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Smoothed Particle Hydrodynamics for Anisotropic Dispersion in Heterogeneous Porous Media -Three SPH schemes are investigated for anisotropic dispersion in porous media -Two novel methods are stable and free of negative concentrations -First application to a randomly heterogeneous domain for different anisotropies -One of the novel schemes is highly robust to the particle disorder and anisotropy -Novel schemes display potential for reactive transport in aquifers Highlights

Introduction

Smoothed Particle Hydrodynamics (SPH) is a formulation for solving continuous conservation equations based on particles. The method was originally developed in the context of astrophysics [START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF][START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] and remains a popular alternative for simulating problems with complex method is to be considered for practical field-scale studies, it should be verified that formulations of dispersion are able to properly handle scenarios with anisotropic coefficients for a wide range of anisotropy ratios. It is at this point where the method has encountered some challenges that may have hindered its adoption. Particularly, simple transport simulations in homogeneous porous media have reported until recently the occurrence of unphysical negative concentrations when considering anisotropic dispersion coefficients (e.g., [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF]Avesani et al., 2015;Alvarado-Rodríguez et al., 2019;[START_REF] Klapp | Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume[END_REF]. Therefore, the discussion has remained constrained to these results and no applications have been reported in the literature where the method is employed to simulate solute transport with more realistic porous media configurations, simultaneously considering an explicit representation of the medium heterogeneity and of dispersion anisotropy. This context motivates a review of the SPH method in order to evaluate its potential for modeling anisotropic dispersion in heterogeneous domains. In this regard, the following major objectives have been established for this work:

(i) to understand the formulation and numerical properties of SPH methods for dispersive transport, (ii) to address the origin of negative concentrations observed in scenarios of anisotropic dispersion, and (iii) to apply the SPH method to a problem of solute transport through heterogeneous media considering anisotropic transport coefficients. After an initial evaluation, three different SPH schemes have been selected for discussion: the Español and Revenga method (ER; [START_REF] Español | Smoothed dissipative particle dynamics[END_REF], Anisotropic SPH for Anisotropic Diffusion (ASPHAD; [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF] and Two First Derivatives (TFD; [START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF]. In subsurface applications, the ER scheme has been the common choice for simulations with anisotropic dispersion and it is known to yield negative concentrations (e.g., [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF]Alvarado-Rodríguez et al., 2019;[START_REF] Klapp | Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume[END_REF]. Briefly, the scheme can reverse the physical direction of dispersive fluxes in some sections within the kernel, and the solute is then transported unphysically from low to high concentration particles (see [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF][START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF]. This effect occurs for ratios of anisotropy exceeding a relatively low threshold determined by the number of spatial dimensions, hence it is very likely that the scheme will lead to instabilities for most practical cases. Two novel alternative formulations, compatible with anisotropic transport coefficients, have been recently proposed in the literature after identifying the unphysical transport effect, reportedly leading to results without negative concentrations. These formulations have not been discussed yet for the transport of solutes through heterogeneous porous media, and this work evaluates them for the first time for said purpose. By means of a change of the coordinates system, the ASPHAD scheme [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF] transforms the anisotropic dispersion equation into an equivalent isotropic form, which is then integrated following a corrected version of the isotropic SPH method [START_REF] Brookshaw | A method of calculating radiative heat diffusion in particle simulations[END_REF]. A different approach is taken in the TFD method [START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF], where a double SPH integration is performed: first to compute the spatial concentration gradients and then to obtain the divergence of dispersive fluxes. Furthermore, these authors provide a comprehensive physical explanation for the origin of the instabilities displayed by the ER scheme.

Two numerical experiments are conducted in order to evaluate the performance of the selected SPH schemes, both of them exploring different scenarios of dispersion anisotropy. Firstly, the anisotropic dispersion of a Gaussian plume in a homogeneous medium is revisited (as in [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF]Avesani et al., 2015;Alvarado-Rodríguez et al., 2019;[START_REF] Klapp | Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume[END_REF] and compared with the available analytical result. In the second numerical experiment, a solute is transported through a randomly heterogeneous aquifer. The focus is placed on the SPH integration of dispersive transport and particle velocities are simply interpolated from a pre-calculated steady, divergence-free groundwater flow (as in [START_REF] Herrera | A meshless method to simulate solute transport in heterogeneous porous media[END_REF][START_REF] Boso | Numerical simulations of solute transport in highly heterogeneous formations: A comparison of alternative numerical schemes[END_REF]. SPH results from this test are compared with those from a high-resolution Random Walk Particle Tracking (RWPT) model of the same problem, which is assumed to represent the exact solution. The RWPT method has a well-established trajectory in hydrogeology as a particle formulation capable of providing results not influenced by numerical dispersion in heterogeneous media (e.g., [START_REF] Labolle | Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods[END_REF][START_REF] Lichtner | New form of dispersion tensor for axisymmetric porous media with implementation in particle tracking[END_REF][START_REF] Salamon | A review and numerical assessment of the random walk particle tracking method[END_REF][START_REF] Fernàndez-Garcia | Reaction rates and effective parameters in stratified aquifers[END_REF][START_REF] Le Borgne | Non-fickian mixing: Temporal evolution of the scalar dissipation rate in heterogeneous porous media[END_REF][START_REF] Boso | Numerical simulations of solute transport in highly heterogeneous formations: A comparison of alternative numerical schemes[END_REF].

The structure of this article is as follows. In Methods, a summary of the SPH formulation is presented, together with the considered SPH schemes and a discussion on numerical consistency. Then, the Results and Discussion of numerical tests outline the performance of each method and their applicability to the problem of anisotropic dispersion for a variety of conditions likely to be found in aquifer models. Finally, the Conclusions of this work underline the advantages and challenges of the discussed SPH schemes for anisotropic transport through heterogeneous domains.

