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A B S T R A C T

In the context of modeling solute transport through heterogeneous porous media, particle methods possess in-
herent advantages with respect to mesh-based (Eulerian) methods. In Smoothed Particle Hydrodynamics (SPH),
particles represent fluid volumes exchanging concentrations with their neighbors to emulate hydrodynamic
dispersion, and advection is simulated by the particles’ displacement. This crucially prevents problems that
are otherwise typically associated with Eulerian advection schemes (especially at high grid-Péclet numbers),
such as numerical diffusion. Despite the advantages of SPH, modeling dispersion with anisotropic coefficients
remains a challenge for the approach, with studies reporting unphysical negative concentrations in conservative
problems. This has likely hindered its practical use because dispersion is intrinsically anisotropic in porous
media. This article provides a review and numerical evaluation of SPH for simulating dispersion, focusing
on three formulations compatible with anisotropic dispersion coefficients. The analysis includes a scheme
for which negative concentrations have been formerly reported, plus two more recently developed methods
which are applied here for the first time to the problem of anisotropic dispersion in heterogeneous porous
media. The SPH schemes are tested under different degrees of dispersion anisotropy for both homogeneous
and heterogeneous velocity fields. The results indicate that the newer SPH schemes can produce accurate
results without negative concentrations while considering anisotropic dispersion, providing a valid alternative
to simulate solute transport through heterogeneous domains.
1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a formulation for solv-
ing continuous conservation equations based on particles. The method
was originally developed in the context of astrophysics (Lucy, 1977;
Gingold and Monaghan, 1977) and remains a popular alternative for
simulating problems with complex dynamics on a wide spectrum of
scientific and engineering applications (e.g., Monaghan and Gingold,
1983; Cleary and Monaghan, 1999; Springel, 2010; Monaghan, 2012;
Vacondio et al., 2012; Tartakovsky et al., 2015; Ye et al., 2019; Vacon-
dio et al., 2021). Due to its Lagrangian nature, SPH presents inherent
advantages for the simulation of solute transport through heteroge-
neous porous media with spatially variable flow velocities. These can
be challenging conditions for classical grid solvers when advection is
the locally dominant transport mechanism, yielding results that are
strongly affected by numerical diffusion (Cirpka et al., 1999; Herrera
et al., 2009; Boso et al., 2013; Benson et al., 2017). For reactive
transport, an accurate estimation of concentrations and gradients is
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needed because these quantities determine metrics of mixing and reac-
tion rates (e.g., Kitanidis, 1994; Cirpka and Valocchi, 2007; De Simoni
et al., 2007; Le Borgne et al., 2010; Fernàndez-Garcia and Sanchez-Vila,
2011). The SPH method is tightly connected to Kernel Density Esti-
mation (KDE), naturally leading to continuous concentrations for each
particle, which is attractive for the modeling of chemical reactions (e.g.,
Tartakovsky et al., 2007, 2009).

In the context of porous media, different applications of SPH have
illustrated the versatility of the method for a variety of reactive and
conservative transport processes. From a pore-scale perspective, the
method has been applied to the simulation of multi-phase flow (Ban-
dara et al., 2013; Kunz et al., 2015; Tartakovsky et al., 2015), the study
of hydrodynamic dispersion through granular media (e.g., Zhu and
Fox, 2001, 2002), reactive transport with mineral precipitation (e.g.,
Tartakovsky et al., 2007, 2008) and with kinetic models for biomass
growth (e.g., Tartakovsky et al., 2009). From a macroscopic point of
view, the method has been discussed for modeling variable-density
vailable online 7 December 2023
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flow (e.g., Basser et al., 2017, 2019), the transport of bacterial con-
centrations by chemotaxis (e.g., Avesani et al., 2016), and applied to
the simulation of solute transport through heterogeneous domains (e.g.,
Herrera et al., 2009; Boso et al., 2013). In particular, these last exam-
ples considered isotropic solute dispersion coefficients, and remarked
the ability of SPH to provide accurate results for complex transport con-
ditions, without the influence of numerical artifacts. However, macro-
scopic hydrodynamic dispersion is intrinsically anisotropic in porous
media, with transverse components (both in the horizontal and vertical
directions) much smaller than the longitudinal (Gelhar et al., 1992;
Lichtner et al., 2002). The degree of dispersion anisotropy should be
expected to cover a wide range of magnitudes in complex geological
formations. Studies have discussed the scale- and time-dependence of
dispersion parameters, and the influence on transport of hydraulic
aspects of the system such as the spatial variability of the medium
properties or the relative alignment of the flow direction with the
preferential structures of the solid matrix (e.g., Pickens and Grisak,
1981; Silliman and Simpson, 1987; Lichtner et al., 2002; Fernàndez-
Garcia et al., 2005). Furthermore, transverse dispersion plays a critical
role in mixing, which ultimately determines the outcome and extent
of reactive transport processes (e.g., Cirpka et al., 1999; Klenk and
Grathwohl, 2002; Fernàndez-Garcia et al., 2008; Rolle et al., 2009;
Hochstetler et al., 2013), hence, an accurate characterization of dis-
persion anisotropy is needed. This context underlines that if the SPH
method is to be considered for practical field-scale studies, it should
be verified that formulations of dispersion are able to properly handle
scenarios with anisotropic coefficients for a wide range of anisotropy
ratios. It is at this point where the method has encountered some
challenges that may have hindered its adoption. Particularly, simple
transport simulations in homogeneous porous media have reported
until recently the occurrence of unphysical negative concentrations
when considering anisotropic dispersion coefficients (e.g., Herrera and
Beckie, 2013; Avesani et al., 2015; Alvarado-Rodríguez et al., 2019;
Klapp et al., 2022). Therefore, the discussion has remained constrained
to these results and no applications have been reported in the literature
where the method is employed to simulate solute transport with more
realistic porous media configurations, simultaneously considering an
explicit representation of the medium heterogeneity and of dispersion
anisotropy.

