

A reassessment of the sulfur, chlorine and fluorine atmospheric loading during the 1815 Tambora eruption

Manon Pouget, Yves Moussallam, Estelle F. Rose-Koga, Haraldur Sigurdsson

▶ To cite this version:

Manon Pouget, Yves Moussallam, Estelle F. Rose-Koga, Haraldur Sigurdsson. A reassessment of the sulfur, chlorine and fluorine atmospheric loading during the 1815 Tambora eruption. Bulletin of Volcanology, 2023, 85, 10.1007/s00445-023-01683-8. insu-04326239v1

HAL Id: insu-04326239 https://insu.hal.science/insu-04326239v1

Submitted on 8 Dec 2023 (v1), last revised 18 Mar 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Type of Paper: Research Article

A reassessment of the sulfur, chlorine and fluorine atmospheric loading during the 1815 Tambora eruption

5 Manon Pouget^{1 ⊠} · Yves Moussallam ^{2,3} · Estelle F. Rose-Koga⁴· Haraldur Sigurdsson⁵

- ¹ Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
- 10 ² Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10027, USA
- 11 ³ Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA
- ⁴ Institut des Sciences de la Terre d'Orléans (ISTO), UO/CNRS/BRGM, 1A rue de la Férollerie, 45071, Orléans,
 France
- ⁵ Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
- 15 16

4

6 7 8

9

⊠ manon.pouget21@gmail.com

17 Abstract

18 The 1815 eruption of Mount Tambora (Sumbawa Island, Indonesia), largest known explosive 19 eruption in recorded history, was cataclysmic. It was responsible for a strong short-term global 20 atmospheric cooling the following year, known as "the year without a summer". To evaluate the 21 climatic impact, an accurate quantification of volatile elements degassed during this eruption is 22 crucial. In this study, we re- evaluate the atmospheric release of sulfur, chlorine and fluorine during 23 the 1815 eruption using the petrological approach based on plagioclase-hosted melt inclusions. The 24 pre-eruptive (melt inclusions) and post-eruptive (matrix glass) volatile element concentrations of the 25 magma are measured by electron microprobe. We discuss three different outgassing scenarios and 26 conclude that 147±17 Tg of SO₂, 49±5 Tg of Cl and 20±2 Tg of F were degassed during the eruption, 27 considering closed system ascent and degassing. The SO₂ results take into account the dissolution of 28 sulfides which are present in melt inclusions and plagioclase crystals but not in matrix glasses. Our 29 new estimates are higher than previous estimations from petrological methods or derived from ice 30 cores but are consistent with atmospheric optical depth observations from 1816. The 1815 eruption 31 of Tambora ranks in first place in terms of volcanic SO₂ emission in the last 2000 years, higher than 32 the 1257 Samalas eruption (Lombok Island, Indonesia) if equal methodologies are applied. These 33 estimates remain nonetheless minima as they do not account for the possible additional contribution 34 of a pre-existing gas phase in the magma reservoir.

35 Keywords Degassing · Volatile elements · Melt inclusions · Petrological method

36 Acknowledgments

We would like to thank K. Kelley and S. Carey for providing samples. MP thanks G. Georgeais for
his help during sample preparation. MP and ER-K greatly appreciated the support and expertise of J-

39 L. Devidal and E. Voyer during EMPA and SEM measurements, respectively. We thank Mike

40 Rampino and an anonymous reviewer for their comments and advice, which helped improve this

41 work. We thank Alexei Ivanov for editorial handling.

42 Conflicts of interest/Competing interests

43 The authors declare no conflicts nor competing interest.

44 Availability of data and material

All data obtained in this study are presented in the main text and in the Supplementary Informationonline.

47

48 Introduction

49

50 The 1815 eruption of Tambora is known as the largest explosive eruption of the common Era (e.g., 51 Newhall and Self 1982; de Jong Boers 1995). With a Volcanic Explosivity Index (VEI) of 7 (Newhall and Self 1982), the quantity of ash and gases released by the eruption plunged much of Indonesia into 52 53 darkness for more than three days (de Jong Boers 1995). The plumes formed during the Plinian 54 activity of the eruption carried gases and fine ash well into the stratosphere. Once at stratospheric 55 altitudes, sulfur gases are converted into sulphate aerosols that reflect solar radiation and cause a 56 global cooling of both the troposphere and Earth's surface. In addition, volcanogenic halogens such 57 as chlorine and fluorine have a destructive effect on stratospheric ozone (e.g., Schmidt and Robock 2015). After 1815, both of these effects were observed (e.g., Briffa et al. 1998; D'Arigo et al. 2009). 58 59 The eruption of Tambora is considered to be the cause of "the year without a summer" in 1816 (e.g., 60 Rampino et al. 1988; Oppenheimer 2003). That year, the surface temperatures were about 0.78°C 61 colder than average worldwide and the decade 1810-1819 is considered the coldest in more than 500 years (Briffa et al. 1998; D'Arigo et al. 2009). In Europe, summer temperatures were 1-2 °C cooler 62 63 than average. During the years following 1816 spectacularly colored sunsets and twilights were observed in London, a constant "dry fog" was reported in the northeastern USA and the winters were 64 65 stormier (e.g., Oppenheimer 2003). Such a global climate perturbation caused crop failure in 66 Indonesia and Europe, thus leading to famines, diseases, and sometimes popular uprising (e.g., de

67 Jong Boers 1995; Oppenheimer 2003). The close relationship between large explosive eruptions and

climate has been the subject of many studies including several on Tambora (e.g., de Jong Boers 1995;

69 Devine et al. 1984; Self et al. 2004).

70 To understand the eruption-climate link it is critical to have a reliable estimate of the bulk 71 amount of sulfur and other volatiles released by the eruption and injected into the stratosphere. The 72 sulfur quantity released by the eruption of Mount Tambora was first estimated at 17 Tg (or 34 Tg 73 SO₂) using melt inclusions contained in plagioclase crystals of the 1815 magma (Devine et al. 1984). 74 This quantity was later re-estimated at 86 Tg SO₂ and 53-58 Tg SO₂ using the same petrological 75 approach by Sigurdsson et al. (1992) and Self et al. (2004) respectively. Another method, the study 76 of volcanic sulphate deposits in Antarctic ice cores, gave an estimated output higher than 98 Tg of 77 SO₂ (Legrand and Delmas 1987), later re-evaluated to 45 Tg SO₂ (Sigl et al. 2014).

In this study, we re-evaluate the amounts of volatile elements released during the 1815 Tambora eruption by providing new analyses of S, Cl and F in plagioclase-hosted melt inclusions. We propose three degassing scenarios in order to obtain estimates that are directly comparable with similar studies at other volcanoes.

82 Volcanological background

83 Geological setting and past activity

Mount Tambora is a volcano located on Sumbawa Island (Indonesia) which is part of the Sunda Arc (Fig. 1). In this subduction zone, the Indo-Australian plate subducts below the Eurasian plate at a speed of 6-7 cm/y (Hamilton 1979). The Sumbawa sector of this subduction is unique in being composed of young and thin crust which is flanked both to the north and south by oceanic crust (Foden and Varne 1980).