Methods

Advection Dispersion Equation (ADE)

Solute transport is represented by the Advection Dispersion Equation (ADE) with spatially varying aquifer properties described at the Darcy scale. The transport of an ideal non-reactive solute is assumed, meaning that concentration influences neither fluid density nor viscosity, without chemical reactions involved [START_REF] Bear | Modeling Groundwater Flow and Contaminant Transport[END_REF]. In Lagrangian form, the ADE under incompressible groundwater flow can be written as

dr dt = q ϕ , (1) 
d (ϕC) dt = ∇ • (ϕD∇C) , (2) 
where d/dt(•) is the total time derivative, r is the spatial coordinate vector for a particle's position, q = ϕv is the Darcy velocity, ϕ is the medium porosity, v is the macroscopic flow velocity and C is the solute concentration expressed as J o u r n a l P r e -p r o o f

Journal Pre-proof mass per unit water volume. The hydrodynamic dispersion tensor is given by [START_REF] Bear | Modeling Groundwater Flow and Contaminant Transport[END_REF])

D ij = (α T |v| + D m )δ ij + (α L -α T ) v i v j |v| , (3) 
where α L and α T are the longitudinal and transverse dispersivities, respectively, D m is the effective molecular diffusion (corrected for tortuosity effects) and δ ij is the Kronecker delta. For simplicity, transport is assumed in two dimensions for a single solute, without molecular diffusion and with unit porosity. In case of a spatially variable porosity, the effect should be accounted for while computing SPH quantities (e.g., [START_REF] Basser | Smoothed particle hydrodynamics modelling of fresh and salt water dynamics in porous media[END_REF]. Dispersion anisotropy is defined here

as λ D = D xx /D yy ≈ α L /α T .
In typical aquifer applications, λ D ranges between 3 and 20 for horizontal planes and could be even higher when considering the vertical transverse dispersivity (e.g., [START_REF] Gelhar | A critical review of data on field-scale dispersion in aquifers[END_REF].

Smoothed Particle Hydrodynamics (SPH)

The SPH method discretizes the fluid as particles, each one carrying physical properties such as mass, density and solute concentration. The formulation begins by expressing an arbitrary continuous field A(r) as [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF][START_REF] Violeau | Fluid mechanics and the SPH method : theory and applications[END_REF])

A(r) = Ω A(r ′ )δ (r -r ′ ) dr ′ , (4) 
where Ω is the domain volume and δ is the Dirac delta function. The Dirac delta is then approximated by a positive continuous symmetric kernel function

W (|r -r ′ |, h)
, with h being a smoothing length. Together with the number of particles, the smoothing length parameter controls the accuracy and spatial resolution of the approximation. In practical applications, the kernel function has a finite support volume characterized by a distance H, such that kernel density equals zero at any distance higher than H. Therefore, only a finite set of particles contribute to the interpolation at a given point. Besides the positivity and symmetry properties, the kernel function has a zeroth moment equal to one, a first order moment equal to zero (due to symmetry), and a non-zero second order moment. The latter is the source of the continuous interpolation error O(h 2 ) [START_REF] Violeau | Fluid mechanics and the SPH method : theory and applications[END_REF][START_REF] Sigalotti | A new insight into the consistency of the SPH interpolation formula[END_REF]. Continuous integrals are discretized on the set of particles, leading to [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF])

A(r a ) = N b m b ρ b A b W (|r a -r b |, h a ), (5) 
where subscripts a and b denote the center and neighbor particles respectively.

Sums are performed over a finite set of N neighbors within the support volume.

For the remainder of the article, SPH sums are assumed to always occur over the set of neighbors and N is not explicitly indicated. m b and ρ b represent the mass and density of particle b, so their quotient is a measure of the volume associated with that particle. Discretizing with particles introduces a second J o u r n a l P r e -p r o o f

Journal Pre-proof source of error that scales as O(N -ψ ), where the exponent ψ depends on the particle distribution and quantifies the rate of decrease in statistical error for an increasing number of neighbors [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF]. For a uniform particle distribution, this error decreases faster (ψ ≈ 1) than in the case of disordered particles (ψ ≈ 0.5). Density is computed as [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF])

ρ a = ρ(r a ) = b m b W ab (h a ), (6) 
where W ab (h a ) denotes the kernel function evaluated at distance r ab = |r ar b | with a smoothing length h a . In this paper, the particle mass m b is always assumed to be the same for all particles.

Kernel

The kernel is usually a piecewise continuous function [START_REF] Cleary | Conduction modelling using smoothed particle hydrodynamics[END_REF][START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF], being a common choice the family of B-Splines [START_REF] Schoenberg | Contributions to the problem of approximation of equidistant data by analytic functions. part a: On the problem of smoothing or graduation. a first class of analytic approximation formulae[END_REF]. Smoothing functions have an associated residual error called the kernel bias, which is the fraction of error that does not decrease further after increasing the number of neighbor particles. The magnitude of the bias decreases with increasing order of the B-Spline function, thus higher order kernels allow using a higher number of particles to improve accuracy [START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF]. This study employs the normalized kernel formulation by [START_REF] Dehnen | Improving convergence in smoothed particle hydrodynamics simulations without pairing instability[END_REF], defined as

W (r, h) = c ν (κ ν h) ν w (q) , (7) 
where r = rr ′ is the vector difference between the center and neighbor particle positions and w(q) is a shape function normalized to a unit support radius, with q = |r|/(κ ν h) the normalized kernel coordinate. c ν is a positive constant which makes the kernel integral unitary and whose value depends on the number of spatial dimensions ν; and κ ν = H/h is an aspect ratio specific to the kernel function. From equation (7) follows that kernel gradients are expressed as [START_REF] Violeau | Fluid mechanics and the SPH method : theory and applications[END_REF])

∇W (r, h) = F (q)r, (8) 
where F (q) is defined as the kernel scalar derivative

F (q) = c ν (κ ν h) ν+1 w ′ (q) , (9) 
which is negative for typical kernel functions [START_REF] Monaghan | Smoothed particle hydrodynamics[END_REF], and r = r/|r| is the unit vector between particles. In this article, a fifth order B-Spline kernel is used (Fig. 1)

w(q) = (1 -q) 5 + -6 2 3 -q 5 + + 15 1 3 -q 5 + , (10) 
where the operator x + stands for max(0, x). In two dimensions, this kernel's constants have values c 2 = 3 7 • 7/478π and κ 2 = 2.158131 [START_REF] Dehnen | Improving convergence in smoothed particle hydrodynamics simulations without pairing instability[END_REF].