This context motivates a review of the SPH method in order to
evaluate its potential for modeling anisotropic dispersion in hetero-
geneous domains. In this regard, the following major objectives have
been established for this work: (i) to understand the formulation and
numerical properties of SPH methods for dispersive transport, (ii) to
address the origin of negative concentrations observed in scenarios
of anisotropic dispersion, and (iii) to apply the SPH method to a
problem of solute transport through heterogeneous media considering
anisotropic transport coefficients. After an initial evaluation, three
different SPH schemes have been selected for discussion: the Español
and Revenga method (ER; Español and Revenga, 2003), Anisotropic
SPH for Anisotropic Diffusion (ASPHAD; Tran-Duc et al., 2016) and
Two First Derivatives (TFD; Biriukov and Price, 2018). In subsurface
applications, the ER scheme has been the common choice for simu-
lations with anisotropic dispersion and it is known to yield negative
concentrations (e.g., Herrera and Beckie, 2013; Alvarado-Rodríguez
et al., 2019; Klapp et al., 2022). Briefly, the scheme can reverse the
physical direction of dispersive fluxes in some sections within the
kernel, and the solute is then transported unphysically from low to high
concentration particles (see Tran-Duc et al., 2016; Biriukov and Price,
2018). This effect occurs for ratios of anisotropy exceeding a relatively
low threshold determined by the number of spatial dimensions, hence it
is very likely that the scheme will lead to instabilities for most practical
cases. Two novel alternative formulations, compatible with anisotropic
transport coefficients, have been recently proposed in the literature
after identifying the unphysical transport effect, reportedly leading to
2

results without negative concentrations. These formulations have not
been discussed yet for the transport of solutes through heterogeneous
porous media, and this work evaluates them for the first time for said
purpose. By means of a change of the coordinates system, the ASPHAD
scheme (Tran-Duc et al., 2016) transforms the anisotropic dispersion
equation into an equivalent isotropic form, which is then integrated
following a corrected version of the isotropic SPH method (Brookshaw,
1985). A different approach is taken in the TFD method (Biriukov and
Price, 2018), where a double SPH integration is performed: first to
compute the spatial concentration gradients and then to obtain the
divergence of dispersive fluxes. Furthermore, these authors provide a
comprehensive physical explanation for the origin of the instabilities
displayed by the ER scheme.

Two numerical experiments are conducted in order to evaluate
the performance of the selected SPH schemes, both of them exploring
different scenarios of dispersion anisotropy. Firstly, the anisotropic dis-
persion of a Gaussian plume in a homogeneous medium is revisited (as
in Herrera and Beckie, 2013; Avesani et al., 2015; Alvarado-Rodríguez
et al., 2019; Klapp et al., 2022) and compared with the available
analytical result. In the second numerical experiment, a solute is trans-
ported through a randomly heterogeneous aquifer. The focus is placed
on the SPH integration of dispersive transport and particle velocities
are simply interpolated from a pre-calculated steady, divergence-free
groundwater flow (as in Herrera et al., 2009; Boso et al., 2013). SPH
results from this test are compared with those from a high-resolution
Random Walk Particle Tracking (RWPT) model of the same problem,
which is assumed to represent the exact solution. The RWPT method
has a well-established trajectory in hydrogeology as a particle formula-
tion capable of providing results not influenced by numerical dispersion
in heterogeneous media (e.g., LaBolle et al., 1996; Lichtner et al., 2002;
Salamon et al., 2006; Fernàndez-Garcia et al., 2008; Le Borgne et al.,
2010; Boso et al., 2013).

The structure of this article is as follows. In Methods, a summary
of the SPH formulation is presented, together with the considered
SPH schemes and a discussion on numerical consistency. Then, the
Results and Discussion of numerical tests outline the performance of
each method and their applicability to the problem of anisotropic
dispersion for a variety of conditions likely to be found in aquifer
models. Finally, the Conclusions of this work underline the advantages
and challenges of the discussed SPH schemes for anisotropic transport
through heterogeneous domains.

2. Methods

2.1. Advection Dispersion Equation (ADE)

Solute transport is represented by the Advection Dispersion Equa-
tion (ADE) with spatially varying aquifer properties described at the
Darcy scale. The transport of an ideal non-reactive solute is assumed,
meaning that concentration influences neither fluid density nor viscos-
ity, without chemical reactions involved (Bear and Cheng, 2010). In
Lagrangian form, the ADE under incompressible groundwater flow can
be written as
𝑑𝐫
𝑑𝑡

=
𝐪
𝜙
, (1)

𝑑 (𝜙𝐶)
𝑑𝑡

= ∇ ⋅ (𝜙𝐃∇𝐶) , (2)

here 𝑑∕𝑑𝑡(⋅) is the total time derivative, 𝐫 is the spatial coordinate
vector for a particle’s position, 𝐪 = 𝜙𝐯 is the Darcy velocity, 𝜙 is
he medium porosity, 𝐯 is the macroscopic flow velocity and 𝐶 is the

solute concentration expressed as mass per unit water volume. The
hydrodynamic dispersion tensor is given by (Bear and Cheng, 2010)

𝐷𝑖𝑗 = (𝛼𝑇 |𝐯| +𝑚)𝛿𝑖𝑗 +
(

𝛼𝐿 − 𝛼𝑇
)
𝑣𝑖𝑣𝑗 , (3)

|𝐯|
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where 𝛼𝐿 and 𝛼𝑇 are the longitudinal and transverse dispersivities,
respectively, 𝑚 is the effective molecular diffusion (corrected for tor-
tuosity effects) and 𝛿𝑖𝑗 is the Kronecker delta. For simplicity, transport
is assumed in two dimensions for a single solute, without molecu-
lar diffusion and with unit porosity. In case of a spatially variable
porosity, the effect should be accounted for while computing SPH
quantities (e.g., Basser et al., 2019). Dispersion anisotropy is defined
here as 𝜆𝐃 = 𝐷𝑥𝑥∕𝐷𝑦𝑦 ≈ 𝛼𝐿∕𝛼𝑇 . In typical aquifer applications, 𝜆𝐃
ranges between 3 and 20 for horizontal planes and could be even higher
when considering the vertical transverse dispersivity (e.g., Gelhar et al.,
1992).

