earth’s

atmosphere (IPCC, 2013; Organization, 2018; IPCC, 2021). In the stratosphere, ozone serves as a protective shield for the
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biosphere by absorbing the majority of solar ultraviolet radiation (UVR) in the 280–315 nm range. This shielding action

protects human health and ecosystems from the harmful effects of UV-B radiation, which can lead to adverse health issues such20

as cataracts, melanoma, and skin aging, while deteriorating materials (Pitts et al., 1977; Matsumura and Ananthaswamy, 2004;

Bernhard et al., 2020). In the past decades, anthropogenic emission of chlorofluorocarbons (CFCs) was responsible for the rapid

decline in stratospheric ozone (Rowland, 1996). Within the stratosphere, CFCs are photo-dissociated into chlorine compounds

which are known to efficiently deplete ozone (Solomon, 1999). Following the ratification of the Montreal Protocol in 1987,

CFC emissions were gradually restricted, and previous research and reports show that the ozone layer is expected to return to25

its 1980s levels from the middle to the end of the century, depending on the latitude (Dhomse et al., 2018; Organization, 2018).

On the other hand, tropospheric ozone is a secondary pollutant that directly harms ecosystems, reduces crop productivity, and

has negative effects on human health (Mills et al., 2018; Nuvolone et al., 2018). Photochemical formation of tropospheric

ozone is driven by the combination of solar radiation and ozone precursors, including Volatile Organic Compounds (VOCs),

nitrogen oxides (NOx) and aerosols (Jacob, 1999; Ivatt et al., 2022). Ozone in the troposphere can therefore be enhanced by30

anthropogenic activities such as agriculture, industry and transport, that release nitrogen oxides and aerosols.

Besides, stratospheric air-masses can break through the tropopause and penetrate the troposphere in events described as

stratosphere-to-troposphere exchanges (Holton et al., 1995). These exchanges can significantly enhance ozone levels within

the whole free troposphere (Clain et al., 2010). Following emissions from biomass fires, ozone precursors can also produce

tropospheric ozone (Andreae and Merlet, 2001; Jaffe and Wigder, 2012). Biomass burning indeed results in the production of35

carbon monoxide (CO), which, when oxidized by the hydroxyl radical (OH), can lead to ozone formation in the surrounding

areas (Randriambelo et al., 2000). However, when the fire is intense, ozone precursors can be ejected above the planetary

boundary layer where stronger winds can carry them over much greater distances, resulting in ozone pollution events far from

the biomass burning region (Baldy et al., 1996). As such, because Reunion is situated at the intersection of austral winter

atmospheric flows, it is regularly under the influence of air-masses with ozone precursors from Madagascar, Southern Africa40

and Southern America, but studies have also shown that it is sometimes affected by advection from Australia and South-Eastern

Asia (Baldy et al., 1996; Randriambelo et al., 2000; Duflot et al., 2010; Bègue et al., 2010; Duflot et al., 2011; Vigouroux et al.,

2012; Bencherif et al., 2020; Ranaivombola et al., 2023).

Additionally, explosive volcanic eruptions can influence both stratospheric and tropospheric ozone concentrations, and thus

play a role in global chemistry and radiative forcing (Robock, 2000). Previous major eruptions, such as that of Mount Pinatubo45

(1991) and El Chichón (1982) have had significant effects on global atmospheric chemistry that are well documented (Hofmann

and Solomon, 1989; Gobbi et al., 1992; McCormick et al., 1995; Organization, 1999; Guo et al., 2004). Indeed, major explosive

eruptions generally eject enormous quantities of aerosols and sulfur dioxide (SO2) which can alter ozone chemistry. The

primary effect of volcanic aerosols on ozone is associated with the activation of chlorine compounds on volcanic particles.

When SO2 is released during eruptions, it undergoes rapid transformation into sulfuric acid (H2SO4) particles which can50

contribute to the depletion of ozone. For instance, McCormick et al. (1995) reported that tropical column ozone decreased by

6–8 % in the months following the Mount Pinatubo eruption. They observed that losses were greatest below 28 km, amounting

to 20 % in the 24–25 km altitude range (McCormick et al., 1995). Moreover, as stated by Hofmann and Solomon (1989),
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reactive anthropogenic chlorine compounds may be enhanced in volcanically perturbed regions, leading to ozone depletion

(Hofmann and Solomon, 1989).55

Because of the implied ozone losses and radiative forcing anomalies, the injection of volcanic plumes into the stratosphere

can also influence atmospheric temperatures. Ramaswamy et al. (2006) observed increases in global lower stratosphere temper-

atures following the major eruptions of El Chichón and Mount Pinatubo (Ramaswamy et al., 2006). It was also found that the

ozone depletion in the aerosol layer caused by the Mount Pinatubo eruption reduced the stratospheric heating by 30 % (Kirch-

ner et al., 1999). Nonetheless, the corresponding radiative anomalies caused global stratospheric warming and tropospheric60

cooling (Stenchikov et al., 1998; Kirchner et al., 1999).

Moderate and major eruptions may also contribute to the amplitude and dimension of the ozone hole over Antarctica.

Following the Mount Pinatubo eruption, Hofmann and Oltmans (1993) observed unusually low total ozone values of 105 DU

over the South Pole Station, which they attributed to the enhancement of Polar Stratospheric Clouds (PSCs) volume that play

an important role on ozone depletion process due to the presence of sulfuric acid droplets (Hofmann and Oltmans, 1993). Ivy65

et al. (2017) reported an increase of the 2015 Antarctic ozone hole by 4.5× 106 km2, primarily attributed to volcanic aerosols

from the Calbuco eruption (Ivy et al., 2017). Similarly, Zhu et al. (2018) reported volcanic sulfate aerosols penetration from

the Calbuco eruption into the Antarctic polar vortex, resulting in earlier ozone loss and an increase in the area of the ozone hole

(Zhu et al., 2018). Yook et al. (2022) also hypothesized a link between the eruption of La Soufrière in 2021 and the longevity

of the 2021 ozone hole (Yook et al., 2022). Hence, numerous research papers focused on ozone chemistry and atmospheric70

forcings following eruption events.

This study focuses on the January 2022 Hunga Tonga-Hunga Ha’apai (HTHH) eruption with a particular emphasis on the

ozone-related data in the week following the eruption. This eruption can be regarded as the most powerful since the eruption

of Mount Pinatubo three decades ago. Its consequences have been under intensive scrutiny and studies reveal this eruption

injected ∼0.5 Tg of SO2 and 146 ± 5 Tg of water vapor (H2O) into the stratosphere, corresponding to an increase of ∼10 %75

of the global stratospheric water vapor burden (Sellitto et al., 2022; Zuo et al., 2022; Millán et al., 2022). Research has also

shown that the main eruption’s aerosol column extended through the troposphere and stratosphere, and even reached the lower

mesosphere (Carr et al., 2022). As a result of the main austral summer stratospheric circulation, the bulk of the HTHH aerosol

plume reached the Indian Ocean and Reunion just 4 days after the main eruption (Baron et al., 2023). Studies pointed out

that the stratospheric volcanic plume caused a stratospheric cooling during the first two weeks following the eruption, since80

water vapor radiative cooling dominated local stratospheric heating rates (Sellitto et al., 2022; Legras et al., 2022; Wang et al.,