Figure 1: Fifth order B-Spline kernel and characteristic distances. a) Normalized shape function w(q), and b) normalized shape derivative w ′ (q). σ W is the standard deviation of the kernel's shape.
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Errors and consistency

Both continuous and discrete interpolation errors are relevant for the accuracy of SPH estimates. [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF] discussed this topic considering density estimates. The authors argue that, as the total number of particles tends to infinity, N → ∞, it should be satisfied simultaneously that h → 0 and N → ∞.

Studies following said principles have shown that numerical error decreases while increasing the particle resolution (e.g., [START_REF] Sigalotti | On the kernel and particle consistency in smoothed particle hydrodynamics[END_REF]Alvarado-Rodríguez et al., 2019). Still, it has been a common practice in SPH to set the smoothing length as proportional to the mean particle size δ r = (m/ρ) 1/ν , that is, h = γδ r .

The parameter γ controls the number of neighbors within the kernel, with a typically adopted value of γ = 1.2 [START_REF] Cleary | Conduction modelling using smoothed particle hydrodynamics[END_REF][START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF][START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF]. It is worth noting that in order to achieve consistency (i.e., for the total interpolation error to approach zero as one adds more particles), γ should actually increase as the total number of particles increases. Otherwise, the discrete error at the kernel scale remains constant and it is replicated more times as the total number of particles increases [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF]. From a modeling perspective, definition of the smoothing length using a constant γ is convenient due to its simplicity, but lacks theoretical rigor as γ is not a function of the number of particles. In Appendix A it is shown that, by introducing consistency principles, the following expression for γ as a function of the total number of SPH particles can be obtained

γ(N ) = 1 κ ν K V ν 1/ν N 1/ν-1/β , (11) 
where V ν is the volume of the unit sphere, K is a proportionality constant, and β is a positive exponent relating the scaling of the smoothing length with the number of particles h ∝ N -1/β . For two dimensional problems, β ≥ 4 has been established as a reference for a uniform particle distribution, ensuring the compliance of the triple limit for consistent scaling (for details refer to Appendix A).

SPH methods for anisotropic dispersion

Español & Revenga (ER)

This method has been the common choice in studies assessing anisotropic dispersion with SPH [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF]Avesani et al., 2015;Alvarado-Rodríguez et al., 2019;[START_REF] Klapp | Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume[END_REF]. Negative concentrations have been reported while simulating the anisotropic dispersion of a Gaussian plume in a homogeneous domain. The scheme integrates dispersion as [START_REF] Español | Smoothed dissipative particle dynamics[END_REF][START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF])

dC a dt = b m b ρab C ba Dab ij G ij ab ( 12 
)
where 

C ba = C b -C a ,
G ij ab = -(ν + 2)r i ab rj ab -δ ij F ab r ab , (13) 
where ri ab = r i ab /r ab is the ith-component of the vector rab and F ab = F (q ab ), with q ab the normalized kernel coordinate distance q between particles a and b.

In equation ( 12), indexes i, j follow the Einstein summation convention. The problem with this method lies in the term within squared brackets in equation ( 13), which can adopt negative values in some locations within the kernel, depending on the components of the unit vector rab . This modifies the physical direction of dispersive flux which should be against the concentration gradient [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF][START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF]. That is, assuming only one pair of particles a, b for simplicity, for C a < C b and under proper physical conditions, it is expected that dC a /dt > 0, which is satisfied as long as the product between dispersion and the term G ij ab is positive. In two dimensions, and assuming a diagonal dispersion tensor, such condition translates into the inequality

D xx D yy 1 -(ν + 2)(r x ab ) 2 ≤ (ν + 2)(1 -(r x ab ) 2 ) -1, (14) 
where it has been applied that (r x ab ) 2 + (r y ab ) 2 = 1. Limit cases can be obtained by considering the limit values of (r x ab ) 2 ∈ {0, 1}, which yields that the scheme preserves physical dispersive flux when dispersion anisotropy satisfies [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF][START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF]. In reported applications of the ER method for dispersion through porous media, the minimum (non-isotropic) considered degree of anisotropy is λ D = 10, which falls outside the valid range for two dimensions. One question surrounding the results obtained with this method is related to the spatial distribution of negative concentrations. In applications to homogeneous domains, bands of negative values appear to be typically confined to regions far from the main solute plume.

λ D ∈ [1/(ν + 1), ν + 1] (Tran
However, no reports are available about the impact that this artifact may have for smaller scales of concentration and gradients, particularly in heterogeneous domains.