2.2. Smoothed Particle Hydrodynamics (SPH)

The SPH method discretizes the fluid as particles, each one carrying
physical properties such as mass, density and solute concentration. The
formulation begins by expressing an arbitrary continuous field 𝐴(𝐫)
as (Monaghan, 2005; Violeau, 2012)

𝐴(𝐫) = ∫𝛺
𝐴(𝐫′)𝛿

(

𝐫 − 𝐫′
)

𝑑𝐫′, (4)

where 𝛺 is the domain volume and 𝛿 is the Dirac delta function. The
Dirac delta is then approximated by a positive continuous symmetric
kernel function 𝑊 (|𝐫 − 𝐫′|, ℎ), with ℎ being a smoothing length. To-
gether with the number of particles, the smoothing length parameter
controls the accuracy and spatial resolution of the approximation. In
practical applications, the kernel function has a finite support volume
characterized by a distance 𝐻 , such that kernel density equals zero at
any distance higher than 𝐻 . Therefore, only a finite set of particles
contribute to the interpolation at a given point. Besides the positivity
and symmetry properties, the kernel function has a zeroth moment
equal to one, a first order moment equal to zero (due to symmetry),
and a non-zero second order moment. The latter is the source of the
continuous interpolation error (ℎ2) (Violeau, 2012; Sigalotti et al.,
2019). Continuous integrals are discretized on the set of particles,
leading to (Monaghan, 2005)

𝐴(𝐫𝑎) =

∑

𝑏

𝑚𝑏
𝜌𝑏
𝐴𝑏𝑊 (|𝐫𝑎 − 𝐫𝑏|, ℎ𝑎), (5)

where subscripts 𝑎 and 𝑏 denote the center and neighbor particles
respectively. Sums are performed over a finite set of  neighbors
within the support volume. For the remainder of the article, SPH sums
are assumed to always occur over the set of neighbors and  is not
explicitly indicated. 𝑚𝑏 and 𝜌𝑏 represent the mass and density of particle
𝑏, so their quotient is a measure of the volume associated with that
particle. Discretizing with particles introduces a second source of error
that scales as (−𝜓 ), where the exponent 𝜓 depends on the particle
distribution and quantifies the rate of decrease in statistical error for
an increasing number of neighbors (Zhu et al., 2015). For a uniform
particle distribution, this error decreases faster (𝜓 ≈ 1) than in the case
of disordered particles (𝜓 ≈ 0.5). Density is computed as (Monaghan,
2005)

𝜌𝑎 = 𝜌(𝐫𝑎) =
∑

𝑏
𝑚𝑏𝑊𝑎𝑏(ℎ𝑎), (6)

where 𝑊𝑎𝑏(ℎ𝑎) denotes the kernel function evaluated at distance 𝑟𝑎𝑏 =
|𝐫𝑎 − 𝐫𝑏| with a smoothing length ℎ𝑎. In this paper, the particle mass 𝑚𝑏
is always assumed to be the same for all particles.

2.2.1. Kernel
The kernel is usually a piecewise continuous function (Cleary and

Monaghan, 1999; Herrera and Beckie, 2013), being a common choice
the family of B-Splines (Schoenberg, 1946). Smoothing functions have
an associated residual error called the kernel bias, which is the fraction
of error that does not decrease further after increasing the number
of neighbor particles. The magnitude of the bias decreases with in-
creasing order of the B-Spline function, thus higher order kernels allow
3

Fig. 1. Fifth order B-Spline kernel and characteristic distances. (𝑎) Normalized shape
function 𝑤(𝑞), and (𝑏) normalized shape derivative 𝑤′(𝑞). 𝜎𝑊 is the standard deviation
of the kernel’s shape.

using a higher number of particles to improve accuracy (Biriukov and
Price, 2018). This study employs the normalized kernel formulation
by Dehnen and Aly (2012), defined as

𝑊 (𝐫̃, ℎ) =
𝑐𝜈

(

𝜅𝜈ℎ
)𝜈 𝑤 (𝑞) , (7)

where 𝐫̃ = 𝐫 − 𝐫′ is the vector difference between the center and
neighbor particle positions and 𝑤(𝑞) is a shape function normalized
to a unit support radius, with 𝑞 = |𝐫̃|∕(𝜅𝜈ℎ) the normalized kernel
coordinate. 𝑐𝜈 is a positive constant which makes the kernel integral
unitary and whose value depends on the number of spatial dimensions
𝜈; and 𝜅𝜈 = 𝐻∕ℎ is an aspect ratio specific to the kernel function.
From Eq. (7) follows that kernel gradients are expressed as (Violeau,
2012)

∇𝑊 (𝐫̃, ℎ) = 𝐹 (𝑞)𝐫̂, (8)

where 𝐹 (𝑞) is defined as the kernel scalar derivative

𝐹 (𝑞) =
𝑐𝜈

(

𝜅𝜈ℎ
)𝜈+1

𝑤′ (𝑞) , (9)

which is negative for typical kernel functions (Monaghan, 2005), and
𝐫̂ = 𝐫̃∕|𝐫̃| is the unit vector between particles. In this article, a fifth
order B-Spline kernel is used (Fig. 1)

𝑤(𝑞) = (1 − 𝑞)5+ − 6
(2
3
− 𝑞

)5

+
+ 15

( 1
3
− 𝑞

)5

+
, (10)

where the operator 𝑥+ stands for max(0, 𝑥). In two dimensions, this ker-
nel’s constants have values 𝑐2 = 37 ⋅ 7∕478𝜋 and 𝜅2 = 2.158131 (Dehnen
and Aly, 2012).