2022). The dilution and dispersion of the water vapor and aerosol plume lead to a net warming of the climate system and

persisting low temperatures within the stratosphere (Sellitto et al., 2022; Coy et al., 2022). Jenkins et al. (2023) indicated that

the stratospheric water vapor perturbation brought by the HTHH could increase the global surface temperature in the coming

decade (Jenkins et al., 2023).85

The present paper describes the currently available observations from the Microwave Limb Sounder (MLS), the Ozone Mon-

itoring Instrument (OMI), as well as assimilated fields from Modern-Era Retrospective analysis for Research and Applications,

version 2 (MERRA-2) and MERRA-2 Stratospheric Composition Reanalysis of Aura MLS (M2-SCREAM) (Gelaro et al.,
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2017; Wargan et al., 2023). Care must be taken with the interpretation of early ozone results due to the impact of volcanic

aerosols on satellite UV/visible observations, which significantly affects ozone OMI measurements. As OMI observations are90

assimilated into MERRA-2 and M2-SCREAM, the analyses may also be influenced by instrumental bias. Given the large per-

turbations caused by the volcanic plume and the limitations of satellite data and assimilation techniques, rather than trying to

be quantitative on the ozone perturbation, we will use these observations to qualitatively assess the stratospheric dynamics at

stake in the early volcanic plume. Hence, the objective of the present manuscript can be summarized in two main points: firstly,

we describe the currently available observations and demonstrate the appearance of a structure resembling an ozone mini-hole;95

and secondly, we show the zonal displacement of the volcanic aerosol plume and the dynamics of its advection with the help

of the ozone data.

This article is organized as follows: Sect. 2 describes the instruments and observations that were used for the present study,

as well as the data processing and methodology. Section 3 presents the results regarding the volcanic aerosol plume, the ozone

data over the Indian Ocean as well as the dynamics of the advection. Section 4 is dedicated to a discussion on the ozone results.100

Finally, the conclusion in Sect. 5 summarizes the results of this research.

2 Instrumentation and Method

In this study, we combined ground-based and satellite observational data, both before and after the HTHH eruption, along with

numerical assimilation data. This section outlines the different types of ozone and aerosol data used.

2.1 Ozone measurements105

A stratospheric DIfferential Absorption Lidar (DIAL) has been operated since January 2013 at the Maïdo Observatory (2160

m asl) of Reunion (Baray et al., 2013; Portafaix et al., 2015). Lidar observations have the advantage of providing high temporal

and vertical resolutions (Pazmiño, 2006)), with an accuracy of ∼5 % below 20 km, ∼3 % in the 20–30 km altitude range and

15–30 % above 45 km (Godin-Beekmann et al., 2003). This instrument can retrieve ozone concentration profiles at altitudes

ranging from 15 to 45 km. However, although the Maïdo DIAL system recorded data during the initial passage of the volcanic110

plume in January 2022, the corresponding signal-to-noise ratio was extremely low and the ozone profiles were not relevant. As

a result, stratospheric DIAL ozone profiles used in this paper were recorded before the HTHH eruption, from January 2013 to

December 2021. The 470 ozone profiles obtained during this period were used to determine the background ozone level and

were compared with satellite and assimilation products. As part of the Network for the Detection of Atmospheric Composition

Change (NDACC), this data can be accessed at the following link: https://ndacc.larc.nasa.gov/ (last accessed on 23 August115

2023).

Ozone profiles and Total Column Ozone (TCO) data can be retrieved from satellite measurements. In comparison to ground-

based observations, satellite measurements offer a global coverage and a consistent measurement frequency. The MLS in-

strument is a spectrometer on the Aura satellite, launched in July 2004 along with OMI. The Aura satellite follows a helio-

synchronous orbit and passes the equator at 01:45 pm solar time on its ascending node. In order to calculate atmospheric120
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parameters like temperature and atmospheric component concentrations, MLS measures thermal radiation emitted from the

Earth’s atmospheric limb ahead of its orbital path at spectral wavelengths ranging from 0.12 to 2.5 mm (Waters et al., 2006;

Livesey et al., 2008). According to Millán et al. (2022) who used level 2 version 4 MLS data following the HTHH eruption,

similar but spurious features are seen in many of the MLS retrieved species because of interference from SO2 absorption

lines (Millán et al., 2022). However, the quality of ozone and temperature measurements are not affected by the aerosol plume125

(Millán et al., 2022). Here, ozone concentration profiles with respect to geometric altitude were constructed with MLS level

2 version 5 ozone volume mixing ratio, temperature and geopotential profiles (Livesey et al., 2022). To fit with the lidar time

series, this procedure was repeated for both ascending and descending nodes on each measuring day from January 2013 to

December 2021. This procedure was extended to January 2022 in order to include MLS ozone profiles recorded before and

after the HTHH eruption. To calculate Stratospheric Column Ozone (SCO) data from MLS over the Indian Ocean, all available130

ozone concentration profiles within a 5-degree radius were averaged. In most of the stratosphere, specifically between 1 hPa

and 68 hPa, ozone volume mixing ratio profiles have accuracy and precision that are both lower than 10 % (Livesey et al.,

2022). In accordance with the recommendations made in the MLS data quality and description document, all quality flags

(quality, convergence, status and precision) were used on the raw profiles, and data lying outside the recommended range (261

to 0.001 hPa, or approximately 11 to 90 km) were not used (Livesey et al., 2022). MLS observations can be accessed through135

NASA’s data portal (https://disc.gsfc.nasa.gov/, last accessed on 23 August 2023).

On the other hand, OMI observes the atmosphere at nadir and uses a UV/visible spectrometer combined with a wide-field

telescope (Levelt et al., 2006, 2018). The main goal of OMI is to continue the Total Ozone Mapping Spectrometer (TOMS)

mission which was to monitor total ozone and other atmospheric parameters related to ozone chemistry. Thus, we have used

TCO (TOMS-like) level 3 data from the OMTO3e product consisting in best quality filtered level 2 TCO data re-arranged on140

a regular spatial grid of 0.25°×0.25° (OMI team, 2012). OMI level 2 ozone data has a precision of ∼3 % and shows good

agreement with Dobson and SAOZ measurements over the southern tropics and subtropics (Toihir et al., 2018). Because OMI

observes in the UV/visible spectral range, its ozone measurements are found to be particularly influenced by the large quantity

of stratospheric aerosol and SO2. It is important to note that the OMI processing algorithm is not designed to handle such

high levels of stratospheric aerosols. Taha et al. (2022) indeed found that the measured stratospheric Aerosol Optical Depth145

(sAOD) for this event is more than double that for the 2015 Calbuco eruption, underlying the severity of this eruption (Taha

et al., 2022). In fact, filtering level 2 OMI data for 17 January effectively removes the majority of the anomalous data points.