Anisotropic SPH for anisotropic diffusion (ASPHAD)

This method by [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF] stems from a change of the coordinates system in the anisotropic dispersion equation, which allows rewriting the problem in isotropic form. For spatially heterogeneous dispersion, this transformation involves the assumption that differences in dispersion between neighboring particles are relatively small. This allows taking the dispersion tensor outside the divergence of fluxes in equation ( 2). A change of coordinates is performed, based on a transformation matrix defined from the dispersion coefficients. Briefly, the dispersion tensor is a positive definite symmetric matrix [START_REF] Bear | Modeling Groundwater Flow and Contaminant Transport[END_REF] and can be decomposed as et al., 1996), where the superscript T stands for transpose. The matrix B is well known in the context of Random Walk Particle Tracking (RWPT), where it is denoted as the displacement matrix. In two dimensions it is given by [START_REF] Fernàndez-Garcia | Differences in the scale-dependence of dispersivity estimated from temporal and spatial moments in chemically and physically heterogeneous porous media[END_REF][START_REF] Salamon | A review and numerical assessment of the random walk particle tracking method[END_REF])

D = BB T (LaBolle
B = vx |v| α L |v| + D m - vy |v| α T |v| + D m vy |v| α L |v| + D m vx |v| α T |v| + D m . ( 15 
)
Furthermore, the inverse of this matrix can be computed analytically as

B -1 =   1 √ αL|v|+Dm vx |v| 1 √ αL|v|+Dm vy |v| - 1 √ αT |v|+Dm vy |v| 1 √ αT |v|+Dm vx |v|   . ( 16 
)
The coordinate transformation in ASPHAD is such that X = B -1 x, where X is the position in the new frame of reference. This leads to the following SPH scheme for dispersion [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF],

dC a dt = 2 b m b ρ b C ab |B -1 ab rab | 2 F ab r ab , (17) 
where

B -1
ab is the inverse displacement matrix (eq. 16) averaged between particles a and b, and [START_REF] Tran-Duc | Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics[END_REF] showed that this scheme may artificially increase dispersion in the direction of smaller dispersivity (transverse), and reduce it in the direction of larger dispersivity (longitudinal). However, a major advantage of this approach is that it is unconditionally stable [START_REF] Brookshaw | A method of calculating radiative heat diffusion in particle simulations[END_REF][START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF].

C ab = C a -C b .

Two first derivatives (TFD)

This method is presented by [START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF] with application to heat transport, showing satisfactory results for an anisotropic conduction tensor. It differs from the previous methods in that the dispersive flux is first explicitly calculated and then used to compute the divergence of fluxes. It is thus a two-stage SPH integration. The jth-component of the gradient of solute concentrations is expressed as

G j a = ∇ j a C a = 1 ρ a f a b m b C ba ∇ j a W ab (h a ), (18) 
where

f a = 1 + h a νρ a b m b ∂W ab (h a ) ∂h a ( 19 
)
is a gradient correction which stems from considering a spatially variable smoothing length following the relation h ν a ∝ 1/ρ a [START_REF] Price | An energy-conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and n-body codes[END_REF][START_REF] Springel | Smoothed particle hydrodynamics in astrophysics[END_REF]. The temporal variation of concentration at a particle is then calculated as the divergence of the product between the dispersion tensor and equation

J o u r n a l P r e -p r o o f
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1 ρ a dC a dt = b m b D a ij G i a ∇ j a W ab (h a ) f a ρ 2 a + D b ij G i b ∇ j a W ab (h b ) f b ρ 2 b . ( 20 
)
As before, indexes i, j follow the Einstein convention. A formulation with a spatially variable smoothing length appears attractive in the context of heterogeneous systems. Nevertheless, in order to restrict the scope, in this work the kernel size is kept constant, and thus f a = 1. The TFD scheme has been shown to be mass-conservative and stable. However, in the vicinity of sharp gradients, it may be prone to introduce extreme positive or negative values. Effects of this type are typically handled in SPH by artificial dissipation. That is, by artificial viscosity in hydrodynamics [START_REF] Monaghan | Shock simulation by the particle method SPH[END_REF] or by artificial conductivity in heat transport [START_REF] Price | Modelling discontinuities and kelvin-helmholtz instabilities in SPH[END_REF][START_REF] Biriukov | Stable anisotropic heat conduction in smoothed particle hydrodynamics[END_REF]. The challenge lies in the fact that dissipation terms are only required in the vicinity of sharp gradients. Such corrections have not been discussed in the context of solute transport and potential analogies could be established with heat transport. Still, a definition of this kind is outside the scope of this article and it is important to stress that a formulation should be proposed with caution, in order to preserve the main feature of particle methods in heterogeneous systems, which is the absence of artificial dispersion. neighbor particles should be anti-symmetric in order to satisfy mass conservation, this property being directly influenced by the estimation of local densities (see [START_REF] Herrera | A meshless method to simulate solute transport in heterogeneous porous media[END_REF]. Because the medium is heterogeneous, an initially uniform distribution of particles will most likely end up evolving into a seemingly quasi-random distribution (as in [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF]. This means that the estimated particle density will be non-uniform and most likely evolving in time as particles are displaced, which is somewhat comparable to introducing artificial divergence in the flow (from the perspective of the SPH particles).

Notice that the ER scheme (eq. 12) involves an averaged density between each pair of neighboring particles, hence the dispersive flux remains anti-symmetric.

The same does not occur with default ASPHAD (eq. 17) and TFD (eq. 20) if the schemes are applied directly without any correction to the densities. In the implementation of these methods, densities are also replaced with the average between neighbors ρab , thus ensuring the anti-symmetry of dispersive fluxes.

J o u r n a l P r e -p r o o f 

δ D t ≤ C T h 2 i D ii , (21) 
with C T = 0.1 [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF]. For heterogeneous experiments, also 376 the advection-limited time step δ v t is computed by imposing CF L = 0.1 and 377 using the maximum spatial velocities, that is

378 δ v t ≤ CF L max v x /∆ x + max v y /∆ y , (22) 
where ∆ x , ∆ y are the flow grid sizes. Finally, time step is selected as the most 379 restrictive, i.e.,

380 δ t = min{δ D t , δ v t }. ( 23 
)
Solute concentrations are then integrated explicitly as

381 C t+δt a = C t a + δ t dC a dt t , (24) 
where the time derivative is computed with any of the SPH schemes discussed 382 previously. 