Four older volcanic formations are exposed in the walls of the Tambora caldera, below the 1815 deposits (Sigurdsson and Carey 1992). The oldest one, composed of lava flows, has an age of 43 ka (Barberi et al. 1987). It is overlain by two pyroclastic units and a level of interbedded pyroclastic surge and fall deposits which represents the latest activity of the volcano before the 1815 eruption (Sigurdsson and Carey 1992). From the beginning of its activity, Tambora has produced undersaturated, moderately K₂O-rich magmas ranging from nepheline-normative trachybasalt (Netrachybasalt) to Ne-trachyandesite (Foden and Varne 1980).

96 1815 eruption chronology and stratigraphy

Pouget et al. - Submitted for publication to Bulletin of Volcanology

97 The 1815 eruption of Tambora lasted several days and consisted of two main phases. The first 98 includes four episodes of tephra falls F1, F2, F3 and F4 while the second consists of a succession of 99 pyroclastic flows, surges and co-ignimbrite ash fall (Sigurdsson and Carey 1989).

100 Phase 1: Tephra fall deposits (Fig. 2) (Sigurdsson and Carey 1989)

101 The first deposit of this sequence is a silt to sand size ash fall layer named F1. This layer is 102 the product of phreatomagmatic activity, and it can be divided into two units suggesting at least two 103 main explosions. It is 1-10 cm thick on the flanks of the volcano and mainly composed of blocky to 104 vesicular pale-brown-green pumice, glass shards, dark scoria fragments, crystals of feldspar, biotite, 105 clinopyroxene, magnetite and some lithics. A pale grey-green Plinian pumice fall deposit overlies the 106 F1 unit. This F2 layer was produced by a Plinian eruption which generated a plume 33 km high 107 (Sigurdsson and Carey 1989). It is 10 to 30 cm on the slopes on the volcano. It contains highly 108 vesicular, lapilli-sized pale-grey-green pumice and some glass shards. Overlying F2 is a second layer 109 of sandy-silty ash fall, similar to the F1 deposits but more extensive and thicker. This F3 layer is also 110 the product of phreatomagmatic eruptions, and three units can be divided within it, suggesting at least 111 three different explosions. The entire layer is about 10 cm thick close to the edifice and consists of 112 light-colored pumice, glass shards, dark scoria and lithics. This first phase of tephra falls ends with 113 the F4 layer, which is the thickest of the sequence. The F4 layer is the product of another Plinian 114 eruption which generated a plume 43 km high (Sigurdsson and Carey 1989). The deposits are 25 to 115 30 cm thick on the flanks of Tambora and consists mainly of highly vesicular pale-grey pumice and 116 glass shards. This first phase of phreatomagmatic and Plinian eruptions (F1 to F4) had a duration of 117 more than five days and ejected 4.6 km³ of tephra (Sigurdsson and Carey 1989).

118 Phase II: Pyroclastic flows, surges and distal tephra fall (Sigurdsson and Carey 1989)

The second main phase of the 1815 eruption corresponds to the collapse of the second (F4) Plinian 119 120 volcanic plume, generating pyroclastic surges and flows. The first deposit of this sequence is a pinkish-grey to grey sandy-silty ash surge layer named S1 with pumices and charcoal at some 121 122 localities. This layer is about 15 cm thick on the volcano's flanks and the pumices reach 2-3 cm in diameter. Overlying S1, is a series of at least 7 pyroclastic flow deposits (PF1, PF2...). They cover 123 124 almost all of the Sanggar peninsula, reaching the ocean in most directions from the volcano and 125 measure a maximum thickness of 20 m (average about 7 m). Finally, two distal ash falls (F5 and F6) 126 end this second main phase. F5 is 12-25 cm thick and composed of greyish-brown, poorly sorted, 127 silty-sandy ash with some angular pumice clasts. This layer consists of co-ignimbrite ash released by 128 the S1 phase. Unit F6 overlies the S1 unit at some localities with a thickness of 3-4 cm on the western 129 flank of Tambora.

130 Erupted magma volume

131 The largest uncertainty in estimates of volatile release to the atmosphere during the 1815 eruption is 132 the total erupted magma volume. Based on extensive two-month field work in Sumbawa and on the 133 many smaller nearby islands that surround it, Sigurdsson and Carey (1989) arrived at a total magma 134 volume estimate for the Tambora 1815 eruption of 51 km³ DRE (dense-rock equivalent). A thorough 135 reevaluation of the erupted volume by Kandlbauer and Sparks (2014), including some new sea floor 136 coring data, and consideration of Tambora's caldera collapse structure, provides a new revised total 137 volume estimate of 41±4 km³ DRE. The sulfur, chlorine and fluorine atmospheric loadings calculated from these two estimates are shown in Table S1 in Supplementary Material 1. However, in the 138 139 remainder of this paper, we report all calculations using the most recent magma volume estimate of 140 41 km3 DRE (Kandlbauer and Sparks 2014).

141 Petrology and geochemistry of the 1815 magma

142 Since the beginning of its activity, Tambora has erupted undersaturated potassic magmas, ranging 143 from nepheline-normative trachybasalts to nepheline-normative trachyandesites (Foden and Varne 1980). The 1815 products have a nepheline-trachyandesite composition with high silica content (54-144 145 57 wt.% SiO₂), unusual in an island-arc environment (Foden 1986). Pumices are latitic to 146 tephriphonolitic with 30-50% vesicles and contain phenocrysts in a glassy or microcrystalline matrix. 147 The mineral assemblage is plagioclase > clinopyroxene > magnetite with occasionally small amounts 148 of apatite, biotite and olivine (Gertisser et al. 2012). Foden (1986) found that plagioclase in pumice 149 showed a uniform very calcic population ranging from An₈₀ to An₉₀. However, Self et al. (2004) 150 found that the plagioclases can be separated into two distinct populations: (1) unzoned crystals of almost constant composition (An_{58±6}) and (2) zoned crystals with a very calcic core (\leq An₉₁) and rims 151 152 with a similar composition as the unzoned ones. Melt inclusions are common in both plagioclase 153 populations. The clinopyroxenes are mostly phenocrysts of Ca-rich augite (Mg₇₀-Mg₇₅) with minor 154 quantities of Ti and Al (Foden 1986; Gertisser et al. 2012).

155 Sigurdsson and Carey (1989) analysed pumice samples from all the layers of the first main phase and from the seven major pyroclastic flows of the second one. Their bulk rock study showed 156 157 that "the eruption tapped a very homogenous magma body". Their range in bulk rock SiO₂ 158 concentrations fell "within the precision of the analytical method" (x-ray fluorescence). The matrix 159 glass analyses confirmed that "the glass composition in falls, surges and flows is identical". A more recent study (Suhendro et al. 2021) demonstrated a slight evolution in total rock and mineral 160 161 chemistry between the different eruption phases. Plinian fall units are characterized by a lower 162 phenocryst abundance (avg. of 5.1%) and higher silica content (bulk pumice, 58-58.5 wt.%) than pyroclastic flow deposits which have a relatively higher crystal abundance (avg. of 12.1%) and a lower silica content (bulk pumice, 56.7–57.9 wt.%; Suhendro et al. 2021). The analysis of the deposit stratigraphy suggests phenocryst stratification in the reservoir was established prior to the 1815 eruption, this being responsible for the slight contrast in bulk compositions (Suhendro et al. 2021).