2.2.2. Errors and consistency
Both continuous and discrete interpolation errors are relevant for

the accuracy of SPH estimates. Zhu et al. (2015) discussed this topic



Advances in Water Resources 183 (2024) 104601R. Pérez-Illanes et al.

w
c
s
d
a
l

2

2

a
e
t
d
i
P

d

𝐺

w
𝐹
p
c
s
l
v
s
B
𝑎
i
b
a
i

w
o
t
a
B
f
c

1
w
w
g

𝐁

w
t

w

𝑓

considering density estimates. The authors argue that, as the total
number of particles tends to infinity, 𝑁 → ∞, it should be satisfied si-
multaneously that ℎ → 0 and  → ∞. Studies following said principles
have shown that numerical error decreases while increasing the particle
resolution (e.g., Sigalotti et al., 2016; Alvarado-Rodríguez et al., 2019).
Still, it has been a common practice in SPH to set the smoothing length
as proportional to the mean particle size 𝛿𝑟 = (𝑚∕𝜌)1∕𝜈 , that is, ℎ = 𝛾𝛿𝑟.
The parameter 𝛾 controls the number of neighbors within the kernel,
with a typically adopted value of 𝛾 = 1.2 (Cleary and Monaghan, 1999;
Herrera and Beckie, 2013; Tran-Duc et al., 2016). It is worth noting that
in order to achieve consistency (i.e., for the total interpolation error to
approach zero as one adds more particles), 𝛾 should actually increase as
the total number of particles increases. Otherwise, the discrete error at
the kernel scale remains constant and it is replicated more times as the
total number of particles increases (Zhu et al., 2015). From a modeling
perspective, definition of the smoothing length using a constant 𝛾 is
convenient due to its simplicity, but lacks theoretical rigor as 𝛾 is not
a function of the number of particles. In Appendix A it is shown that,
by introducing consistency principles, the following expression for 𝛾 as
a function of the total number of SPH particles can be obtained

𝛾(𝑁) = 1
𝜅𝜈

(


𝑉𝜈

)1∕𝜈
𝑁1∕𝜈−1∕𝛽 , (11)

here 𝑉𝜈 is the volume of the unit sphere,  is a proportionality
onstant, and 𝛽 is a positive exponent relating the scaling of the
moothing length with the number of particles ℎ ∝ 𝑁−1∕𝛽 . For two
imensional problems, 𝛽 ≥ 4 has been established as a reference for
uniform particle distribution, ensuring the compliance of the triple

imit for consistent scaling (for details refer to Appendix A).

.3. SPH methods for anisotropic dispersion

.3.1. Español & Revenga (ER)
This method has been the common choice in studies assessing

nisotropic dispersion with SPH (Herrera and Beckie, 2013; Avesani
t al., 2015; Alvarado-Rodríguez et al., 2019; Klapp et al., 2022). Nega-
ive concentrations have been reported while simulating the anisotropic
ispersion of a Gaussian plume in a homogeneous domain. The scheme
ntegrates dispersion as (Español and Revenga, 2003; Biriukov and
rice, 2018)
𝑑𝐶𝑎
𝑑𝑡

=
∑

𝑏

𝑚𝑏
𝜌̄𝑎𝑏

𝐶𝑏𝑎𝐷̄
𝑎𝑏
𝑖𝑗 𝐺

𝑖𝑗
𝑎𝑏 (12)

where 𝐶𝑏𝑎 = 𝐶𝑏 − 𝐶𝑎, and 𝜌̄𝑎𝑏 is an averaged density. 𝐷̄𝑎𝑏
𝑖𝑗 is the

𝑖, 𝑗 component of the dispersion tensor averaged (typically harmonic)
between particles 𝑎 and 𝑏. 𝐺𝑖𝑗𝑎𝑏 is a term describing the kernel gradient
efined as
𝑖𝑗
𝑎𝑏 = −

[

(𝜈 + 2)𝑟̂𝑖𝑎𝑏 𝑟̂
𝑗
𝑎𝑏 − 𝛿𝑖𝑗

] 𝐹𝑎𝑏
𝑟𝑎𝑏

, (13)

here 𝑟̂𝑖𝑎𝑏 = 𝑟𝑖𝑎𝑏∕𝑟𝑎𝑏 is the 𝑖th-component of the vector 𝐫̂𝑎𝑏 and 𝐹𝑎𝑏 =
(𝑞𝑎𝑏), with 𝑞𝑎𝑏 the normalized kernel coordinate distance 𝑞 between
articles 𝑎 and 𝑏. In Eq. (12), indexes 𝑖, 𝑗 follow the Einstein summation
onvention. The problem with this method lies in the term within
quared brackets in Eq. (13), which can adopt negative values in some
ocations within the kernel, depending on the components of the unit
ector 𝐫̂𝑎𝑏. This modifies the physical direction of dispersive flux which
hould be against the concentration gradient (Tran-Duc et al., 2016;
iriukov and Price, 2018). That is, assuming only one pair of particles
, 𝑏 for simplicity, for 𝐶𝑎 < 𝐶𝑏 and under proper physical conditions, it
s expected that 𝑑𝐶𝑎∕𝑑𝑡 > 0, which is satisfied as long as the product
etween dispersion and the term 𝐺𝑖𝑗𝑎𝑏 is positive. In two dimensions,
nd assuming a diagonal dispersion tensor, such condition translates
nto the inequality
𝐷𝑥𝑥 [