Consequently, instead of using OMI to quantify the ozone loss or anomaly, we use its ozone data solely to track the location of

the ozone anomaly and to discuss currently available products which assimilate OMI measurements. OMI data can be accessed

using NASA’s data portal (https://disc.gsfc.nasa.gov/, last accessed on 23 August 2023).150

Assimilation products have the ability to estimate atmospheric parameters with high temporal and spatial resolutions by

combining observational information from multiple sources and propagating it forward in time using fundamental laws of

motion. Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2), created by NASA’s Global

Modeling and Assimilation Office (GMAO), is such an assimilation dataset which analyses numerous atmospheric parameters

from 1980 to the present (Koster et al., 2016; Wargan et al., 2017). Since the launch of the Aura satellite in 2004, ozone profiles155
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from MLS and TCO from OMI have been used exclusively in the assimilation of MERRA-2 ozone profiles and TCO fields

(Table 1 of (Wargan et al., 2017)). In order to fit with the lidar time series and to study the effects of the HTHH volcanic

plume on ozone variability, we used MERRA-2 3-hourly ozone profiles from the M2I3NVASM v5.12.4 product for the study

period (i.e. from January 2013 to January 2022) (Global Modeling and Assimilation Office (GMAO), 2015a). These profiles

were downloaded over all grid points covering the Indian Ocean, from (30.0° S, 40.0° E) to (0.0° S, 175.0° E). To study160

the impact of the volcanic plume on TCO, we also downloaded MERRA-2 total ozone distributions from the M2I1NXASM

v5.12.4 product over the same time period (January 2013 to January 2022) and over the same region (Global Modeling and

Assimilation Office (GMAO), 2015b). Both datasets share a 0.5°×0.625° latitude and longitude resolution, but they are sampled

on slightly different temporal grids. Ozone profiles from the M2I3NVASM v5.12.4 are recovered 3-hourly from 00:00 UTC

and TCO maps from the M2I1NXASM v5.12.4 product are recovered hourly from 00:00 UTC. In a comparison with Upper165

Atmosphere Research Satellite (UARS) MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and

Stratospheric Aerosol and Gas Experiment II (SAGE II) data, Wargan et al. (2017) found that global MERRA-2 ozone profiles

show differences of less than 10 %, except at high latitudes (Wargan et al., 2017). They also found that global MERRA-2 TCO

data show differences lower than 2 % in comparison with TOMS data. Overall, they reported MERRA-2 stratospheric ozone

variability to be well represented, and justified its use for studies requiring highly resolved ozone acquisitions. MERRA-2170

data can be accessed using NASA’s data portal (https://disc.gsfc.nasa.gov/, last accessed on 23 August 2023). We also utilized

ozone profiles from the European Centre for Medium Range Forecasts (ECMWF) ERA5 reanalyses. These ozone profiles were

obtained hourly on 137 model levels and have a 0.25°×0.25° resolution. By comparing MERRA-2 and ERA5 ozone profiles

with the DIAL profiles, we determined which assimilation product displayed the closest agreements with local remote sensing

measurements. The selected assimilation profiles for Reunion (where the DIAL instrument is located) from MERRA-2, and175

ERA5 are chosen from the grid point nearest to Reunion. Data from ERA5 can be obtained from ECMWF’s Climate Data

Store (https://cds.climate.copernicus.eu/#!/home, last accessed on 23 August 2023).

Additionally, we used MERRA-2 Stratospheric Composition Reanalysis of Aura MLS (M2-SCREAM) profiles following

the eruption over the aforementioned region. M2-SCREAM distinguishes itself from MERRA-2 by also assimilating water

vapor and chemical species data obtained from MLS, integrating them into a complete stratospheric chemistry model called180

StratChem (Wargan et al., 2023; Nielsen et al., 2017). Coy et al. (2022) employed M2-SCREAM’s water vapor profiles in

the context of the HTHH eruption and concluded that M2-SCREAM effectively represents the water vapor anomaly from the

eruption and accurately captures the stratospheric dynamics (Coy et al., 2022). M2-SCREAM data can be downloaded through

this link: https://disc.gsfc.nasa.gov/datasets?keywords=M2-SCREAM&page=1 (last accessed on 23 August 2023).

To investigate ozone profiles over the Indian Ocean, we used ozone profiles from the M2I3NVASM v5.12.4 dataset to derive185

TCO and SCO. In order to determine the SCO, one needs to detect the tropopause height. Following the method reported by

Bencherif et al. (2020) and by Sivakumar et al. (2011), we used the Lapse Rate Tropopause (LRT) height (Bencherif et al.,

2020; Sivakumar et al., 2011). The LRT is detected as the lowest height at which the temperature gradient is greater than

-2K/km and the average temperature gradient of the next 2 km also exceeds -2K/km. The SCO is then calculated by integrating
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the ozone concentration profile between the LRT and the stratopause heights. In this work, the stratopause height was estimated190

to be at 47.5 km.

2.2 Aerosol measurements

In addition to the DIAL system, the Reunion atmospheric observatory is equipped with several other active remote sensing

systems, including a Rayleigh-Mie lidar for aerosol profile measurements (Baron et al., 2023). In this study we used aerosol

extinction profiles together with the corresponding sAOD at 532 nm as derived from the Rayleigh-Mie lidar measurements195

at the Reunion observatory. The data used in this study are publicly accessible via this webpage: https://geosur.osureunion.

fr/geonetwork/srv/eng/catalog.search#/metadata/f2c35798-47b7-433c-8927-46cf7babca83. The L2 ready-to-use data set in

netCDF format are available through this link: https://doi.org/10.5281/zenodo.7790283 (last accessed on 14 September 2023).

Aerosol optical properties can also be retrieved using sun-photometers. These remote sensing sun-tracking radiometers

perform regular and frequent measurements of the direct solar spectral irradiance, typically at wavelengths between 340 nm200

and 1640 nm. By comparing the ground solar irradiance to the estimated top of the atmosphere irradiance, they can determine

the total Aerosol Optical Depth (AOD), a quantity that describes the opacity of the atmosphere to radiation. Therefore, a sun-

photometer gives a measure of aerosol abundance in the atmospheric column above the study site. In the present study, we

used AOD data from a Cimel sun-photometer located in Saint-Denis campus (20 km northeast of the observatory at 80 m asl),

which has been operating since December 2003 in the framework of the AERONET (AErosol RObotic NETwork) program.205

We used version 3 level 2.0 AERONET data for the period from December 2003 to January 2022. AERONET data of level

2.0 is quality-controlled with near-real time automatic cloud-screening in addition to having pre- and post-field calibrations.

According to Giles et al. (2019), the 1σ uncertainty for the near-real time AERONET AOD measurement is up to 0.02 (Giles

et al., 2019). AERONET data are accessible from https://aeronet.gsfc.nasa.gov/ (last accessed on 23 August 2023).

The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) monitors the Earth limb ahead of its orbit path to pro-210

vide high vertical resolution ozone and aerosol profiles. The instrument measures limb scattering radiances in the 290–1000

nm wavelength range over the sunlit portion of the atmosphere using three vertical slits. This instrument has been making

observations onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) spacecraft since January 2012, following a

helio-synchronous orbit with an equatorial passing time of 01:30 pm solar time on its ascending node. With the goal to study

the spatial extension of the plume, we used OMPS-LP aerosol extinction profiles at 745 nm. According to Taha et al. (2021),215

extinction coefficients at 745 nm have relative accuracy and precision of 10 % and 15 %, respectively (Taha et al., 2021).

OMPS data were downloaded from the following link: https://ozoneaq.gsfc.nasa.gov/ (last accessed on 23 August 2023).