A fl a -A a |A a | ≤ 1 2 N ϵ, (25) 
where A fl a is the floating point representation of the SPH estimate and ϵ > 0 is 388 the machine epsilon. The latter is a property of the floating point system and 389 is the maximum number that satisfies 1 = 1 + ϵ. Models were implemented here 390 using 64bit precision with ϵ = 2.220446 × 10 -16 . Expression (25) shows that 391 the relative rounding error is proportional to the number of neighbor particles. the set of SPH particles as [START_REF] Herrera | A meshless method to simulate solute transport in heterogeneous porous media[END_REF] 397

C c = 1 ρ c N b m b C b W cb , (26) 
where ρ c is the density computed at the cell center. Interpolations are performed 398 with the same kernel size employed during simulations. 

C * (r, t) C 0 = d 2 B 3 exp -x 2 A 1 -ỹ2 A 2 + 4xỹA 3 8t 2 B 1 + 4td 2 B 2 + 2d 4 , (27) 
where

A 1 = 2tD yy + d 2 A 2 = 2tD xx + d 2 A 3 = tD xy B 1 = D xx D yy -D 2 xy B 2 = D xx + D yy B 3 = 4t 2 B 1 + 2td 2 B 2 + d 4 1/2 . (28) 
In the above expression, C 0 is the maximum initial concentration, which is em- results. In particular, the concentration contours in the ER method (Fig. 3d) to Table 1) show that the ASPHAD scheme is sensitive to the alignment be- 

Errors and the particle distribution 485

The relative position of particles influences the rate at which the discrete 486 error decreases while increasing the number of neighbors [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF].

487

The case of a uniform distribution is an idealized scenario unlikely to occur in 488 practical applications (e.g., [START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF], thus understanding the 489 performance of SPH schemes for different particle distributions is of relevance.

490

The results indicate that all methods yield higher error in scenarios of particle 491 disorder (Fig. 5). Errors obtained from ASPHAD show relatively large mag-492 nitudes for a quasi-random particle distribution (similar to the random case)

493

for the highest dispersion anisotropy (Fig. 5d). The same does not occur with 494 the ER (Fig. 5a,b) and TFD (Fig. 5e,f ) methods which are able to preserve 495 clear differences with respect to the worst case scenario regardless of anisotropy.

496

Furthermore, the contour maps of anisotropic simulations with quasi-random 497 particle distribution show that ER (Fig. 6a,b) and TFD (Fig. 6e,f ) yield 498 results which are consistent with the uniform case (Fig. 3). With this last 499 scheme, the simulation of highest anisotropy now presents a more evident pat- illustrating the influence of the particle disorder on error propagation. Regard-502 less, it is clear that the method is robust with respect to the distribution of 503 particles, leading to an accurate representation of concentration profiles (Fig. of particles, in order to characterize the consistency of SPH schemes. As outlined previously, it should be satisfied that as the number of particles increases, kernel sizes decrease while simultaneously increasing the number of neighbors [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF][START_REF] Sigalotti | On the kernel and particle consistency in smoothed particle hydrodynamics[END_REF]. Expression (11) relates the kernel size with these principles of consistent scaling. The trend of the minimum-error γ for each SPH method, with respect to the number of particles is shown in Figure ( 8), and compared with the reference scaling for two-dimensional domains (β = 4 in equation 11). Overall, the ER and TFD schemes display an increasing value of γ for increasing number of particles, almost independently from the dispersion anisotropy, which leads to a consistent decrease in error for both uniform and quasi-random distributions of particles (Fig. 8b andf , respectively). Errors obtained from ASPHAD (Fig. 8d) decay while increasing the number of particles only in scenarios of isotropic dispersion. In anisotropic conditions, the minimum error is always obtained for the same value of γ in cases with uniform particle J o u r n a l P r e -p r o o f Journal Pre-proof distribution, regardless of the particle resolution (Fig. 8c). In the quasi-random case, this parameter displays more variability, although, in any case, the error remains insensitive to the resolution in anisotropic simulations (Fig. 8d). The γ values from simulations with minimum error are fitted to expression (11) with coefficients shown in Table (2). The determination coefficients for simulations performed with TFD were always higher than r 2 = 0.93, confirming that the scheme follows the scaling from equation ( 11), with error decaying consistently with the proportionality e R ∝ N -0.5 . Although for the quasi-random distribution of particles the error magnitude increases, the results of this analysis underline the robustness of TFD with respect to the particle disorder, with fitted coefficients similar to the uniform case in all scenarios of anisotropy.

; Q.R.: quasi-random). r 2 is the coefficient of determination. ER ASPHAD TFD Dist. λ D K β r 2 K β r 2 K β r

Transport through a heterogeneous medium

This test considers a two-dimensional aquifer with spatial variability of hydraulic properties (Fig. 9) composed of N c = 1500 × 300 unitary cells in Fig. 10b,c,d). Increasing the particle resolution above one particle per cell recovers most of the qualitative aspects of the concentration profile (N 0.8M and N 1.8M in Fig. 10b,c,d), and from here the magnitude of the peak concentrations appears to be determined by the specific properties of each SPH scheme. An aspect to note from the SPH results is that transitions towards low concentrations 

(∆ x , ∆ y ) = (1, 1)[m].

On the occurrence of negative concentrations 618

In general, SPH solvers displayed a reasonably good agreement with the ref-619 erence RWPT models for all scenarios of heterogeneity and dispersion anisotropy 620 (e.g., Fig. 11; Fig. 12). This is in itself a promising result for the method, tak-621 ing into account that RWPT is known to be a robust approach for simulating 622 transport through heterogeneous systems (e.g., [START_REF] Labolle | Random-walk simulation of transport in heterogeneous porous media: Local mass-conservation problem and implementation methods[END_REF]Lichtner 623 et al., 2002;[START_REF] Fernàndez-Garcia | Differences in the scale-dependence of dispersivity estimated from temporal and spatial moments in chemically and physically heterogeneous porous media[END_REF][START_REF] Salamon | A review and numerical assessment of the random walk particle tracking method[END_REF]. Still, some 624 simulations, particularly those with anisotropic dispersion, displayed negative 625 concentrations. The ER scheme's instabilities generate patterns of negative con-626 centrations throughout the entire domain, mostly surrounding the solute plume 627 and regardless of heterogeneity (e.g., Fig. 11e, f ; Fig. 12b). In the simulations with the highest dispersion anisotropy the method predicted negative concentrations of significant magnitude (as high as nearly C = -10 -1 ) in regions where every other approach yielded positive values (e.g., Fig. 10b, Fig. 13c).