1 − (𝜈 + 2)(𝑟̂𝑥𝑎𝑏)
2] ≤ (𝜈 + 2)(1 − (𝑟̂𝑥𝑎𝑏)

2) − 1, (14)
4

𝐷𝑦𝑦
here it has been applied that (𝑟̂𝑥𝑎𝑏)
2 + (𝑟̂𝑦𝑎𝑏)

2 = 1. Limit cases can be
btained by considering the limit values of (𝑟̂𝑥𝑎𝑏)

2 ∈ {0, 1}, which yields
hat the scheme preserves physical dispersive flux when dispersion
nisotropy satisfies 𝜆𝐃 ∈ [1∕(𝜈 + 1), 𝜈 + 1] (Tran-Duc et al., 2016;
iriukov and Price, 2018). In reported applications of the ER method
or dispersion through porous media, the minimum (non-isotropic)
onsidered degree of anisotropy is 𝜆𝐃 = 10, which falls outside the

valid range for two dimensions. One question surrounding the results
obtained with this method is related to the spatial distribution of neg-
ative concentrations. In applications to homogeneous domains, bands
of negative values appear to be typically confined to regions far from
the main solute plume. However, no reports are available about the
impact that this artifact may have for smaller scales of concentration
and gradients, particularly in heterogeneous domains.

2.3.2. Anisotropic SPH for anisotropic diffusion (ASPHAD)
This method by Tran-Duc et al. (2016) stems from a change of

the coordinates system in the anisotropic dispersion equation, which
allows rewriting the problem in isotropic form. For spatially hetero-
geneous dispersion, this transformation involves the assumption that
differences in dispersion between neighboring particles are relatively
small. This allows taking the dispersion tensor outside the divergence
of fluxes in Eq. (2). A change of coordinates is performed, based on a
transformation matrix defined from the dispersion coefficients. Briefly,
the dispersion tensor is a positive definite symmetric matrix (Bear and
Cheng, 2010) and can be decomposed as 𝐃 = 𝐁𝐁𝑇 (LaBolle et al.,
996), where the superscript 𝑇 stands for transpose. The matrix 𝐁 is
ell known in the context of Random Walk Particle Tracking (RWPT),
here it is denoted as the displacement matrix. In two dimensions it is
iven by (Fernàndez-Garcia et al., 2005; Salamon et al., 2006)

=

[ 𝑣𝑥
|𝐯|

√

𝛼𝐿|𝐯| +𝑚 − 𝑣𝑦
|𝐯|

√

𝛼𝑇 |𝐯| +𝑚
𝑣𝑦
|𝐯|

√

𝛼𝐿|𝐯| +𝑚
𝑣𝑥
|𝐯|

√

𝛼𝑇 |𝐯| +𝑚

]

. (15)

Furthermore, the inverse of this matrix can be computed analytically
as

𝐁−1 =
⎡

⎢

⎢

⎣

1
√

𝛼𝐿|𝐯|+𝑚

𝑣𝑥
|𝐯|

1
√

𝛼𝐿|𝐯|+𝑚

𝑣𝑦
|𝐯|

− 1
√

𝛼𝑇 |𝐯|+𝑚

𝑣𝑦
|𝐯|

1
√

𝛼𝑇 |𝐯|+𝑚

𝑣𝑥
|𝐯|

⎤

⎥

⎥

⎦

. (16)

The coordinate transformation in ASPHAD is such that 𝐗 = 𝐁−1𝐱,
here 𝐗 is the position in the new frame of reference. This leads to

he following SPH scheme for dispersion (Tran-Duc et al., 2016),
𝑑𝐶𝑎
𝑑𝑡

= 2
∑

𝑏

𝑚𝑏
𝜌𝑏

𝐶𝑎𝑏
|

|

|

𝐁
−1
𝑎𝑏 𝐫̂𝑎𝑏

|

|

|

2

𝐹𝑎𝑏
𝑟𝑎𝑏

, (17)

where 𝐁
−1
𝑎𝑏 is the inverse displacement matrix (Eq. (16)) averaged

between particles 𝑎 and 𝑏, and 𝐶𝑎𝑏 = 𝐶𝑎 − 𝐶𝑏. Tran-Duc et al. (2016)
showed that this scheme may artificially increase dispersion in the
direction of smaller dispersivity (transverse), and reduce it in the direc-
tion of larger dispersivity (longitudinal). However, a major advantage
of this approach is that it is unconditionally stable (Brookshaw, 1985;
Biriukov and Price, 2018).