167 Materials and Methods

168 In order to quantify S, Cl and F release during the 1815 eruption, we used samples previously 169 collected by Sigurdsson and Carey (1989). The samples used here are tephra from the two Plinian 170 layers of the eruption: sample TB61 from episode F2 and sample TB65 from episode F4 (Fig. 2). This F4 unit can be considered representative of the bulk of the magma, firstly because it was fed by 171 172 the same ignimbritic magma as unit F5, the most voluminous one (Self et al. 2014) but also because 173 the composition of the melt (matrix glass, melt inclusions) remained identical throughout the entire 174 event (Sigurdsson et al. 1989; Suhendro et al. 2021). For both F2 and F4 samples, tephras are light 175 grey, vesiculated pumices measuring 2 to 3 cm. They have a glassy matrix and contain 10% of 176 phenocrysts which are plagioclase, clinopyroxene and occasionally magnetite, biotite and apatite. We 177 collected plagioclase from these tephra in which melt inclusions are commonly found.

178 Plagioclase phenocrysts found in tephra can be divided into two subpopulations: crystals with 179 zoned rims and unzoned crystals (Fig. 3). Both populations contain abundant melt inclusions (MI). 180 They range in size from few micrometres to 150 µm in length. We selected MIs that are entirely 181 glassy, oval-shaped and contain a shrinkage bubble (Fig. 4a, c) for analysis; other types (partially 182 crystallized and/or with several bubbles are present) were excluded (Fig 4b, c, d). Sulfide globules 183 have not been reported in previous studies but were found in some of the melt inclusions and 184 plagioclase crystals (Fig. 3). Their size ranges from 1 to 50 µm and they are mostly spherical. No 185 sulfides have been found in the matrix glass.

186 Analytical methods

187 Electron microprobe

Major and volatile elements were analysed in selected melt inclusions, matrix glass (MG) and plagioclases by electron microprobe (Cameca SXFive-TACTIS of LMV, Clermont-Ferrand, France) following standard procedure (e.g., Le Voyer et al. 2008; Rose-Koga et al. 2020). Major elements in plagioclase crystals were analysed using a focused beam at 15 nA and 15 kV, whereas melt inclusions and matrix glasses were analysed with a defocused 20 μ m beam at 8 nA and 15 kV. For S, Cl, F contents in melt inclusions and matrix glass, a defocused 10 or 20 μ m beam at 40 nA and 15 kV was used. Typical errors on measurement for each element are given in 1 σ for plagioclase crystals and 3 σ

- 195 for melt inclusions and matrix glasses: <1% SiO₂, Al₂O₃, FeO, MgO, CaO, K₂O; <2% Na₂O; <4%
- 196 TiO₂; <20% MnO, P₂O₅; <10% S, Cl and <15% F. Procedure characteristics are summarized in
- 197 Tables S2 and S3 in Supplementary Material 1.
- 198 Scanning electron microscope (SEM)

199 After EMPA analysis, a scanning electron microscope (JEOL JSM-5910LV of LMV, Clermont-

200 Ferrand, France) was used to image, in backscattered electrons, the sulfides and plagioclase zoning.

201 Spot analyses were carried out on sulfides with a defocused 56 nm beam at 80 μ A and 15 kV.

202 **Petrological method**

203 The petrological method used here was described by Devine et al. (1984), Sigurdsson et al. (1992) 204 and Self et al. (2004) for Tambora and applied to several other eruptions (e.g., Thordarson 2003 for 205 1783 Laki eruption; Mandeville et al. 1996 for 1883 Krakatau eruption; Iacovino et al., 2016 for 946 206 Peaktu eruption; Vidal et al. 2016 for 1257 Samalas eruption; Peccia et al. in press for 43 BCE Okmok 207 eruption). It consists of comparing the pre-eruptive (melt inclusions) and post-eruptive (matrix glass) 208 sulfur, chlorine and fluorine concentrations to estimate by difference the degassed quantities of the 209 respective volatile elements. We used the following mass balance equations to estimate the total 210 masses of SO₂, Cl and F released:

211 $E_{SO2} = 2 \times M_{\nu} \times (1 - W_{xls}) \times (C_{incl} - C_{matrix})/100$ (1)

$$E_{cl} = M_{\nu} \times (1 - W_{xls}) \times (C_{incl} - C_{matrix})/100$$
⁽²⁾

213

$$E_F = M_v \times (1 - W_{xls}) \times (C_{incl} - C_{matrix})/100$$
(3)

where E_{SO2} is the SO₂ emission in kg, M_v the mass of erupted magma in kg (1.01 × 10¹⁴), W_{xls} the mass fraction of crystals in the magma (0.115; mean of 0.10 (Self et al. 2004) and 0.13 (Sigurdsson and Carey 1989)) and C_{incl} – C_{matrix} the difference between the average concentrations of the glass inclusion and the matrix glass in wt.%.

218 We develop three different scenarios in which the Cincl value changes. Our goal is to provide 219 estimates that can be directly compared with similar studies that each follow their own set of 220 assumptions. The first scenario uses the volatile concentrations (S, Cl and F) measured in the melt 221 inclusions (MI) that are closest in composition to the bulk rock, considering that it is the most 222 representative of the volatile content of the system prior to eruption. In the second scenario we use 223 the S, Cl and F concentrations of the melt inclusions which have the same FeO content as the matrix 224 glass. This scenario considers that the best estimate of the pre-eruption volatile content is that of the 225 melt at the same level of differentiation as the matrix glass. The third scenario uses the S, Cl and F 226 average concentrations measured in melt inclusions. This scenario considers that variations in MI

volatile content can be viewed as statistical distribution centred on a mean or average which best represents the volatile content of the system prior to eruption. This last scenario is mainly used for comparison purpose as it is the method employed by previous studies of the 1815 Tambora eruption.

230 **Results**

231 Chemical composition of plagioclases

Plagioclases from TB61 and TB65 samples showed similar compositions (Table S4 in Supplementary Material 1) falling in the range An_{79} - An_{95} (Fig. 5). This compositional range agrees with the plagioclase cores compositional range of An_{80} - An_{90} reported by Foden (1986), and that of $\leq An_{91}$ reported by Self et al. (2004) although higher anorthite contents were measured in this study. This range also agrees with the An_{40} - An_{95} range reported by Suhendro et al. (2021).

237 Chemical composition of melt inclusions (MI) and matrix glasses (MG)

238 Major elements

Major oxides (SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅) of 31 melt inclusions and five matrix glasses were analysed by electron microprobe (Table S5 in Supplementary Material 1). Among these 31 inclusions, 11 showed a non-homogeneous texture in SEM, which we interpreted as evidence of post-entrapment crystallization. Only the 20 other, completely glassy melt inclusions are considered in the following.

These 20 glassy melt inclusions show homogeneous major element compositions with no significant difference between samples TB61 and TB65 (Table 1). The melt inclusions contained between 52 and 57 wt.% SiO₂, between 18 and 20 wt.% Al₂O₃ and more than 6 wt.% K₂O. Therefore, they plot in the tephri-phonolitic field in a TAS diagram (Na₂O+K₂O vs. SiO₂; Fig. 6). The matrix glasses – being more differentiated and therefore richer in SiO₂ (57-59 wt.%) - lie between phonolite, trachyte and trachyandesite compositions (Fig. 6).

The evolution of silica contents in the melt inclusions and matrix glasses highlights the depletion of iron in the magma during differentiation (Fig. 7). CaO, MgO and TiO₂ also show a restricted <1 wt.% decrease.