ASPHAD produced concentrations without negative values for all scenarios of anisotropy and heterogeneity (e.g., Fig. 11h, i; Fig. 12c). Although the scheme displayed a high sensitivity to the particle disorder, specifically in scenarios with anisotropic dispersion, the results from this test suggest in a broad sense that the impact of this flaw might be minor for mild dispersion anisotropies and advection-dominated transport. The method still overpredicts peak concentrations for the scenarios of highest anisotropy (Fig. 11i, Fig. 13c), but with discrepancies nowhere close to the effects observed in the homogeneous test.

Nevertheless, it is worth reminding that ASPHAD might not actually produce the intended degree of local dispersion anisotropy under particle disorder, as seen in Section 3.1.2. Concentrations obtained with TFD are in agreement with the reference models, with some particles displaying negative values in scenarios of anisotropy (e.g., Fig. 11l; Fig. 12d). However, their occurrence appears as isolated events, not influencing the main solute plume. The origin of negative values in the TFD method can be two-fold. In the first place, homogeneous simulations exhibited low-magnitude negative concentrations for the case with 

Conclusions

This article reviewed three different SPH dispersion schemes compatible with anisotropic dispersion coefficients, focusing on their applicability to simulate solute transport through heterogeneous porous media. The analysis was motivated by a recurrent discussion in the literature where negative concentrations are reported in conservative simulations under anisotropic dispersion. This result poses a potential problem for the application of SPH to solute transport in porous media, where hydrodynamic dispersion is intrinsically anisotropic. Furthermore, the accurate representation of anisotropy is necessary for reactive transport modeling purposes because transverse mixing has been shown to control the amount and extent of reactions. In one of the integration methods (ER) the occurrence of negative concentrations is explained by an unphysical solute transfer from particles of low concentration to particles of high concentration.

This occurs for values of anisotropy above a relatively low threshold so it is likely for instabilities to develop in most practical scenarios. The artifact can influence local concentration gradients near plume limits, particularly in scenarios of high anisotropy and medium-to-low aquifer heterogeneity, where large transverse concentration gradients are likely to be preserved throughout simulations.

Two novel SPH formulations compatible with anisotropic dispersion coefficients were applied for the first time in heterogeneous porous media. A dispersion scheme based on a modified form of the isotropic SPH interpolator (ASPHAD) was shown to be strongly influenced by the particles' disorder, specifically in scenarios with anisotropy. This causes an overprediction of peak concentrations and underprediction of the longitudinal extent of solute plumes. This effect was highly visible in the homogeneous medium test. While simulating solute transport through a heterogeneous medium under advection-dominated conditions, in particular for scenarios of mild anisotropy, the shortcomings of the scheme were less obvious than in the homogeneous case when simply comparing concentration profiles, but the analysis of the domain-integrated mixing rate revealed that the overprediction of longitudinal concentration gradients produced a consistent overprediction of mixing, regardless of the degree of aquifer heterogeneity. Still, the scheme did not generate negative concentrations for any of the discussed conditions and it can potentially be considered for some porous media applications with mid-low dispersion anisotropy. A second alternative SPH interpolator based on a two-stage integration of dispersion (TFD) exhibits desirable numerical properties with a robust behavior when faced to the different conditions of particle distribution and dispersion anisotropy. The scheme always provided results in agreement with the reference solutions, although some challenges remain to be addressed. In particular, the method is known to be affected by a singularity near sharp concentration gradients. This has the potential to produce negative concentration values regardless of dispersion anisotropy. Effects of this kind exist in other SPH applications, and are usually handled by the introduction of artificial dissipation, which was not addressed in this study. Regardless, particles with negative concentration were rather isolated and of low magnitude, not influencing the main characteristics

  and ρab is an averaged density. Dab ij is the i, j component of the dispersion tensor averaged (typically harmonic) between particles a and J o u r n a l P r e -p r o o f Journal Pre-proof b. G ij ab is a term describing the kernel gradient defined as

  1. Non-uniform particle density Some special considerations are needed while implementing the discussed SPH schemes for dispersion, in the context of particles emulating the advection through a heterogeneous domain with velocities linearly interpolated from a divergence-free, steady velocity field. Particularly, dispersive fluxes between

  with floating point calculations introduces some 385 rounding error. Sigalotti et al. (2019) showed that the relative error for SPH 386 estimates A, following expressions of the form (5), is bounded by 387

  test case, results from SPH particles are interpolated 394 into a reference grid for the purposes of analysis and comparison with the refer-395 ence model. The interpolation towards the center of a cell c is performed from 396

  Anisotropic dispersion in a homogeneous mediumThis test considers the transport of a Gaussian injection through a homogeneous domain, already discussed in previous SPH literature[START_REF] Herrera | An assessment of particle methods for approximating anisotropic dispersion[END_REF] Avesani et al., 2015; Alvarado-Rodríguez et al., 2019;[START_REF] Klapp | Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume[END_REF].The flow is uniform, without changes in the relative position of particles, implying that neighbors and density are computed only once. The analytical solution C * is given by

Figure 2 :Figure 3 :