2.3.3. Two first derivatives (TFD)
This method is presented by Biriukov and Price (2018) with appli-

cation to heat transport, showing satisfactory results for an anisotropic
conduction tensor. It differs from the previous methods in that the
dispersive flux is first explicitly calculated and then used to compute
the divergence of fluxes. It is thus a two-stage SPH integration. The
𝑗th-component of the gradient of solute concentrations is expressed as

𝐺𝑗𝑎 = ∇𝑗𝑎𝐶𝑎 =
1

𝜌𝑎𝑓𝑎

∑

𝑏
𝑚𝑏𝐶𝑏𝑎∇𝑗𝑎𝑊𝑎𝑏(ℎ𝑎), (18)

here

𝑎 = 1 +
ℎ𝑎 ∑

𝑚𝑏
𝜕𝑊𝑎𝑏(ℎ𝑎) (19)
𝜈𝜌𝑎 𝑏 𝜕ℎ𝑎
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is a gradient correction which stems from considering a spatially vari-
able smoothing length following the relation ℎ𝜈𝑎 ∝ 1∕𝜌𝑎 (Price and
Monaghan, 2007; Springel, 2010). The temporal variation of concen-
tration at a particle is then calculated as the divergence of the product
between the dispersion tensor and Eq. (18), which yields

𝑑𝐶𝑎
𝑑𝑡

= 𝜌𝑎
∑

𝑏
𝑚𝑏

[

𝐷𝑎
𝑖𝑗𝐺

𝑖
𝑎∇

𝑗
𝑎𝑊𝑎𝑏(ℎ𝑎)

𝑓𝑎𝜌2𝑎
+
𝐷𝑏
𝑖𝑗𝐺

𝑖
𝑏∇

𝑗
𝑎𝑊𝑎𝑏(ℎ𝑏)

𝑓𝑏𝜌2𝑏

]

. (20)

As before, indexes 𝑖, 𝑗 follow the Einstein convention. A formulation
with a spatially variable smoothing length appears attractive in the
context of heterogeneous systems. Nevertheless, in order to restrict
the scope, in this work the kernel size is kept constant, and thus
𝑓𝑎 = 1. The TFD scheme has been shown to be mass-conservative
and stable. However, in the vicinity of sharp gradients, it may be
prone to introduce extreme positive or negative values. Effects of this
type are typically handled in SPH by artificial dissipation. That is, by
artificial viscosity in hydrodynamics (Monaghan and Gingold, 1983)
or by artificial conductivity in heat transport (Price, 2008; Biriukov
and Price, 2018). The challenge lies in the fact that dissipation terms
are only required in the vicinity of sharp gradients. Such corrections
have not been discussed in the context of solute transport and potential
analogies could be established with heat transport. Still, a definition
of this kind is outside the scope of this article and it is important to
stress that a formulation should be proposed with caution, in order
to preserve the main feature of particle methods in heterogeneous
systems, which is the absence of artificial dispersion.

2.4. Implementation

2.4.1. Non-uniform particle density
Some special considerations are needed while implementing the dis-

cussed SPH schemes for dispersion, in the context of particles emulating
the advection through a heterogeneous domain with velocities linearly
interpolated from a divergence-free, steady velocity field. Particularly,
dispersive fluxes between neighbor particles should be anti-symmetric
in order to satisfy mass conservation, this property being directly
influenced by the estimation of local densities (see Herrera et al., 2009).
Because the medium is heterogeneous, an initially uniform distribution
of particles will most likely end up evolving into a seemingly quasi-
random distribution (as in Herrera and Beckie, 2013). This means that
the estimated particle density will be non-uniform and most likely
evolving in time as particles are displaced, which is somewhat compara-
ble to introducing artificial divergence in the flow (from the perspective
of the SPH particles). Notice that the ER scheme (Eq. (12)) involves
an averaged density between each pair of neighboring particles, hence
the dispersive flux remains anti-symmetric. The same does not occur
with default ASPHAD (Eq. (17)) and TFD (Eq. (20)) if the schemes
are applied directly without any correction to the densities. In the
implementation of these methods, densities are also replaced with the
average between neighbors 𝜌̄𝑎𝑏, thus ensuring the anti-symmetry of
dispersive fluxes.

2.4.2. Temporal integration
Temporal integration is performed with an explicit scheme. An

adaptive time step based on dispersion, 𝛿𝐃𝑡 , is computed as the mini-
mum over all particles of the expression

𝛿𝐃𝑡 ≤ 𝐶𝑇
ℎ2

∑

𝑖𝐷𝑖𝑖
, (21)

ith 𝐶𝑇 = 0.1 (Herrera and Beckie, 2013). For heterogeneous experi-
ents, also the advection-limited time step 𝛿𝐯𝑡 is computed by imposing
𝐹𝐿 = 0.1 and using the maximum spatial velocities, that is

𝐯
𝑡 ≤ 𝐶𝐹𝐿 , (22)
5

max 𝑣𝑥∕𝛥𝑥 + max 𝑣𝑦∕𝛥𝑦 t
here 𝛥𝑥, 𝛥𝑦 are the flow grid sizes. Finally, time step is selected as the
most restrictive, i.e.,

𝛿𝑡 = min{𝛿𝐃𝑡 , 𝛿
𝐯
𝑡 }. (23)

Solute concentrations are then integrated explicitly as

𝐶 𝑡+𝛿𝑡𝑎 = 𝐶 𝑡𝑎 + 𝛿𝑡

(

𝑑𝐶𝑎
𝑑𝑡

)𝑡
, (24)

where the time derivative is computed with any of the SPH schemes
discussed previously.

2.4.3. Rounding error
The SPH implementation with floating point calculations introduces

some rounding error. Sigalotti et al. (2019) showed that the relative
error for SPH estimates 𝐴, following expressions of the form (5), is
bounded by
|

|

|

𝐴f l
𝑎 − 𝐴𝑎

|

|

|

|𝐴𝑎|
≤ 1

2
 𝜖, (25)

here 𝐴f l
𝑎 is the floating point representation of the SPH estimate and

> 0 is the machine epsilon. The latter is a property of the floating point
ystem and is the maximum number that satisfies 1 = 1+𝜖. Models were
mplemented here using 64 bit precision with 𝜖 = 2.220446 × 10−16.
xpression (25) shows that the relative rounding error is proportional
o the number of neighbor particles.