2.3 Stratospheric dynamics

To investigate the origin of the air-masses in our study region, we used the HYbrid Single Particle Lagrangian Integrated

Trajectory (HYSPLIT) model in its passive and backward mode. Developed by the National Oceanic and Atmospheric Ad-220

ministration (NOAA), this model uses meteorological fields to compute and simulate trajectories of air-masses (Draxler and

Hess, 1997, 1998). Because the long-lasting HTHH atmospheric effects appear to be concentrated within the stratosphere, and
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since stratospheric circulation is stable and stratified, we used a single HYSPLIT simulation to highlight the trajectories of

air-masses in the stratosphere over the Indian Ocean (Sellitto et al., 2022; Zuo et al., 2022; Millán et al., 2022). Thus, using

meteorological fields from the Global Data Assimilation System (GDAS), we ran a 240 hours back-trajectory simulation of225

9 distinct air parcels with terminal altitudes distributed equitably between 22 and 26 km (National Oceanic and Atmospheric

Administration (NOAA), 2023). These trajectories were chosen to have their endpoint where the impact of the volcanic plume

on TCO appears to be the greatest in the western region of the Indian Ocean. HYSPLIT trajectories can be obtained by running

simulations through the following link: https://www.ready.noaa.gov/HYSPLIT_traj.php (last accessed on 23 August 2023).

To investigate the dynamics of the stratosphere during the advection of the volcanic plume, we also used ERA5 analyses230

of Ertel’s Potential Vorticity (EPV) at the 600 K isentropic level (∼24 km in altitude) for the period from 18 to 24 January,

in conjunction with MERRA-2 and GDAS data (utilized for driving HYSPLIT). This integration of data from diverse sources

enhances the robustness of our analysis and provides a valuable approach to assess uncertainties and ensure consistency.

According to Hoskins et al. (1985), the EPV on isentropic surfaces behaves as a dynamical tracer when diabatic effects are

absent (Hoskins et al., 1985). Many authors have demonstrated its utility in studying isentropic transport in the stratosphere235

(Holton et al., 1995; Bencherif et al., 2003; Semane et al., 2006; Bencherif et al., 2011). EPV maps on the 600 K isentropic

level were downloaded from ECMWF’s data archive (MARS) using a CDS API key.

EPV maps over the study area were analysed further using the DYnamical Barrier Localization (DYBAL) algorithm, which

allows the localization of the subtropical barrier. The DYBAL code is a numerical tool developed at the Laboratoire de

l’Atmosphère et des Cyclones (LACy, France) to detect dynamical barriers and mixing in the subtropical stratosphere (Portafaix240

et al., 2003). The detection of a dynamical barrier is based the EPV gradient in equivalent latitude coordinates as defined by

Nakamura (1996), with its position characterized by a local maximum of the EPV gradient (Nakamura, 1996; Manney et al.,

2022, 2023). Here we applied the DYBAL code to maps extracted from the ERA5 EPV fields on the 600 K isentropic surface.

The ability of DYBAL to detect the position and the deformation of the dynamical barriers was previously highlighted by

several authors (Portafaix et al., 2003; Morel et al., 2005; Bencherif et al., 2007).245

2.4 Inter-comparison

Prior to drawing any conclusions based on the MLS and assimilated ozone concentration profiles, it is essential to verify their

agreement with precise local observations, such as lidar observations. For the purpose of this inter-comparison process, only

the ozone profiles that show the best coincidence in space and time were utilized. As we used both ascending and descending

MLS orbits, the acquisition time of MLS profiles varies between approximately either 14:00 or 01:30 in local solar time,250

respectively, while the ground-based DIAL lidar profiles are only nocturnal (recorded at Reunion, i.e. approximately between

16:00 and 02:00 UTC). Even though the acquisition times do not overlap, we compared DIAL night profiles to daily MLS

profiles. However, because assimilated ozone profiles are retrieved regularly, time averaged assimilated profiles, from 18:00 to

00:00 UTC, were used for comparison with the corresponding DIAL profiles. As a result, the profile comparison is based on

the following formula:255
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Relativebias(z) = 100× O3 DIAL(z)−O3 c(z)
O3 DIAL(z)

, (1)

where O3 DIAL(z) represents the stratospheric DIAL ozone value at altitude z and O3 c(z) represents the comparison ozone

value (from MLS, MERRA-2 or M2-SCREAM) at the same altitude. Other statistical quantities were also determined, namely

the number of profiles (N), the p-value, the coefficient of correlation (r), the linear regression (in the form y = ax) and the rela-

tive Root-Mean-Square Dispersion (RMSD) (see Appendix A). These statistical quantities were used to assess the differences260

and similarities between different ozone data in different layers.

3 Results

3.1 Aerosol plume

The HTHH main eruption occurred on 15 January and ejected large quantities of H2O and SO2 into the stratosphere (Khaykin

et al., 2022; Sellitto et al., 2022; Zuo et al., 2022; Millán et al., 2022). Following the austral summer’s general stratospheric265

circulation, the volcanic plume then traveled westward and reached the Indian Ocean and the African continent within days.

The plume’s transport across the Indian Ocean was captured by OMPS aerosol extinction profiles. Panels (b) to (e) of Fig. 1

present OMPS extinction profiles at 745 nm obtained over the Indian Ocean during the passage of the volcanic plume. Panel

(a) presents a typical background aerosol distribution obtained prior to the plume’s arrival over the Indian Ocean. At the bottom

left of each panel are given the date and time of retrieval, and the black dots correspond to the instrument’s estimation of the270

tropopause height. Panel (f) traces the satellite tracks corresponding to data in panels (a) to (e). Thus, this figure describes the

latitudinal and vertical extension of the volcanic plume as seen from the satellite instrument’s point of view during its passage

over the Indian Ocean on 22 January. During unperturbed conditions (see Fig. 1a), aerosol distribution is vertically limited

and confined within the troposphere, since largest values of the extinction coefficient are kept below the tropopause. However,

the presence of the volcanic plume becomes clearly visible on the other panels, where large extinction coefficient values (>275

10−3) lie above the tropopause level. On 22 January (Fig. 1b to 1e), the volcanic plume is clearly visible in the stratosphere

over the Indian Ocean between 5° S and 25° S, reaching altitudes greater than 35 km. Note that this result only characterizes

the vertical and latitudinal extent of the volcanic plume, but it does not describe the longitudinal dimension of the plume.

Equivalent observations can also be obtained for January 21 (not shown). Similar results were found by Taha et al. (2022) as

they remarked the presence of a volcanic plume located at an altitude exceeding 36 km (Taha et al., 2022). Additionally, they280

reported that the high sensitivity of OMPS LP enabled to monitor the volcanic plume at altitudes above 36 km for a duration

of up to 90 days.

Figure 2 shows the HTHH aerosol plume as seen by two quasi-colocalized instruments operating at the Maïdo observatory

(lidar) and the Saint-Denis campus (sun-photometer). It is important to highlight that the two instruments are 20 km apart

with an approximately 2000 m difference in elevation. Even though the AOD measured by the sun-photometer cannot be285

directly compared to the sAOD recorded by the lidar instrument, both sets of observations hold significant information about
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the passage of the volcanic plume. Figure 2a depicts the evolution of the lidar aerosol extinction profiles at 532 nm between

21 and 23 January, and Fig. 2b shows the evolution of the lidar sAOD at 532 nm (in black) and sun-photometer level 2.0

total AOD (in red) at 532 nm for the second half of January 2022 with their respective uncertainties. The blue line represents

the multi-year average of the sun-photometer level 2.0 data calculated from 2003 to 2021, and the shaded blue region is the290

corresponding ± 1σ (standard deviation). This multi-year average represents an average of AOD data which is grouped into

months, irrespective of the years. Note that different horizontal axes are used for panels (a) and (b), and the shared temporal

ranges are visually represented with gray regions. Note also that the Reunion sun-photometer did not record data at 532 nm.