253 Volatile elements

When the volatile element content (S, Cl, and F) in the melt inclusions and matrix glasses is greater
than 300 ppm, it can be accurately measured by electron microprobe (e.g., Rose-Koga et al., 2020).
The analysis of melt inclusions showed sulfur content ranging from 428±28 to 1118±47 ppm S (Fig.

8a), chlorine ranging from 1537±38 to 2253±46 ppm (Fig. 8b) and fluorine ranging from 514±107 to
1253±114 ppm (Fig. 8c). Matrix glasses showed, on average, lower volatile content than melt
inclusions (Tables 1 and 2). For sulfur, there was a difference of about 750 ppm between the
maximum content in the inclusions and the mean content in the matrix glasses (Table 2). For chlorine,

this difference was about 800 ppm. For fluorine the difference was less than 600 ppm (Table 2).

262 Sulfides

Sulfide globules $(3.6-10.3\pm0.2 \ \mu\text{m})$ were found in melt inclusions and as inclusions in plagioclase (Fig. 3c, d). The composition of one of these sulfides was measured by SEM and contained 65.7 wt.% Fe, 32.7 wt.% S and 1.7 wt.% Cu (no nickel measurements were made), corresponding to an ironsulfide composition (pyrrhotite; the copper concentration is too low to be considered a coppersulfide). Sulfide was neither observed in the matrix glass nor reported in previous studies.

268 **Discussion**

269 Syn-eruptive degassing is widely confirmed both by the few eyewitnesses of the eruption and its gas 270 emissions (e.g., de Jong Boers, 1995). Moreover, climate reports associate the abnormally cold 271 temperatures of 1816 with the presence of a volcanic sulphate aerosol in the atmosphere (Stothers 1984, Rampino et al. 1988, Briffa et al. 1998, D'Arrigo et al. 2009). The melt inclusions richest in S, 272 273 Cl and F are also the richest in iron and lowest in SiO₂ and are therefore the least evolved (Fig. 8). In 274 contrast, the matrix glasses are the most evolved end-member and have the lowest volatile content 275 (Table 2, Fig. 8). The difference in concentrations, especially of sulfur and chlorine, between the melt 276 inclusions and the matrix glasses gives a first estimate of the total amount of degassed volatiles.

277 Volatile degassing budget estimates

278 Estimates of the quantities of SO₂, Cl and F degassed are calculated from mass balance equations (1),

279 (2) and (3). For each volatile element, three degassing scenarios are considered.

The first scenario uses the melt inclusions with compositions closest to that of the F2 and F4 Plinian Fall pumice deposits (Table 3; Sigurdsson and Carey, 1989) as starting point. These melt inclusions have some of the highest S, Cl and F concentrations measured (reported in Table 2) suggesting that they represent the original volatile content of the magma before degassing and concomitant crystallisation. In this scenario, it is assumed that the magma rises and degasses in a closed system. It is therefore considered that all the gases exsolved during ascent and crystallization are conserved in the system and participate in the syn-eruptive degassing.

287 Scenario 2 uses the values of the melt inclusion which have 4.6 wt.% FeO (Table 2). This FeO 288 composition is the one that most closely resembles the composition of the matrix glasses which have an average FeO content of 4.5 wt.% (Table 1). This scenario assumes rising and degassing of the magma in an open system where the exsolved gases can escape before the magma erupts, up until the melt has fully evolved to the composition of the matrix glasses (4.5-4.6 wt.% FeO). Only then does this scenario assumes degassing takes place in a closed system.

Scenario 3 uses the average concentrations of melt inclusions (Table 2). It is not associated with any rising/degassing model but corresponds to the approach of Devine et al. (1984) and Self et al. (2004) and will therefore be used mainly for comparison with literature estimates. The amounts of volatile elements degassed depending on the three scenarios during the eruption are reported in Table 4.

298 The scenario we judge most appropriate is scenario 1, as it uses melt inclusion compositions 299 most similar to that of the bulk Plinian Fall deposits (Table 3). The assumption we make therefore, is 300 that from this point onward in the melt compositional evolution, all exsolved volatiles remained in 301 the system until the eruption. In this context, we hypothesize a closed-system scenario for magma 302 evolution and ascent, a supposition supported by the exceptional violence of the 1815 Tambora 303 eruption, which achieved a VEI of 7. Scenario 2 by contrast would make the hypothesis of magma 304 evolution and ascent in an open system, a framework more apt for describing volatile emissions from 305 a slow lava flow originating from an open vent volcano. Scenario 1's approach is the same as the one 306 used by Peccia et al. (in press) to estimate the S emission during the 43 BCE eruption of Okmok 307 volcano. Using scenario 1, SO₂ degassing during the 1815 eruption is estimated at 135±14 Tg (68±7 Tg S; Table 4). Also 49±5 Tg of chlorine and 20±2 Tg of fluorine were released (Table 4). These 308 309 results remain minima for S, as the contribution of sulfides dissolution during the eruption and the 310 possible presence of a deeper gas phase initially present in the magma chamber are not considered in 311 these calculations (Oppenheimer et al. 2011). The pyroclastic flows represent 18±6 km³ DRE of the 312 total magma volume emitted during the 1815 Tambora eruption (Kandlbauer and Sparks 2014). 313 Pyroclastic flows typically only send gases to the troposphere, although large pyroclastic flows such 314 as in the Okmok II eruption can send gas clouds to the stratosphere. Here, if we consider that the PDC 315 only emits sulfur to the troposphere, only 56% of our estimated SO₂ load might have made it to the 316 stratosphere.

Even without considering sulfide dissolution and a pre-existing gas phase, these new Tambora estimates are higher than those previously estimated by the "classic" petrological method (Table 5). They are two times higher than the estimates of Self et al. (2004) and four times those of Devine et al. (1984). This can mainly be explained by the fact that these authors used the mean values of the melt inclusions in their calculation. Indeed, their results are closer to our scenario 3 (Table 4). In addition, Self et al (2004) based their calculations on an emitted magma volume of between 30 and

323 33 km³ DRE, which is lower than the 41 km³ DRE used here, hence partially explaining their lower 324 estimations of SO₂ emitted. Devine et al. (1984) and Sigurdsson and Carey (1992) on the other hand, 325 used magma volumes of 87.5 and 51 km³ DRE respectively. The estimate of Legrand and Delmas 326 (1987) based on ice records (SO₂>98 Tg) is closer to our estimates (Table 5) in contrast to the estimate 327 of 45 Tg SO₂ of Sigl et al. (2014), also based on ice core data but using a model calibrated to the quantities of sulfur emitted during the 1991 Pinatubo eruption. Sigl et al. (2014) used the 1991 328 329 Pinatubo eruption, for which the quantity of SO₂ degassed had been directly measured by satellite, as 330 a single point reference to establish a function linking the quantity of sulfate aerosols found in ice 331 cores to the quantities emitted during an eruption. The estimate of Legrand and Delmas (1987) by 332 contrast is based on the sulfate aerosol deposition flux per km² found in ice cores, which are then 333 converted into a quantity of SO₂ emitted. This discrepancy between estimates derived from ice core 334 data reflects the complexity of volcanic emission reconstruction based on distal sulfate deposits. Our 335 calculated estimate of 135±14 Tg of SO₂ emission aligns remarkably well with the optical depth 336 assessments derived from astronomical observations presented by Stothers et al. (1984). Stothers et 337 al. (1984) estimated a release of 200 Tg of H₂SO₄ into the atmosphere, equivalent to 120 Tg of SO₂, 338 using a compilation of astronomical observations. Their approach encompassed the analysis of cloud 339 shape and colour in locations such as London, New York, and other northern hemisphere regions during the months following the eruption in addition to the observed darkening of the moon during a 340 341 total lunar eclipse. In contrast to our results, prior estimates of SO₂ release based on petrological analyses by Devine et al. (1984), Sigurdsson et al. (1989), and Self et al. (2014), ranging from 34 to 342 86 Tg are irreconcilable with the optical depth estimation provided by Stothers et al. (1984). 343

344 Sulfur degassing and sulfide contribution

Sulfur concentrations measured in lavas or in quench and glassy volcanic products are not necessarily characteristic of their magma source as volatiles degassing and sulfide precipitation or dissolution can occur during ascent and eruption. The presence of sulfides in melt inclusions and in plagioclase crystals indicates that a fraction of the sulfur originally dissolved in the melt partitioned into these sulfides. It also indicates that the magma was saturated in sulfides during the inclusion-trapping stage and that an equilibrium was established between these sulfides and the magma.