.4.4. Grid interpolation
In the heterogeneous test case, results from SPH particles are inter-

olated into a reference grid for the purposes of analysis and compari-
on with the reference model. The interpolation towards the center of
cell 𝑐 is performed from the set of SPH particles as (Herrera et al.,

009)

𝑐 =
1
𝜌𝑐


∑

𝑏
𝑚𝑏𝐶𝑏𝑊𝑐𝑏, (26)

here 𝜌𝑐 is the density computed at the cell center. Interpolations are
erformed with the same kernel size employed during simulations.

. Results and discussion

.1. Anisotropic dispersion in a homogeneous medium

This test considers the transport of a Gaussian injection through a
omogeneous domain, already discussed in previous SPH
iterature (Herrera and Beckie, 2013; Avesani et al., 2015; Alvarado-
odríguez et al., 2019; Klapp et al., 2022). The flow is uniform, without
hanges in the relative position of particles, implying that neighbors
nd density are computed only once. The analytical solution 𝐶∗ is given
y

𝐶∗(𝐫, 𝑡)
𝐶0

= 𝑑2

3
exp

[

−𝑥̃21 − 𝑦̃22 + 4𝑥̃𝑦̃3

8𝑡21 + 4𝑡𝑑22 + 2𝑑4

]

, (27)

where
1 = 2𝑡𝐷𝑦𝑦 + 𝑑2

2 = 2𝑡𝐷𝑥𝑥 + 𝑑2

3 = 𝑡𝐷𝑥𝑦

1 = 𝐷𝑥𝑥𝐷𝑦𝑦 −𝐷2
𝑥𝑦

2 = 𝐷𝑥𝑥 +𝐷𝑦𝑦

3 =
(

4𝑡21 + 2𝑡𝑑22 + 𝑑4
)1∕2 .

(28)

n the above expression, 𝐶0 is the maximum initial concentration,
hich is employed to express concentrations in dimensionless form,
̃ = 𝐶∕𝐶0. (𝑥̃, 𝑦̃) = (𝑥−𝑥0, 𝑦−𝑦0) are the relative coordinates with respect
o the plume center (𝑥 , 𝑦 ) = (0, 0). The parameters follow values taken
0 0
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Fig. 2. Numerical error 𝑒𝑅 with respect to the analytical solution as a function of the
kernel size, for the anisotropic dispersion of a Gaussian injection through homogeneous
medium at reference time 𝑇 = 300[d]. (𝑎) ER, (𝑏) ASPHAD and (𝑐) TFD. Simulations
consider 𝑁 = 300 × 300 particles with uniform distribution, and flow aligned with the
𝑥-axis.

from Herrera and Beckie (2013). The initial width of the Gaussian
plume is 𝑑 = 44[m] and the domain size is 𝐿 × 𝐿 = 2000 × 2000[m × m].
Flow velocity is constant, |𝐯| = 1[m∕d], following a vector that forms the
angle 𝜃 with respect to the 𝑥-direction, although for most simulations
is simply considered to be aligned with the 𝑥-axis. Dispersion neglects
molecular diffusion, with longitudinal dispersivity 𝛼𝐿 = 10[m] and
anisotropies 𝜆𝐃 ∈ {1, 10, 100}. The number of SPH particles is modified
within the range 𝑁 ∈ [200 × 200, 600 × 600], and the 𝛾 parameter for
the smoothing length varies within the range 𝛾 ∈ [1, 7]. Transport
simulations end at a reference time 𝑇 = 300[d]. Results are mainly dis-
cussed with a focus on uniform and quasi-random particle distributions,
and simulations with a random distribution are taken as a reference
worst case scenario. The quasi-random distribution is generated by
applying a random perturbation 𝜉𝑟 ∼ 𝑈 (−𝛿𝑟∕2, 𝛿𝑟∕2) to the coordinates
of the uniform distribution, with 𝛿𝑟 being the original spacing between
particles. Differences between the numerical and analytical results are
quantified by means of the Root Mean Squared Error (RMSE),

𝑒𝑅 =

√

√

√

√
1
𝑁

𝑁
∑

𝑎

(

𝐶∗
𝑎 − 𝐶𝑎

)2. (29)

3.1.1. Influence of dispersion anisotropy
Because each SPH scheme is formulated differently it is expected

that their respective responses to anisotropic dispersion will be dif-
ferent. Fig. 2 depicts the error for all scenarios of anisotropy with
varying kernel size, for a reference uniform distribution of particles,
and flow aligned with the 𝑥-axis. In all cases, there is a smoothing
that minimizes the error with some influence of anisotropy on the
6

Fig. 3. Concentrations for the problem of Gaussian dispersion with uniform distribution
of particles (𝑁 = 300 × 300), at the reference time 𝑇 = 300[d], and flow aligned with
the 𝑥-axis. First column group results for all SPH schemes considering 𝜆𝐃 = 10 (panels
𝑎, 𝑐, 𝑒, 𝑔) and second column for 𝜆𝐃 = 100 (panels 𝑏, 𝑑, 𝑓 , ℎ). Contour lines are drawn for
𝐶̃ ∈ {0.4, 0.1, 10−3 , 10−5} (solid: analytical, dotted: numerical). White bands (if present)
represent negative values.