We instead converted data recorded at 675 nm to 532 nm using Angström exponent measurements between 440 and 675 nm.

Results show that the multi-year mean AOD of 0.05 ± 0.02 is very low in comparison to the maximum optical depth295

recorded by both instruments in January 2022. Indeed, after 20 January, total AOD values start to dramatically increase until

23 January, when they culminated at 0.57 ± 0.02 before gradually decreasing to return to background levels. Similarly to the

sun-photometer measurements, the Maïdo lidar reveals an important amount of aerosols after 21 January, with sAOD values

rising up to 0.84 ± 0.13. A significant aerosol layer was seen by the lidar on two consecutive nights at altitudes of 29.7 km

and 26.8 km, with maximum extinction coefficients of 0.53 ± 0.08 and 0.68 ± 0.06, respectively. Note that sun-photometer300

measurements are obtained during the day, while lidar observations are only performed during nighttime. As such, observations

from these two instruments cannot overlap as they do not operate simultaneously. A detailed study of the lidar observation of

the HTHH plume can be found in Baron et al. (2023) (Baron et al., 2023).

3.2 Maïdo DIAL ozone profiles

Figure 3 shows the multi-year Maïdo DIAL ozone profiles. The black line depicts the altitude of the ozone maximum. A total305

of 470 profiles were obtained during the period from January 2013 to December 2021. The figure shows an ozone layer that is

located between 22 and 27 km, and highlights the variation of the vertical distribution of ozone at Reunion. With a predominant

annual cycle, the ozone maximum is at its highest altitude during austral summer (here in December at 26.3 km), and at its

lowest altitude during austral winter (here in August at 23.7 km). This behavior, observed in subtropical (e.g., Reunion) and

tropical locations, is attributed to changes in photochemistry and tropical upwelling as part of the Brewer-Dobson Circulation310

(BDC), which transports ozone from the equator (where it is primarily produced) to higher latitudes (Butchart, 2014; Plumb

and Eluszkiewicz, 1999; Weber et al., 2011). During austral summer (winter), Reunion is closest to the ascending (descending)

branch of the BDC, which explains why the ozone layer is highest (lowest) in altitude.

3.3 MLS, MERRA-2 and ERA5 ozone profiles

Prior to obtaining results relative to ozone measurements and stratospheric dynamics, we conducted a statistical analysis to315

determine the most accurate dataset for describing ozone levels in the study region during unperturbed condition. Thus, we

compared MLS, MERRA-2 and ERA5 ozone concentration profiles obtained over Reunion to the Reunion stratospheric DIAL

ozone concentration profiles from January 2013 to December 2021. Results are presented in Fig. 4 where the continuous line

and the shaded area represent the mean relative bias and the standard error, respectively. This standard error represents standard
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deviation divided by the square root of the number of individual comparisons (which varies as a function of altitude). The320

aforementioned statistical quantities are also shown in the figure. These mean relative bias profiles were obtained by averaging

the results of Eq. (1) across all available ozone profiles. Similarly, the statistical results (correlation coefficient, linear regression

and relative RMSD) presented in the following were obtained from the comparison of all data points, irrespective of the altitude

level and date. Averaged mean relative bias and standard errors over several altitude ranges are summarized in Table 1.

Comparisons of MLS and MERRA-2 profiles to DIAL observations yield similar statistical quantities and similar mean325

relative bias profiles. This similarity is expected as MERRA-2 incorporates MLS data into its assimilation process. Overall, the

best agreements are found in the 20–40 km altitude range, with higher and increasing deviations below 20 km and above 40

km (see Table 1). In the altitude range from 20 km to 40 km, MLS and MERRA-2 relative bias and error yield -1.22 ± 0.31 %

and 0.09 ± 0.30 %, respectively. Above 40 km, MLS (MERRA-2) results show 3.73 ± 2.22 % (11.87 ± 1.94 %). Conversely,

below 20 km, one has -0.06± 1.95 % (4.28± 1.81 %). On both mean relative bias profiles, there is a negative bias that appears330

at ∼20 km of altitude, with -11.22 ± 1.17 % for MLS and -12.69 ± 0.67 % for MERRA-2. Note that the increased difference

and error at altitudes greater than 40 km is partly due to the lidar signal-to-noise ratio decrease and to the reduced number of

lidar profiles reaching altitudes greater than 45 km. Indeed, out of the 470 lidar profiles, 410 reached 40 km, 132 reached 45

km and only 6 reached 47.5 km. Note also that the increased difference and error at altitudes lower than 20 km may be due to

the reduced satellite accuracy and precision (see Table 3.18.1 of (Livesey et al., 2022)) and the lower number of lidar profiles335

for these altitudes. Indeed, out of the 470 profiles, 453 start below 20 km, 409 before 17.5 km and 131 before 15 km. For these

reasons, the MLS mean bias profile seems to under-estimate ozone concentrations by 20.73 ± 1.60 % at 16.70 km. ERA5, on

the other hand, shows accentuated differences with the DIAL profiles, with -18.85 ± 2.22 % between 15 and 20 km, 0.79 ±
0.31 % between 20 and 40 km and 15.54 ± 2.02 % between 40 and 47.5 km. Note that the relative bias of ERA5 is greater

than that of MERRA-2, particularly in the troposphere and in the upper stratosphere.340

Correlation coefficients (r = 0.994 for lidar–MLS and r = 0.993 for lidar–MERRA-2) indicate a very high correlation between

the lidar and both datasets, and linear regressions (y = 1.013 x for lidar–MLS and y = 1.024 x for lidar–MERRA-2) show that

satellite and assimilation profiles tend to slightly over-estimate ozone concentrations, irrespective of the altitude. Finally, a low

relative dispersion (RMSD = 7.542 % and RMSD = 8.130 % for MLS and MERRA-2, respectively) further demonstrates the

agreement between MLS or MERRA-2 and the DIAL profiles. While the correlation with ERA5 (r = 0.992) remains excellent,345

the higher dispersion (RMSD = 9.216 %) and slope (y = 1.039 x) show the poorest agreement with the DIAL.

Therefore, the MLS and MERRA-2 ozone concentration profiles seem to be in good agreement with lidar observations in

the 20–40 km altitude range, which includes the altitudes of the HTHH volcanic plume (26–30 km) being our main focus in

this study.

3.4 Effects of the volcanic plume on ozone350

Based on the good correlation and agreement between MERRA-2 and the stratospheric DIAL ozone profiles over Reunion, it

appears relevant to use MERRA-2 ozone products to investigate the changes in the distribution of the ozone anomaly over the

study region, giving the advantage of its highly resolved time and space coverage.
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Figure 5 depicts ozone anomaly maps that show snapshots of the evolution of TCO and SCO reduction following the passage

of the volcanic plume over the Indian Ocean from 17 to 22 January. The ozone column anomalies (total and stratospheric) were355

obtained by subtracting instantaneous ozone values from the averaged values calculated for the month of January over the pe-

riod from 2013 to 2021. The white dot symbols indicate the positions of local minima for both total and stratospheric ozone for

the given date and hour, whereas the stars indicate the positions of MERRA-2 total and stratospheric ozone minima throughout

the entire day. Additionally, the red dots on the figure indicate locations where MLS and MERRA-2 have nearly coincident

profiles near the HTHH aerosol plume. To ensure consistency across different measurements, only the MLS observations taken360

during the ascending node were considered for these coincident observations. The profiles corresponding to these locations