The sulfur concentration at sulfide saturation (SCSS), was calculated using the parameters of Fortin et al (2015) with a temperature of 950°C (Self et al, 2004) and a pressure of 0.2 GPa for inclusions (Gertisser et al., 2012) and of 0.1 MPa for matrix glasses (i.e., atmospheric pressure; Fig. 8). The sulfur contents measured in all the melt inclusions are higher than the theoretical SCSS suggesting that the magma was supersaturated in sulfides. This discrepancy could be due to the fact that water is not accounted for in the calculations. However, the SCSS calculated with 1.5, 2.5, 3.5

357 and 4.5 wt.% H₂O (using the same parameters but only for the MIs) are always lower than the sulfur 358 contents measured in melt inclusions (Fig. 8). Considering more than 4.5 wt.% water in the 1815 359 magma would not be realistic, with water estimates between 1.5 and 4.5 wt.% H₂O (by difference to 360 100% in EMPA analyses, this study) or 2-2.5 wt.% H₂O (Sigurdsson et al., 1989). In addition, we 361 tested whether the presence of copper (present in sulfides) and nickel (not measured but potentially 362 present), could play a role in increasing the SCSS. According to tests carried out using the model of 363 Li and Zhang (2022), the addition of copper and/or nickel would decrease the SCSS. Thus, none of 364 the models tested predicts the observed sulfide saturation in the melt inclusions of this study. This 365 could be related to the fact that these models are calibrated mainly on basaltic compositions far from 366 the tephriphonolitic composition of the 1815 magma.

The sulfur concentration at anhydrite saturation (SCAS) line was also calculated (Fig. 8). All our data lies below this line and no sulphate saturation is expected nor observed. This SCAS was calculated according to the parameters of Chowdhury and Dasgupta (2019) and at the same pressures and temperatures as used for the SCSS. The calculations to obtain the SCSS and SCAS lines are presented in Supplementary material 2.

372 In contrast to the melt inclusions, no sulfides were observed in the matrix glass. This absence 373 indicates that during ascent and eruption, sulfides in matrix glass - that were not trapped in the melt 374 inclusions or in crystals - decomposed, and the lower S concentrations in the matrix imply that this 375 additional S was released to the gas phase and contributed to the degassing. The contribution of sulfides was estimated by calculating the relative volume occupied by sulfide globules in melt 376 377 inclusions. We assume here that sulfides and inclusions are randomly trapped by growing crystals 378 and that their volumetric proportion is hence representative of the melt at the time of entrapment. We 379 surveyed a total of 62 glassy melt inclusions of which 13 were found to contain sulfides. From 2D 380 images we assumed that sulfides and melt inclusions were spherical in shape to calculate the total 381 volume of each. Using our measured sulfide composition, a sulfide density of 4g/cm³ (Robertson et 382 al. 2016) and a total volume of magma emitted of 41±4 km³ DRE (Kandlbauer and Sparks 2014), we 383 estimated the contribution of sulfide dissolution to a total degassing budget of 12±3 Tg SO₂.

Considering this, the initial estimate of SO₂ degassing of 135 ± 14 Tg in the first scenario, chosen here, now reaches 147 ± 17 Tg. Placed in the context of the last 2000 years of large eruptions worldwide, these new estimates accounting for sulfide dissolution put the 1815 eruption of Tambora in first place in terms of the amount of SO₂ degassed, higher than the 1257 Samalas eruption (Fig. 9). The amount of SO₂ degassed during the latter is re-estimated at 81 ± 3 Tg. This estimate was recalculated based on data from Vidal et al. (2016) and Métrich et al., (2017), following scenario 1 of this study to make it directly comparable. For this, an emitted magma mass of 1.10^{14} kg (40 km³

391 DRE) was considered in mass balance equations (1) and (2), as well as a crystal mass fraction of 0.1 392 (average value from Métrich et al. 2017). We used the S content reported for the most primitive 393 inclusions from the 1257 Samalas eruption (500 ppm), which most closely match the composition of 394 the bulk deposit, as well as the S content of matrix glasses (50 ppm). The 1815 Tambora eruption and 395 the 1257 Samalas eruption have erupted similar volumes of magma and have the same VEI. However, 396 the melt compositions differ. The 1815 Tambora melt inclusions have a tephriphonolitic composition 397 and record dissolved S up to 1118 ppm while at the 1257 Samalas melt inclusions have a trachydacitic 398 composition and only record up to 500 ppm of dissolved S. It is therefore unsurprising to find that 399 the 1815 Tambora eruption emitted much larger quantities of S to the atmosphere compared to the 400 1257 Samalas. The same calculation was done for the quantity of chlorine degassed which is 401 estimated at 219±26 Tg.

402 Halogens degassing and impact on ozone

403 As chlorine partitions preferentially into the gas phase compared to the melt (e.g., Webster et al. 404 2009a, 2009b; Beermann et al. 2015), the process of gas exsolution effectively depletes the chlorine 405 content of the melt. This chlorine exsolution process is clearly observed in the magmatic inclusions 406 of the 1815 eruption, which show a difference of about 800 ppm between the most primitive and the 407 most differentiated end members (Fig. 8). For fluorine, whose solubility is less well known, the 408 degassing trend is less obvious except for the TB65 samples which seem to show a strong decrease 409 in fluorine content in the matrix glasses (Fig. 8). The release of halogens, especially chlorine, into the 410 stratosphere has impacts on its properties and as a result on climate. Once in the stratosphere, 411 halogenated compounds (in the form of HCl, HF or HBr) induce the catalytic destruction of 412 stratospheric ozone (e.g., Textor et al., 2003; Krüger et al. 2015; Schmidt and Robock, 2015). This 413 can lead to a partial destruction of the ozone layer which protects the Earth's surface from UV 414 radiation, harmful to many lifeforms. Although there are no data after the 1815 eruption to verify this ozone destruction, Vupputuri (1992) made calculations showing that ozone depletion following the 415 416 eruption may have been as high as 7% but their calculations did not include chlorine nor fluorine and 417 might hence have been underestimated. The first direct observations of ozone depletion in the 418 stratosphere were made following the eruption of El Chichón in 1882 (DeLuisi et al. 1984). Ozone 419 depletion caused by release of halogens during eruptions is thought to be, in general, more important 420 in subduction zones volcanic systems than in hot spot of rifting zones given their magmas are richer in chlorine (e.g., Scaillet et al. 2003). Some eruptions in arc settings however emit very little to no 421 422 Cl, with an estimated ≈ 0 Tg of Cl and F released during the 43 BCE eruption Okmok eruption for

423 instance (Peccia et al. in press). Our estimated 49±5 Tg Cl and 20±2 Tg F released during the 1815
424 Tambora eruption appear therefore significant.