 23 Figure 2: Numerical error e R with respect to the analytical solution as a function of the kernel size, for the anisotropic dispersion of a Gaussian injection through homogeneous medium at reference time T = 300[d]. a) ER, b) ASPHAD and c) TFD. Simulations consider N = 300 × 300 particles with uniform distribution, and flow aligned with the x-axis.3.1.1. Influence of dispersion anisotropy429
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  are now influenced by the bands of negative values generated by the instability, 444 with a minimum concentration of C = -4.6 × 10 -5 . The TFD results (Fig. 3h) 445 J o u r n a l P r e -p r o o f Journal Pre-proof also present some negative values while moving away from the plume center, but 446 these are of a different nature. The minimum concentration is C = -9.8×10
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  This was shown, for example, in the work ofAlvarado-Rodríguez et al. (2019) 462 where patterns of negative values were visible while considering the flow aligned 463 with the x-axis, which is consistent with the results previously shown in Figure464(3c, d). To further expand on this topic, anisotropic simulations with all the 465 considered SPH schemes were also performed with the velocity vector forming 466 angles of θ ∈ {π/6, π/4} with respect to the x-axis (positive counterclockwise), 467 and a uniform distribution of particles. The results from these simulations (refer 468

469

  tween the flow and the particle lattice, more noticeably, in the cases with highest 470 anisotropy. The worst case condition for this method is seen while considering 471 θ = π/6. In this particular case, the flow orientation is not aligned with any of 472 the angles naturally formed by the uniform lattice of particles, as it occurs in 473 the cases with θ = 0 (particles aligned along the x-axis) or θ = π/4 (

Figure 4 :Figure 5 :

 45 Figure 4: Concentrations for the problem of Gaussian dispersion with uniform distribution of particles (N = 300 × 300), at the reference time T = 300[d], and diagonally aligned flow (θ = π/4). First column group results for all SPH schemes considering λ D = 10 (panels a, c, e) and second column for λ D = 100 (panels b, d, f ). Contour lines are drawn for C ∈ {0.4, 0.1, 10 -3 , 10 -5 } (solid: analytical, dotted: numerical). White bands (if present) represent negative values.

500Figure 6 :

 6 Figure 6: Concentrations for anisotropic dispersion at T = 300[d] with quasi-random distribution, N = 300 × 300 particles, and flow aligned with the x-axis. First column group numerical results for each solver with λ D = 10 and second column for λ D = 100. White bands (if present) indicate negative values.

Figure 7 :

 7 Figure 7: Numerical and analytical concentration profiles through the center of a Gaussian plume at time T = 300[d], considering N = 300 × 300, quasi-random distribution, and flow aligned with the x-axis. Panels a, b) present the longitudinal (x) and transverse (y) profiles, respectively, for dispersion anisotropy λ D = 10 and panels c, d) the analogous for λ D = 100.

Figure 8 :

 8 Figure 8: Minimum error simulations with respect to the number of particles, for all scenarios of dispersion anisotropy, with uniform (solid) and quasi-random (dashed) distribution of particles. SPH method is indicated in each panel. Panels a), c), e) present the γ factor, and panels b), d), f ) the corresponding error. Reference curves consider β = 4.

  The natural logarithm of the hydraulic conductivity Y (x) represents one individual realization of a sequential Gaussian simulation with zero mean and spherical variogram with correlation length I Y = 20∆ x . Heterogeneities are controlled by log-conductivity variances σ 2 Y ∈ {0.25, 1.00, 2.25} through the relation K(x) = exp (σ Y Y (x)). For each hydraulic conductivity distribution, groundwater flow is obtained from solving on the numerical grid the steady-state Darcy's equation ∇ • q = 0, where q = -K(x)∇H, and H is the hydraulic head. Flow is induced by a unit-mean hydraulic head gradient along the x-axis, by prescribing the hydraulic head values at the upstream and downstream aquifer boundaries. North and south aquifer boundaries are defined as impermeable. Divergence-free flow is verified for all degrees of heterogeneity. As before, solute transport simulations are performed for different ratios of dispersion anisotropy, setting α L = 0.05∆ x which leads to advection-dominated transport, with a field Péclet number of Pe = I Y /α L = 400. A rectangular solute plume is initially released near the aquifer inlet with uniform concentration C 0 . The plume size is d x × d y = 30∆ x × 200∆ y , with the lower left corner placed at (x 0 , y 0 ) = (15∆ x , 50∆ y ). To minimize the singularity near extremely sharp gradients for the TFD scheme, a slightly smoothed version of the initial condition is used (as in Biriukov and Price, 2018, see Appendix B). All SPH simulations begin with a uniform distribution of particles. Groundwater flow velocities are known at the cell faces and linearly interpolated to the particle positions. Particles leaving the aquifer are reinjected upstream by resetting the x-coordinate to zero and defining the y-coordinate from the intersection of a random number ξ r ∼ U (0, 1) with the normalized cumulative probability distribution of the inflow velocity, ensuring an entrance of particles that is statistically consistent with the non-uniform distribution of inflow velocities. Aquifer boundaries are surrounded by fixed SPH particles that compensate the loss of particle support while computing density near the borders. These fixed particles are defined as no-flux boundaries from the solute transport perspective (as in Wang et al., 2019). SPH results are compared with a high-resolution RWPT model, which in contrast, interprets particles as individual components J o u r n a l P r e -p r o o f Journal Pre-proof of a solute cloud (e.g., Salamon et al., 2006). In RWPT, the number of particles determines the accuracy of concentrations. The individual particle mass for the RWPT simulations is m R = C 0 V M /N R , where V M is the volume occupied by the solute injection and N R = 10 8 the number of particles. These parameters lead to a concentration resolution of C min = 6 × 10 -5 C 0 , estimated as the mass of one particle inside a flow-model cell. These parameters provide enough confidence to presume that the binning of solute particles is a reasonable proxy for the exact concentrations.

Figure 9 :

 9 Figure 9: Initial condition for heterogeneous aquifer with high spatial variability of hydraulic conductivity. Groundwater flow is from left to right and reference streamlines are initially spaced by 66 flow cells.