were investigated and results are detailed at the end of this section. The anomaly maps emphasize that the study region was

subject to significant TCO and SCO anomalies over the latitudinal band from 30° S to 10° S, with a zonal westward transition

of the ozone minimum. These anomalies give rise to a structure resembling an ozone mini-hole extending over significant areas

of the studied region from 17 to 22 January. In fact, on 17 January, OMI recorded an ozone anomaly exceeding -15 DU over an365

area of approximately 9.14×105 km2. The TCO anomaly from MERRA-2 for the same day on panel (f) covered 12.06×105

km2, and that for SCO from MERRA-2 on panel (k) extended over 9.57 ×105 km2. The average ozone anomalies for these

regions are -36.33 DU for OMI, -27.78 DU for TCO from MERRA-2 and -26.38 DU for SCO from MERRA-2. Total and

stratospheric ozone columns (anomalies) over the minima (white dots) in panels (a), (f) and (k) are 160.7 DU (-98.76 DU,

or -38.06 %) for OMI, 208.49 DU (-48.66 DU, or -18.92 %) for total ozone from MERRA-2 and 183.86 DU (-42.7 DU, or370

-18.85 %) for stratospheric ozone from MERRA-2. While the ozone anomaly appears to weaken during the transport process, it

continued to cover extensive regions of the Indian Ocean on 21 and 22 January. On January 22, the regions (average anomalies)

are 1.61 ×105 km2 (-17.60 DU) for OMI on panel (e) and 4.94 ×105 km2 (-18.08 DU) for TCO from MERRA-2 on panel (j).

SCO anomalies of up to -18.21 DU (-8.00 %) were still present in MERRA-2 data over the study region on 22 January, but

no anomaly exceeding -15 DU can be found on panel (o). MLS indicates a maximum SCO anomaly of -14.66 DU (-6.38 %)375

within the ozone mini-hole structure on 20 January, and averaging MLS SCO anomalies from 18 to 22 January yields -5.43

DU (-2.26 %).

MERRA-2, M2-SCREAM and MLS ozone profiles retrieved from the locations marked by red dots are displayed in Fig.

6. The green lines represent multi-year profiles obtained from MLS. These multi-year profiles were obtained by averaging all

the profiles obtained in January over the study region from 2013 to 2021 and therefore represent a typical ozone profile for380

background conditions. The shaded green area represents the ± 1σ (standard deviation) with respect to the mean value. As

Fig. 5 revealed local total and stratospheric ozone minima, Fig. 6 shows that these minima are due to reduction in the ozone

concentration in the ozone layer. Ozone profiles observed between 18 and 22 January exhibit a strong agreement among the

three datasets (MLS, MERRA-2, and M2-SCREAM). This is expected since both analyses are constrained by MLS. In the

altitude range from 20 to 30 km, MLS recorded a maximum anomaly of -17.57 DU (-12.27 %) on 20 January, compared to385

the multi-year mean. The average of anomalies recorded by MLS between 18 to 22 January within this altitude range yields

-6.13 DU (-4.28 %). It should be noted that MERRA-2 indicates maximum ozone anomalies (not shown) of -26.58 DU (-18.42
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%) within the same altitude range. However, there are clear differences between satellite and assimilation ozone results for 17

January which are discussed in Sect. 4.

Figure 7 displays TCO and SCO over the locations with the largest ozone reductions seen in MERRA-2 (stars in Fig. 5),390

for the whole month of January 2022. The dashed lines represent the multi-year average values derived from data collected

between 2013 and 2021, and the shaded areas represent the ± 1σ (standard deviations). OMI TCO and MLS SCO were also

obtained and are superimposed with red and green solid lines and dots, respectively. Similar to previous results, this figure

clearly indicates that both TCO and SCO over central and western Australia were sensitive to the HTHH plume’s overpass.

Indeed, the MERRA-2 SCO over central Australia (see Fig. 7a) plummeted to 183.71 DU on 17 January at 12:00 UTC,395

corresponding to an anomaly of -43.11 DU (-19.01 %) in comparison with the multi-year average value. As one may expect,

this ozone reduction was also noticeable on the TCO (see Fig. 7a). OMI and MERRA-2 TCO fell to 204.98 DU and 208.73

DU, corresponding to anomalies of -52.32 DU (-20.33 %) and -48.56 DU (-18.87 %), respectively. Over western Australia (see

Fig. 7b) on 18 January at 21:00 UTC, MERRA-2 SCO decreased to 197.34 DU, corresponding to an anomaly of -27.75 DU

(-14.06 %), and the MERRA-2 TCO fell to 233.06 DU, corresponding to an anomaly of -21.36 DU (-8.39 % %). Similarly,400

OMI shows a sharp ozone decrease, but the values still lie within the multi-year average standard deviation. OMI TCO values

for 18 January are 248.22 DU (-6.19 DU or -2.43 %). Similarly, the HTHH plume overpass appears to have had an impact

on the MERRA-2 ozone columns over Madagascar (see Fig. 7c). SCO and TCO minima were found over Madagascar on 22

January at 03:00 UTC, with values of 209.26 DU and 229.74 DU, respectively, corresponding to anomalies of -18.21 DU (-8.00

%) and -25.05 DU (-9.83 %).405

Even though the average values for January 2022 compare favorably between MLS and MERRA-2 observations for central

Australia (232.40 DU and 229.77 DU, respectively), western Australia (233.10 DU and 229.68 DU, respectively) and Mada-

gascar (236.18 and 234.61 DU, respectively), the amplitudes of the ozone minima are clearly different. The large stratospheric

ozone minimum over Australia was not captured by MLS, whose minimum SCO recorded 227.73 DU on 18 January. MLS

indicates a clearer minimum of SCO over the point near Madagascar on 21 January, with levels decreasing to 221.12 DU. This410

observation differs from the values seen in MERRA-2 in the amplitude and date of this minimum value. Note that these differ-

ences are attributable to the fact that the locations studied here (stars in Fig. 5) do not directly correspond to MLS observation

locations. Moreover, since the anomaly is moving, the all-day MERRA-2 minimum is likely to be different from the OMI or

MLS value for that location.

3.5 Stratospheric dynamics415

The Lagrangian HYSPLIT model was used to investigate the origin of the air-masses responsible for the ozone anomaly over

the Indian Ocean following the HTHH eruption. Back-trajectories were run from the location of TCO minimum in the western

region of the Indian Ocean, at the time at which this minimum was recorded, and for 9 distinct altitudes ranging between 22

and 26 km. Figure 8 shows the result of the HYSPLIT simulation, where the darkest trajectory represents air-masses at 26 km,

and the lightest trajectory represents air-masses at 22 km. Figure 8 shows that all back-trajectories are zonal, moving westward420

and passing over the location of the HTHH eruption. The results of the HYSPLIT back-trajectories simulation are consistent
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with the lidar measurements made in Reunion (see Fig. 2), as well as with the ozone anomalies over the region of study as

depicted in Fig. 5. Additionally, the latter shows a westward transition of ozone anomalies in the stratosphere over the Indian

Ocean.