425 **Conclusions**

The 1815 Tambora eruption is well known for its global impact on the climate because of the large 426 427 quantities of volatile elements released to the stratosphere via plumes 33 and 43 km high (Sigurdsson 428 and Carey 1989). In this study, the analysis of melt inclusions and matrix glasses in the products of 429 the Plinian phases (F2 and F4) of the eruption allow us to estimate the amounts of volatile elements 430 (S, Cl and F) degassed during this eruption. Considering degassing and a magma ascent in a closed system, we estimate that 147±17 Tg of SO₂ (74 Tg S) were degassed as well as 49±5 Tg of Cl and 431 20±2 Tg of F. The SO₂ estimate includes 12±3 Tg coming from the dissolution of sulfides during the 432 eruption. In view of these values, and if comparable methodologies are applied, the 1815 eruption of 433 434 Tambora appears to be the largest emitter of volcanic SO₂ in the common era. While highly significant, the values obtained in this study could still be considered as minimum values since the 435 436 contribution of a possible pre-existing exsolved gas phase is not accounted for.

437 **References**

- Barberi S, Bigioggero B, Boriani A, et al (1987) The Island of Sumbawa; a major structural
 discontinuity in the Indonesian Arc. 547–620
- Beermann O, Botcharnikov RE, Nowak M (2015) Partitioning of sulfur and chlorine between
 aqueous fluid and basaltic melt at 1050°C, 100 and 200MPa. Chemical Geology 418:132–157.
 https://doi.org/10.1016/j.chemgeo.2015.08.008
- Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on
 Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455.
 https://doi.org/10.1038/30943
- 446 Chowdhury P, Dasgupta R (2019) Effect of sulfate on the basaltic liquidus and Sulfur Concentration
- 447 at Anhydrite Saturation (SCAS) of hydrous basalts Implications for sulfur cycle in subduction
 448 zones. Chemical Geology 522:162–174. https://doi.org/10.1016/j.chemgeo.2019.05.020
- 449 Cooper CL, Swindles GT, Savov IP, et al (2018) Evaluating the relationship between climate change
 450 and volcanism. Earth-Science Reviews 177:238–247.
 451 https://doi.org/10.1016/j.earscirev.2017.11.009
- 452 D'Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures
 453 during the past four centuries. Nature Geosci 2:51–56. https://doi.org/10.1038/ngeo393
- de Jong Boers B (1995) Mount Tambora in 1815: A Volcanic Eruption in Indonesia and Its Aftermath.
 Indonesia 60:37. https://doi.org/10.2307/3351140
- 456 DeLuisi, J. J., Mateer, C. L., Komhyr, W. D.: 1984, Effects of the E1 Chich6n stratospheric aerosol
- 457 cloud on Umkehr measurements at Mauna Loa, Hawaii, in C. S. Zerefos and A. Ghaz (eds.),
- 458 Atmospheric Ozone, D. Reidel, Dordrecht.
- 459 Devine JD, Sigurdsson H, Davis AN, Self S (1984) Estimates of sulfur and chlorine yield to the
 460 atmosphere from volcanic eruptions and potential climatic effects. J Geophys Res 89:6309–6325.
 461 https://doi.org/10.1029/JB089iB07p06309
- Foden J (1986) The petrology of Tambora volcano, Indonesia: A model for the 1815 eruption. Journal
 of Volcanology and Geothermal Research 27:1–41. https://doi.org/10.1016/03770273(86)90079-X
- Foden JD, Varne R (1980) The petrology and tectonic setting of Quaternary—Recent volcanic centres
 of Lombok and Sumbawa, Sunda arc. Chemical Geology 30:201–226.
 https://doi.org/10.1016/0009-2541(80)90106-0
- Fortin M-A, Riddle J, Desjardins-Langlais Y, Baker DR (2015) The effect of water on the sulfur
 concentration at sulfide saturation (SCSS) in natural melts. Geochimica et Cosmochimica Acta
 160:100–11https://doi.org/10.1016/j.gca.2015.03.022

- Gertisser R, Self S, Thomas LE, et al (2012) Processes and Timescales of Magma Genesis and
 Differentiation Leading to the Great Tambora Eruption in 1815. Journal of Petrology 53:271–
- 473 297. https://doi.org/10.1093/petrology/egr062
- 474 Hamilton WB (1979) Tectonics of the Indonesian Region
- Iacovino K, Ju-Song K, Sisson T, et al (2016) Quantifying gas emissions from the "Millennium
 Eruption" of Paektu volcano, Democratic People's Republic of Korea/China. Sci Adv
 2:e1600913. https://doi.org/10.1126/sciadv.1600913
- Kandlbauer J, Sparks RSJ (2014) New estimates of the 1815 Tambora eruption volume. Journal of
 Volcanology and Geothermal Research 286:93–100.
 https://doi.org/10.1016/j.jvolgeores.2014.08.020
- 481 Krüger K, Kutterolf S, Hansteen TH (2015) Halogen release from Plinian eruptions and depletion of
 482 stratospheric ozone. In: Schmidt A, Fristad KE, Elkins-Tanton LT (eds) Volcanism and Global
 483 Environmental Change, 1st edn. Cambridge University Press, pp 244–259
- 484 Le Voyer M (2009) Rôle des fluides dans la genèse des magmas d'arc : analyses in situ des éléments
 485 volatils et des isotopes du boredans les inclusions magmatiques des olivines primitives.
 486 Université Blaise Pascal Clermont Ferrand II
- 487 Legrand M, Delmas RJ (1987) A 220-year continuous record of volcanic H2SO4 in the Antarctic ice
 488 sheet. Nature 327:671–676. https://doi.org/10.1038/327671a0
- Li H, Zhang L (2022) A thermodynamic model for sulfur content at sulfide saturation (SCSS) in
 hydrous silicate melts: With implications for arc magma genesis and sulfur recycling.
 Geochimica et Cosmochimica Acta 325:187–204. https://doi.org/10.1016/j.gca.2022.03.008
- Mandeville CW, Carey S, Sigurdsson H (1996) Magma mixing, fractional crystallization and volatile
 degassing during the 1883 eruption of Krakatau volcano, Indonesia. Journal of Volcanology and
 Geothermal Research 74:243–274. https://doi.org/10.1016/S0377-0273(96)00060-1
- Métrich N, Vidal CM, Komorowski J-C, et al (2017) New Insights into Magma Differentiation and
 Storage in Holocene Crustal Reservoirs of the Lesser Sunda Arc: the Rinjani–Samalas Volcanic
 Complex (Lombok, Indonesia). Journal of Petrology 58:2257–2284.
 https://doi.org/10.1093/petrology/egy006
- Moussallam Y, Oppenheimer C, Scaillet B, et al (2014) Tracking the changing oxidation state of
 Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth and
 Planetary Science Letters 393:200–209. https://doi.org/10.1016/j.epsl.2014.02.055
- Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude
 for historical volcanism. J Geophys Res 87:1231. https://doi.org/10.1029/JC087iC02p01231

- Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known
 historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography: Earth and
 Environment 27:230–259. https://doi.org/10.1191/0309133303pp379ra
- Oppenheimer C, Scaillet B, Martin RS (2011) Sulfur Degassing From Volcanoes: Source Conditions,
 Surveillance, Plume Chemistry and Earth System Impacts. Reviews in Mineralogy and
 Geochemistry 73:363–421. https://doi.org/10.2138/rmg.2011.73.13
- 510 Peccia A, Moussallam Y, Plank T (2023) Melt inclusion and matrix glass data from the 43 BCE
 511 eruption of Okmok Volcano, in press.
- 512 Rampino MR, Self S, Stothers RB (1988) Volcanic Winters. Annu Rev Earth Planet Sci 16:73–99.
 513 https://doi.org/10.1146/annurev.ea.16.050188.000445
- 514 Reubi O, Nicholls IA (2004) Magmatic evolution at Batur volcanic field, Bali, Indonesia: petrological
- evidence for polybaric fractional crystallization and implications for caldera-forming eruptions.
 Journal of Volcanology and Geothermal Research 138:345–369.
- 517 https://doi.org/10.1016/j.jvolgeores.2004.07.009
- Robertson JC, Barnes SJ, Le Vaillant M (2015) Dynamics of Magmatic Sulphide Droplets during
 Transport in Silicate Melts and Implications for Magmatic Sulphide Ore Formation. J Petrology
 56:2445–2472. https://doi.org/10.1093/petrology/egv078
- Rose-Koga EF, Koga KT, Devidal J-L, et al (2020) In-situ measurements of magmatic volatile
 elements, F, S, and Cl, by electron microprobe, secondary ion mass spectrometry, and heavy ion
 elastic recoil detection analysis. American Mineralogist 105:616–626.
 https://doi.org/10.2138/am-2020-7221
- Scaillet B, Clémente B, Evans BW, Pichavant M (1998) Redox control of sulfur degassing in silicic
 magmas
- Schmidt A, Carn S (2022) Volcanic emissions, aerosol processes, and climatic effects. In: Aerosols
 and Climate. Elsevier, pp 707–746
- Schmidt A, Robock A (2015) Volcanism, the atmosphere and climate trough time. In: Volcanism and
 Global Environmental Change. Cambridge University Press, pp 195–207
- Self S (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption
 of Tambora. Geophys Res Lett 31:L20608. https://doi.org/10.1029/2004GL020925
- Sigl M, McConnell JR, Toohey M, et al (2014) Insights from Antarctica on volcanic forcing during
 the Common Era. Nature Clim Change 4:693–697. https://doi.org/10.1038/nclimate2293
- 535 Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the. Bull Volcanol 51:243–
- 536 270. https://doi.org/10.1007/BF01073515

- Sigurdsson H, Carey S (1992) The Eruption of Tarnbora in 1815: Environmental Effects and Eruption
 Dynamics. In Harington, I.R., editor, The year without a summer? World climate in 1816.
 Ottawa: Canadian Museum of Nature, 16–45
- 540 Stothers RB (1984) The Great Tambora Eruption in 1815 and Its Aftermath. Science 224:1191–1198.
 541 https://doi.org/10.1126/science.224.4654.1191
- Suhendro I, Toramaru A, Miyamoto T, et al (2021) Magma chamber stratification of the 1815
 Tambora caldera-forming eruption. Bull Volcanol 83:63. https://doi.org/10.1007/s00445-02101484-x
- 545 Textor C, Graf HF, Herzog M, Oberhuber JM (2003) Injection of gases into the stratosphere by
 546 explosive volcanic eruptions. Journal of Geophysical Research: Atmospheres. 16;108(D19).
- 547 Thordarson T (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: A
 548 review and reassessment. J Geophys Res 108:4011. https://doi.org/10.1029/2001JD002042
- 549 Vidal CM, Métrich N, Komorowski J-C, et al (2016) The 1257 Samalas eruption (Lombok,
 550 Indonesia): the single greatest stratospheric gas release of the Common Era. Sci Rep 6:34868.
 551 https://doi.org/10.1038/srep34868
- Vupputuri RKR (1992) The Tambora eruption in 1815 provides a test on possible global climatic and
 chemical perturbations in the past. Nat Hazards 5:1–16. https://doi.org/10.1007/BF00127136
- Webster JD, Sintoni MF, De Vivo B (2009a) The partitioning behavior of Cl, S, and H2O in aqueous
 vapor- ±saline-liquid saturated phonolitic and trachytic melts at 200 MPa. Chemical Geology
- 556 263:19–36. https://doi.org/10.1016/j.chemgeo.2008.10.017
- Webster JD, Tappen CM, Mandeville CW (2009b) Partitioning behavior of chlorine and fluorine in
 the system apatite-melt-fluid. II: Felsic silicate systems at 200MPa. Geochimica et
 Cosmochimica Acta 73:559–581. https://doi.org/10.1016/j.gca.2008.10.034

560 Figure captions

- 561 Fig. 1 Map of the Sunda Arc, showing the tectonic setting and the distribution of volcanoes, modified
- from Gertisser et al. (2012). The enlarged map shows the location of Mount Tambora on Sumbawaisland.
- Fig. 2 Stratigraphic log of the deposits of the 1815 eruption at 25 km west of the volcano, modified
 from Sigurdsson and Carey (1989).
- Fig. 3 a Plagioclase crystal with zoned rims (TB65_pl15), b Unzoned plagioclase crystal
 (TB65_pl11), c Sulfide globule in a plagioclase-hosted melt inclusion (TB65_pl11), d Sulfide globule
 in a plagioclase crystal.
- 569 Fig. 4 a Glassy, oval-shaped melt inclusions with a shrinkage bubble (TB61_pl19 MI26&27), b Melt
- 570 inclusion containing a sulfide globule (TB61_pl15 MI21), c Glassy melt inclusion with several
- 571 bubbles (TB61_pl5 MI9), **d** Melt inclusion partially crystallized (TB61_pl16 MI10).
- Fig. 5 Feldspar ternary diagram showing the average concentrations of plagioclases in the 1815 tephra
 from Tambora and data (average) from Samalas and Batur, volcanoes of the same arc.
- **Fig. 6** Total alkali vs silica plot of average alkali concentrations of melt inclusions (MI) and matrix glasses (MG) from four studies (error bars are 1σ standard deviations). All data are normalised to 100%.
- Fig. 7 Trends of major element concentrations in the Tambora magma during its differentiation. All
 data are normalised. Grey squares are the bulk rock compositions of the F2 and F4 layers from
 Sigurdsson and Carey (1989). The blue squares are from Suhendro et al. (2021).
- **Fig. 8** Trends of volatile element concentrations as a function of FeO (error bars are 1σ standard deviation). The lines are the SCSS (Fortin et al., 2015) with 0, 2.5 and 4.5 wt.% H₂O and the SCAS
- 582 (Chowdhury and Dasgupta, 2019) (1.5 and 3.5 wt.% H₂O are not represented for reasons of clarity).
- 583 The vertical dotted line is the average FeO content of the bulk rocks of F2 and F4 layers from
- 584 Sigurdsson and Carey (1989). All data are normalised to 100%.
- 585 Fig. 9 Quantities of volatiles degassed during the major eruptions of the last two millennia, modified
- 586 from Vidal et al. (2016). On the Tambora estimates are included the results of previous studies: A
- 587 Devine et al. (1984), B Self et al. (2004), C Sigurdsson and Carey (1992). The different methods of
- stimate are given in Table S6 in Supplementary Materials 1.