Figure 10 :Figure 11 :

 1011 Figure 10: Cell concentration profiles for different particle resolution in the aquifer with medium heterogeneity σ 2 Y = 1 and dispersion anisotropy λ D = 100, at time T = 300[d]. Horizontal sectioned line at C = 0.1 marks symmetric log scale towards negative values with linear threshold 10 -6 . Vertical grid in profiles correspond with grid in panel a), spaced by 30∆y. Arrows indicate peak concentration values at y = 240∆y for each particle resolution.
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Figure 12 :

 12 Figure 12: Cell concentrations for high heterogeneity aquifer at time T = 800[d]. Dispersion anisotropy is λ D = 10 and SPH models consider N = 1.8M particles and γ = 2. Black cells indicate negative values. Concentrations are shown until a minimum of C = 10 -5 .

Figure 13 :

 13 Figure 13: Grid concentration profiles at x = 800∆x for aquifer of low spatial variability (σ 2 Y = 0.25), N = 0.8M and γ = 2. Horizontal dashed line at C = 0.1 marks the beginning of a symmetric log-scale plot towards negative values with linear threshold 10 -6 . Scenario of dispersion anisotropy is indicated in each respective panel.

Figure 14 :

 14 Figure 14: Comparison of scalar dissipation rates obtained from the reference RWPT model (solid lines) and the SPH results (scatter). Simulations were performed with N = 0.8M particles and γ = 2. Each panel group the results for a given degree of heterogeneity and color codes group the degree of dispersion anisotropy.
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Journal Pre-proof problem can be conveniently reformulated as an equivalent conservative transport simulation (e.g., [START_REF] Saaltink | A mathematical formulation for reactive transport that eliminates mineral concentrations[END_REF][START_REF] Cirpka | Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state[END_REF][START_REF] De Simoni | A mixing ratios-based formulation for multicomponent reactive transport[END_REF]. Reaction rates can then be locally calculated from the mixing rate of the conservative component and a term characterizing the chemical system.

The domain-integrated mixing rate is also known as the scalar dissipation rate [START_REF] Le Borgne | Non-fickian mixing: Temporal evolution of the scalar dissipation rate in heterogeneous porous media[END_REF][START_REF] Engdahl | Scalar dissipation rates in non-conservative transport systems[END_REF],

which can be computed from the temporal derivative of the domain-integrated squared concentrations (left-hand side in eq. [START_REF] Tartakovsky | Smoothed particle hydrodynamics and its applications for multiphase flow J o u r n a l P r e -p r o o f Journal Pre-proof and reactive transport in porous media[END_REF], or as the domain-integrated mixing rate (right-hand side in eq. 30). This index can be used as a proxy representation of the integrated reaction rates under mixing-limited transport conditions. The relation shown in equation ( 30 The results (Fig. 14) indicate that for isotropic dispersion, regardless of heterogeneity, all SPH models would correctly predict integrated reaction rates.

Visible differences between schemes arise for anisotropic dispersion coefficients.

In particular, the ER method provides accurate results up to the anisotropy ratio λ D = 10, supporting the observation that for these cases concentration gradients are not strongly influenced by the instability. In contrast, the scheme deviates considerably from the reference when λ D = 100, with overprediction for the case of low heterogeneity and underprediction for high heterogeneity. The ASPHAD method consistently overpredicted the scalar dissipation rate for the highest anisotropy (λ D = 100). This stems from the overestimation of concentration gradients under scenarios of particle disorder. The TFD method, on the other hand, consistently exhibits the best agreement with the reference curves for all of the simulation scenarios, underlining the robustness of this method when faced with different conditions of dispersion anisotropy and aquifer heterogeneity. Overall, and in agreement with results from previous sections as well, the TFD scheme appears as a suitable alternative for modeling mixinglimited reactive transport, still with some challenges and improvements to be addressed in future developments.
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Journal Pre-proof of the solute plume and not affecting the mixing rate calculations, which displayed accurate and robust results for the various conditions of anisotropy and heterogeneity. In summary, the results of this work contribute to the advance of SPH as an alternative for modeling solute transport with anisotropic dispersion through heterogeneous porous media.

Appendix A. Scaling relation for kernel size

The number of neighbor particles within the smoothing length distance is

given by [START_REF] Dehnen | Improving convergence in smoothed particle hydrodynamics simulations without pairing instability[END_REF])

where V ν is the volume of the unit sphere in ν dimensions and mean particle size satisfies δ r = (m/ρ) 1/ν , being m particles mass and ρ the SPH density estimate. [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF] introduces the proportionality h ∝ N -1/β , with β > 0 a parameter that determines rate at which smoothing length decreases as the total number of particles increases. Further, by considering that the ratio between neighbors particles and h ν is proportional to the ratio of total particles per domain volume, and introducing the aforementioned scaling for the smoothing length, it is obtained

where β should satisfy β > ν in order to increase the number of neighbors as the total number of particles increase. Considering that both continuous and discrete SPH interpolation errors are approximately of the same order and introducing (A.2) yields β ∼ ν + 2/ψ, where ψ characterizes the influence of the particle distribution on the discrete interpolation error [START_REF] Zhu | Numerical convergence in smoothed particle hydrodynamics[END_REF]. For the best case scenario of uniform particle distribution ψ ≈ 1, which leads to the limit condition β ≥ ν + 2. Introducing a parameter K to the scaling in equation

where neither the value of K nor its exact dependence is known beforehand.

792

Using equation (A.1), parameter γ = h/δ r is obtained as

which can be expressed in terms of N by considering that N h = (h/H) ν N 794 [START_REF] Dehnen | Improving convergence in smoothed particle hydrodynamics simulations without pairing instability[END_REF]. This yields (A.6) where the cuotient between kernel characteristic distances has been replaced by 797 the inherent kernel aspect ratio κ ν .

Appendix B. Smoothed initial condition 799

The rectangular initial condition for the heterogeneous test case is smoothed 800 in both directions as the product of error functions

where l x , l y are smoothing distances in the x and y directions, respectively. An Daniel Fernàndez-Garcia : Writing -Original Draft, Supervision.
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