To support these results, we used ERA5 EPV contours to highlight the dynamics of the stratosphere at the 600 K potential425

temperature level (∼24 km). Results for 18 January at 21:00 UTC and 22 January at 03:00 UTC are shown in Fig. 9, where EPV

is expressed in potential vorticity units (PVU, with 1 PVU = 10−6 m2 s−1 K kg−1). In this figure are also superimposed the

SCO anomaly maps. The red line corresponds to the position of the subtropical barrier as estimated by DYBAL, and the white

dot symbols indicate the location of SCO minima. When it enters the Indian Ocean on 18 January, the bulk of the stratospheric

ozone anomaly lies to the north of the subtropical barrier, itself located at an average global latitude of 26.6° S. In the course430

of its westward transport toward Madagascar, the bulk of the stratospheric anomaly stays north of the subtropical barrier (not

shown). The region immediately north of the subtropical barrier, represented by the latitudinal band at ∼20° S between both

stratospheric ozone minima, shows no discontinuity in PVU, thus allowing for isentropic transport from east to west on the

600 K isentropic surface. When the ozone anomaly exits the region of study on 22 January, the subtropical barrier (red thick

line in Fig. 9), located at an average global latitude of 24.8° S, is still distinctly south of the stratospheric ozone anomaly.435

Therefore, the east-to-west transport was made possible by the austral summer general stratospheric circulation, as well as the

quasi-longitudinal EPV contours and the strong EPV gradient poleward.

4 Discussion

The HTHH eruption on 15 January 2022 injected enormous amounts of H2O, aerosols, and a significant quantity of SO2 into

the tropical stratosphere. As previously mentioned in Sect. 3, the presence of SO2 within the volcanic plume had significant440

impacts on OMI observations, leading to biases in total ozone measurements. This is particularly the case on 17 January (see

Fig. 5), but anomalies as severe as -42.13 DU (-16.40 %) can still be found on 19 January and -29.32 DU (-11.11 %) on 22

January. Employing a filtering method on 308 nm residuals within OMI TCO level 2 data removes most, if not all, of the

volcanic induced errors (not shown). Applying this filter on 17 January data eliminates almost entirely the ozone anomaly. The

application of this filter in the following days continued to remove parts of the anomaly until 22 January. Therefore, level 3445

OMI TCO data may certainly be affected by errors induced by the volcanic aerosol plume. Additionally, because it incorporates

OMI data into its assimilation process, MERRA-2 ozone fields are also expected to be influenced by OMI measurements.

Since MLS did not record any anomalies on 17 January, the initial anomaly observed by MERRA-2 on that day is primarily

derived from anomalous OMI data. Therefore, the ozone anomalies described in the previous section with MERRA-2 and

OMI results might not have been as severe as depicted here, but their spatial localization should be accurate. Furthermore,450

because MERRA-2 lacked concurrent MLS profiles, the vertical structure of this anomaly was not accurately represented.

Consequently, the algorithm distributed the TCO increment vertically based on the background error estimate (Wargan et al.,

2017). In MERRA-2, these background error standard deviations are linked to the background ozone mixing ratio, leading

to the majority of the anomaly being placed around the ozone maximum in the stratosphere. However, as subsequent days
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unfolded, the vertical placement of the anomaly gradually evolved and became more realistic, owing to the gradual acquisition455

of MLS observations, which provided additional insights into its structure. This could explain why MLS and MERRA-2 data

do not converge prior to 18 January in Fig. 6.

The cause of the ozone anomaly can stem from multiple causes and may result from a combination of various factors.

First, the low ozone levels reported in this article are likely influenced by the injection of tropospheric ozone-poor air into the

stratosphere. Considering the short chemical lifetime of ozone at the altitudes where we observed ozone anomalies (∼22–28460

km or 40–15 hPa), it is expected that ozone levels would have rebounded from this initial impact before reaching the western

part of the Indian Ocean. However, as pointed out by Legras et al. (2022), the concomitant injection of SO2 and H2O might

have contributed to a fast increase of the stratospheric aerosol burden after the eruption by increasing the amount of sulfate

aerosols which are known to deplete ozone (Legras et al., 2022). Furthermore, as underlined by Tie and Brasseur (1995),

the decline in ozone levels following a major volcanic eruption is linked to the combined presence of SO2 and chlorine (Tie465

and Brasseur, 1995). Justifiably, Zhu et al. (2023) suggested that ozone losses within the volcanic plume resulted from the

enhanced HOx and ClOx cycles enabled by the simultaneous injection of H2O, ClO and HCl (Zhu et al., 2023). Therefore,

the ozone reduction seen in Sect. 3 is likely the outcome of multiple factors, including the injection of ozone-poor air-masses,

the presence and production of sulfate aerosols, and the influence of the HOx and ClOx cycles.

Due to the low vertical resolution of satellite and assimilation profiles (about 1.1 km resolution for MERRA-2), and due to470

the lower sampling frequency by MLS, results regarding the amount and altitude of ozone anomaly should be interpreted with

caution. The diminution of the altitude at which ozone anomaly occurs in Fig. 6, shifting from 25–28 km on 18 January to

22–28 km on 22 January, might be due to the satellite sampling different parts of the plume on different days. Nonetheless, a

sedimentation process of the aerosol plume has been documented by Legras et al. (2022). According to their study, following

the initial rapid removal of ice and ash, the remaining volcanic plume formed two distinct cloud layers, located between 26475

and 32 km in altitude, traveling westward (Legras et al., 2022; Baron et al., 2023). The rapid descent of the aerosol plume

in the first week after the eruption might also explain in part the descent of the ozone anomaly, but this remains to be more

investigated.

5 Conclusions

The Hunga Tonga-Hunga Ha’apai (HTHH) volcano’s main eruption occurred on 15 January 2022, releasing massive amounts480

of aerosols, sulfur dioxide and water vapor into the atmosphere (Sellitto et al., 2022; Zuo et al., 2022; Millán et al., 2022).

The volcanic plume was observed to have vertically extended through the troposphere and stratosphere, and it was also shown

that some ejected material even reached the mesosphere (Carr et al., 2022). OMPS aerosol extinction profiles revealed that this

volcanic plume did indeed extend through the entire troposphere and above, stretched between 5° S and 25° S and reached

altitudes greater than 35 km over the Indian Ocean. These results are supported by the Maïdo aerosol lidar, which observed485

the plume during two consecutive nights a few days after the eruption, indicating that the core of the plume was passing over

Reunion at an altitude ranging from 26.8 to 29.7 km.
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The dynamics of the stratosphere responsible for the volcanic plume’s advection over the Indian Ocean were studied using

ERA5 EPV maps. The HYSPLIT simulation highlighted the presence of the summer’s westward stratospheric flow. ERA5 EPV

maps indicated that the region situated between Australia and Reunion showed no PVU discontinuity at the 600 K isentropic490

level during the passage of the volcanic plume. Thus, due to isentropic transport and the summer’s westward stratospheric

flow, the volcanic plume traveled westward and reached the Indian Ocean and Reunion within days, confirming the results of

previous studies.

The ozone anomaly associated with the volcanic plume was investigated using OMI, MLS, MERRA-2 and M2-SCREAM

ozone data, taking advantage of the fine temporal and spatial resolution of assimilation datasets. However, it must be noted that495

early ozone results from OMI, MERRA-2 and M2-SCREAM are expected to be significantly influenced by the presence of the

volcanic aerosol plume and SO2.