589 **Table captions**

590 **Table 1** Major elements (wt.%) and volatile (ppm) contents of melt inclusions and matrix glasses.

- 591 **Table 2** Summary of volatile concentrations (ppm) in melt inclusions and matrix glasses (with 1σ
- standard deviation).

Table 3 Major element composition of the melt inclusions with maximum S and F contents, second
highest Cl content (with 1σ standard deviation) and average major element composition of the F2 and
F4 bulk rocks from Sigurdsson and Carey (1989) and Suhendro et al. (2021).

Table 4 Volatile quantities emitted during the 1815 eruption of Tambora according to the three scenarios (Tg). The total error on the result takes into account the error on the volume of magma emitted, on the fraction of crystals and on the accuracy of the microprobe analyses. The respective errors of each parameter in equation (1) were propagated trough the different calculation according

600 to
$$\sigma_x = \sqrt{\sigma_a^2 + \sigma_b^2}$$
 if $x = a \pm b$ and to $\frac{\sigma_x}{x} = \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2}$ if $x = a / \times b$.

Table 5 Estimates of the SO₂ amount degassed during the 1815 eruption of Tambora according to
 different method and studies.

603

	Mear (n=	TB61 =12)	Mean (n=	TB65 =12)
SiO ₂	47.05	(± 1.47)	47.14	(± 0.44)
MgO	0.04	(± 0.01)	0.05	(± 0.01)
FeO	0.55	(± 0.07)	0.59	(± 0.06)
Na₂O	1.76	(± 0.62)	1.88	(± 0.17)
AI_2O_3	33.13	(± 1.06)	33.2	(± 0.29)
K ₂ O	0.19	(± 0.12)	0.18	(± 0.03)
CaO	16.58	(± 1.16)	16.42	(± 0.25)
Total	99.3		99.46	
% An	88.9	(± 4.38)	88.39	(± 1.13)

			Melt Ind	lusions					Matrix	Glasses	es		
	TB61	(n=11)	TB65	(n=12)	Me	ean	TB61	(n=4)	TB65	i (n=2)	Mean		
SiO ₂	51.67	(± 0.90)	54.39	(± 0.80)	54.54	(± 0.84)	57.95	(± 0.39)	57.17	(± 0.11)	57.69	(± 0.50)	
MgO	1.61	(± 0.22)	1.52	(± 0.15)	1.57	(± 0.19)	1.41	(± 0.02)	1.3	(± 0.01)	1.37	(± 0.06)	
FeO	5.11	(± 0.63)	4.82	(± 0.17)	4.98	(± 0.49)	4.49	(± 0.23)	4.47	(± 0.12)	4.48	(± 0.19)	
Na₂O	5.21	(± 0.16)	5.28	(± 0.22)	5.24	(± 0.19)	5.41	(± 0.21)	5.52	(± 0.28)	5.45	(± 0.21)	
Al ₂ O ₃	18.9	(± 0.39)	19.28	(± 0.25)	19.07	(± 0.38)	19.94	(± 0.24)	19.84	(± 0.07)	19.9	(± 0.19)	
K₂O	6.27	(± 0.22)	6.27	(± 0.32)	6.27	(± 0.26)	6.24	(± 0.24)	6.41	(± 0.02)	6.3	(± 0.21)	
CaO	3.29	(± 0.38)	3.28	(± 0.51)	3.29	(± 0.43)	3.27	(± 0.11)	3.15	(± 0.03)	3.23	(± 0.10)	
TiO ₂	0.74	(± 0.13)	0.74	(± 0.05)	0.74	(± 0.10)	0.53	(± 0.03)	0.5	(± 0.02)	0.52	(± 0.03)	
P ₂ O ₅	0.56	(± 0.18)	0.61	(± 0.11)	0.58	(± 0.15)	0.37	(± 0.05)	0.46	(± 0.01)	0.4	(± 0.06)	
MnO	0.18	(± 0.06)	0.22	(± 0.05)	0.19	(± 0.06)	0.15	(± 0.18)	0.18	(± 0.03)	0.16	(± 0.14)	
Total	96.52		96.41		96.47		99.76		99.01		99.51		
S	775	(± 214)	775	(± 142)	775	(± 181)	369	(± 46)	354	(± 16)	364	(± 37)	
CI	1986	(± 1986)	2052	(± 213)	2016	(± 219)	1725	(± 101)	1756	(± 35)	1735	(± 81)	
F	790	(± 132)	854	(± 196)	819	(± 163)	636	(± 83)	779	(± 90)	683	(± 106)	

		Melt Inclusio	ons	Matrix Glasses
	Mean	Maximum	At 4.6 wt.% FeO	Mean
S	775 (±37)	1118 (±47)	586 (±32)	364 (±37)
1	2016 (±42)	2553 (±37)	1975 (±42)	1735 (±81)
F	819 (±107)	1253 (±114)	840 (±104)	683 (±106)

			Melt inclusi	ons used fo	or			Bulk r	ulk rocks	
	S in Sc (=111	enario 1 8 ppm)	CI in Sc (=2	enario 1 282)	F in Sc (=908	enario 1 s ppm)	Sigurdssor (19	n and Carey 989)	Suhendro et al. (2021)	
SiO ₂	54.36	(±0.18)	54.34	(±0.17)	55.72	(±0.17)	54.57	(±0.39)	58.2	(±0.19)
TiO ₂	0.76	(±0.02)	0.79	(±0.02)	0.91	(±0.02)	0.64	(±0.01)	0.68	(±0.01)
Al ₂ O ₃	18.14	(±0.07)	18.73	(±0.07)	19.60	(±0.07)	19.14	(±0.23)	18.57	(±0.06)
FeO	5.68	(±0.15)	5.65	(±0.15)	5.82	(±0.15)	6.05	(±0.07)	5.94	(±0.11)
MnO	0.24	(±0.05)	0.19	(±0.06)	0.08	(±0.06)	0.20	(±0.00)	0.19	(±0.00)
MgO	1.82	(±0.03)	1.74	(±0.02)	1.92	(±0.03)	1.42	(±0.12)	2.06	(±0.05)
CaO	3.38	(±0.04)	3.85	(±0.04)	3.87	(±0.04)	4.23	(±0.31)	3.87	(±0.13)
Na₂O	4.91	(±0.06)	5.06	(±0.06)	5.30	(±0.06)	3.75	(±1.39)	4.46	(±0.07)
K ₂ O	6.17	(±0.07)	6.04	(±0.07)	6.27	(±0.07)	5.83	(±0.09)	5.85	(±0.10)
P_2O_5	0.64	(±0.03)	0.65	(±0.03)	0.51	(±0.03)	0.42	(±0.02)	0.32	(±0.01)
Total	96.09		97.02		94.75		96.23		100.14	

	Scenario 1	Scenario 2	Scenario 3
S	135±14	40±4	74±7
CI	49±5	22±2	25±3
F	20±4	14±2	12±2

Method	SO ₂ degassed (Tg)	Reference
	34	Devine et al., 1984
Potrological	53-58	Self et al., 2004
Felilological	86	Sigurdsson et al., 1992
	147±17	This study
Ice cores	> 98	Legrand et Delmas, 1987
	45	Sigl et al., 2014