Still, being able to localize the anomaly and observe its displacement, we hypothesize that the advection of the volcanic

aerosol plume had an impact on ozone levels over the Indian Ocean, as an ozone mini-hole structure was found to extend over

large areas of the studied region from 17 January to 22 January. Specifically, the TCO anomaly of -15 DU from MERRA-2500

covers an area of 12.06×105 km2 on 17 January and 4.94 ×105 km2 on 22 January. Total and stratospheric ozone columns

reached a minimum over Australia’s central regions, although this early ozone loss may be attributable to the injection of

ozone-poor tropospheric air-masses and the interference of observations with SO2. The ozone anomaly then followed the

displacement of the volcanic aerosol plume in an east-to-west motion. MLS profiles indicate a maximum SCO anomaly of

(-14.66 DU or -6.38%) within the ozone mini-hole structure on 20 January. Average MLS SCO anomalies from 18 to 22505

January yield -5.43 DU (-2.26 %). As subsequent days unfolded and as more MLS profiles became available, assimilation

results became more realistic. A closer examination of the MLS, MERRA-2 and M2-SCREAM ozone profiles revealed that

the ozone decrease occurs at altitudes ranging from 20 to 30 km, which corresponds to the location of the tropical ozone layer.

Within this altitude range, MLS recorded a maximum anomaly on 20 January, with -17.57 DU (-12.27 %). An average of the

anomalies recorded by MLS within this altitude range yields -6.13 DU (-4.28 %).510

This study showed the evolution of the localization of the early ozone anomaly in the HTHH volcanic aerosol plume in the

Indian Ocean. We examined the impact of this aerosol plume on ozone levels, yet interference in the measurements prevents

us from obtaining precise and reliable ozone anomalies for this event. This would require the use of meso-scale models that

incorporate a comprehensive representation of stratospheric chemistry and dynamics, as well as the perturbations caused by

the HTHH.515

Appendix A: Statistical parameters

Statistical parameters were used to for comparisons between lidar and satellite or assimilation data. Here we chose to use the

correlation coefficient (r) and the Root-Mean-Square Dispersion (RMSD) to assess the differences and agreements between

datasets in different layers of the atmosphere. They are based on the following equations:
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r =

N∑

i=1

(O3 DIALi −O3 DIAL)× (O3 ci −O3 c)

√√√√
N∑

i=1

(O3 DIALi −O3 DIAL)2×

√√√√
N∑

i=1

(O3 ci −O3 c)2

, (A1)520

RMSD =

√√√√ 1
N

N∑

i=1

(O3 DIALi −O3 ci)
2, (A2)

where N is the number of available profiles, O3 ci represents the ozone data compared to DIAL (O3 DIALi ) observations, and

the index i iterates over the available profiles at different time steps. For each coincident profile, individual values of r and

RMSD are obtained. The r and RMSD values reported in Sect. 3 are the averages derived from the individual r and RMSD

values across all compared profiles.525

Data availability. Reunion aerosol lidar and used in this steady are accessible from https://doi.org/10.5281/zenodo.7790283 (last accessed

on 14 September 2023). Reunion ozone lidar measurements are available through the NDACC page (https://ndacc.larc.nasa.gov/, last ac-

cessed on 23 August 2023). OMI, MLS and MERRA-2 data can be downloaded using NASA’s data portal (https://disc.gsfc.nasa.gov/, last

accessed on 23 August 2023). M2-SCREAM data can be accessed using this specific link: https://disc.gsfc.nasa.gov/datasets?keywords=

M2-SCREAM&page=1 (last accessed on 23 August 2023). ERA5 reanalyses can be obtained from ECMWF’s Climate Data Store (https:530

//cds.climate.copernicus.eu/#!/home, last accessed on 23 August 2023). AERONET Version 3 Level 2 data are available through this link:

https://aeronet.gsfc.nasa.gov/ (last accessed on 23 August 2023). OMPS data can be accessed from https://ozoneaq.gsfc.nasa.gov/ (last ac-

cessed on 23 August 2023). HYSPLIT back-trajectories can be obtained from https://www.ready.noaa.gov/HYSPLIT_traj.php (last accessed

on 23 August 2023).
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Figure 1. OMPS-LP aerosol extinction height-latitude cross-sections over the Indian Ocean at 745 nm for a) background conditions prior to

the passage of the volcanic plume on 17 January and b–e) during the passage of the plume on 22 January. Panel f) shows the satellite track

corresponding to each overpass. The superimposed black dots on panels a–e) indicate the instrument’s estimation of the tropopause height.
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Figure 2. Aerosol lidar extinction profiles at 532 nm (a) and aerosol lidar stratospheric AOD (sAOD) in black with level 2.0 sun-photometer

total AOD in red and their associated uncertainties (b). The blue line and shaded area represent average and standard deviation values given

by level 2.0 sun-photometer data from 2003 to 2021. The shared temporal ranges in both panels are visually represented with gray regions.
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Figure 3. Multi-year stratospheric DIAL profiles obtained from observations between 2013 and 2021 at Reunion. The black dotted line

shows the altitude of the ozone maximum.
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Figure 4. Mean relative bias (solid line) and± 1σ standard error (shaded area) comparing nocturnal DIAL ozone profiles to the corresponding

MLS, MERRA-2 and ERA5 ozone profiles between January 2013 and December 2021.
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Table 1. Averaged mean relative bias and standard error for the comparisons between MLS, MERRA-2, ERA5 and the DIAL observations

over the 15–20 km, 20–40 km and 40–47.5 km altitude ranges.

15–20 km 20–40 km 40–47.5 km

Lidar/MLS -0.06% ± 1.95% -1.22% ± 0.31% 3.73% ± 2.22%

Lidar/MERRA-2 4.28% ± 1.81% 0.09% ± 0.30% 11.87% ± 1.94%

Lidar/ERA5 -18.85% ± 2.22% 0.79% ± 0.31% 15.54% ± 2.02%
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Figure 5. Time evolution of total ozone anomalies from OMI (left column) and MERRA-2 (middle column), together with stratospheric

ozone anomalies from MERRA-2 (right column), from 17 to 22 January 2022. The red dots represent the locations of MLS profiles, each

matched to the nearest MERRA-2 grid point, the white dots represent the locations of ozone minima for the given date and hour shown,

and the stars represent the locations of total and stratospheric ozone minima from MERRA-2 throughout the entire day. Date and time of

acquisition are shown in the top right corner of each panel.
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Figure 6. MLS, MERRA-2 and M2-SCREAM ozone profiles for the locations marked by red dots in Fig. 5. The green curves (shaded areas)

depict the January average MLS profiles (± 1σ standard deviation) over the 2013–2021 period for the whole study region. Locations and

times of retrieval are displayed on the top right corner of each panel.
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Figure 7. Time evolution of MERRA-2 and OMI TCO as well as MERRA-2 and MLS SCO over the locations with minimal ozone levels

represented by stars in Fig. 5. Results concerning central regions of Australia, western regions of Australia and northern regions of Mada-

gascar appear in panels a), b) and c), respectively.
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Figure 8. HYSPLIT back-trajectories of 240 hours ending on 22 January at 03:00 UTC at the minimum of total ozone near Madagascar,

between 22 and 26 km height. The star and triangle symbols indicate the ending point and the HTHH volcano location, respectively. The

back-trajectories are displayed with thick lines of different shades of grey, ranging from white for the 22 km height to black for 26 km.
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Figure 9. Instantaneous stratospheric ozone column anomaly maps and contours of the ERA5 hemispheric EPV for 18 January at 21:00

UTC and 22 January at 03:00 UTC. The red thick line represents the DYBAL estimated position of the subtropical barrier and the white dot

symbols indicate the positions of stratospheric ozone minima.
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