optimal size. The ER scheme’s results are influenced by negative con-
centrations for the considered values of anisotropy, in concordance
with the results reported in the literature (Fig. 3𝑐, 𝑑). Both ASPHAD
and TFD are free of negative concentrations for anisotropy 𝜆𝐃 = 10
(Fig. 3𝑒, 𝑔 respectively), with some differences in the small-scale spatial
distribution of concentrations. Particularly, TFD appears to generate
a more elliptical distribution for contours 𝐶̃ ∼ 10−5, but in general
both schemes are in good agreement with the analytical reference.
Increasing the anisotropy to 𝜆𝐃 = 100 leads to some peculiar results.
In particular, the concentration contours in the ER method (Fig. 3𝑑)
are now influenced by the bands of negative values generated by the
instability, with a minimum concentration of 𝐶̃ = −4.6 × 10−5. The
TFD results (Fig. 3ℎ) also present some negative values while moving
away from the plume center, but these are of a different nature. The
minimum concentration is 𝐶̃ = −9.8 × 10−16, which is of the order of
numerical precision. Furthermore, it has been noticed that reducing
the kernel size (smaller number of neighbors in Eq. (25)) eliminates
the effect. It has been detected that negative concentrations can be
generated from very small differences (numerical precision) in the
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Table 1
Errors in homogeneous simulations with dispersion anisotropy, for different angles of
alignment 𝜃 between the flow direction and the 𝑥-axis. Table shows the value of 𝛾 that
lead to the minimum error 𝑒𝑅, considering 𝑁 = 300 × 300 and uniform distribution of
particles.
𝜆𝐃 𝜃 ER ASPHAD TFD

𝛾 𝑒𝑅 𝛾 𝑒𝑅 𝛾 𝑒𝑅

10
0 4.5 0.00013 1.4 0.00205 3.6 0.00062
𝜋∕6 4.5 0.00015 1.3 0.00420 3.6 0.00062
𝜋∕4 4.5 0.00015 1.4 0.00299 3.6 0.00062

100
0 4.2 0.00032 1.3 0.00063 3.6 0.00056
𝜋∕6 4.2 0.00035 2.4 0.01202 3.6 0.00056
𝜋∕4 4.2 0.00036 1.1 0.00434 3.6 0.00056

gradients following the direction of higher dispersivity near regions of
zero concentration, only in scenarios of extreme anisotropy.

For this numerical problem, studies have discussed simulations with
non-zero diagonal terms in the dispersion tensor (e.g., Herrera and
Beckie, 2013; Avesani et al., 2015; Alvarado-Rodríguez et al., 2019;
Klapp et al., 2022). These occur when the flow velocity vector is not
aligned with the main axes of the reference coordinates (as seen in
Eq. (3)), and is a condition to be expected in heterogeneous flow
systems. At this point, it should be remarked that the relative alignment
of the flow does not explain the occurrence of negative concentrations
observed in results from the ER scheme while considering anisotropic
dispersion. This was shown, for example, in the work of Alvarado-
Rodríguez et al. (2019) where patterns of negative values were visible

Fig. 4. Concentrations for the problem of Gaussian dispersion with uniform distribution
of particles (𝑁 = 300 × 300), at the reference time 𝑇 = 300[d], and diagonally aligned
flow (𝜃 = 𝜋∕4). First column group results for all SPH schemes considering 𝜆𝐃 = 10
(panels 𝑎, 𝑐, 𝑒) and second column for 𝜆𝐃 = 100 (panels 𝑏, 𝑑, 𝑓 ). Contour lines are
drawn for 𝐶̃ ∈ {0.4, 0.1, 10−3 , 10−5} (solid: analytical, dotted: numerical). White bands
(if present) represent negative values.
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while considering the flow aligned with the 𝑥-axis, which is consistent
with the results previously shown in Figure (3𝑐, 𝑑). To further expand
on this topic, anisotropic simulations with all the considered SPH
schemes were also performed with the velocity vector forming angles
of 𝜃 ∈ {𝜋∕6, 𝜋∕4} with respect to the 𝑥-axis (positive counterclockwise),
and a uniform distribution of particles. The results from these simula-
tions (refer to Table 1) show that the ASPHAD scheme is sensitive to the
alignment between the flow and the particle lattice, more noticeably,
in the cases with highest anisotropy. The worst case condition for this
method is seen while considering 𝜃 = 𝜋∕6. In this particular case, the
flow orientation is not aligned with any of the angles naturally formed
by the uniform lattice of particles, as it occurs in the cases with 𝜃 = 0
(particles aligned along the 𝑥-axis) or 𝜃 = 𝜋∕4 (diagonally aligned
particles), leading to a noticeable increase in errors. This suggest that
in cases of high anisotropy, the approximation of dispersion provided
by ASPHAD will perform best in cases that the flow is aligned with the
particles, although in any case a non-zero flow orientation increases
the magnitude of errors obtained with this method (e.g., Fig. 4𝑑). In
contrast, anisotropic simulations performed with the ER (Fig. 4𝑎, 𝑏) and
TFD (Fig. 4𝑒, 𝑓 ) schemes are robust to the relative alignment of the
flow. With these methods, errors remain practically unaffected while
modifying the flow orientation (Table 1) for both magnitudes of dis-
persion anisotropy, also preserving the previously observed agreement
between the numerical and analytical concentration contours.

3.1.2. Errors and the particle distribution
The relative position of particles influences the rate at which the

discrete error decreases while increasing the number of neighbors (Zhu
et al., 2015). The case of a uniform distribution is an idealized scenario
unlikely to occur in practical applications (e.g., Herrera and Beckie,
2013), thus understanding the performance of SPH schemes for differ-
ent particle distributions is of relevance. The results indicate that all
methods yield higher error in scenarios of particle disorder (Fig. 5).
Errors obtained from ASPHAD show relatively large magnitudes for a

Fig. 5. Numerical error 𝑒𝑅 for different particle distributions, with respect to the kernel
size, for the problem of Gaussian dispersion in a homogeneous medium. Simulations
consider 𝑁 = 300 × 300, flow aligned with the 𝑥-axis, and errors computed at the
reference time 𝑇 = 300[d]. First column group results for isotropic dispersion (panels
𝑎, 𝑐, 𝑒) and second column for anisotropy 𝜆𝐃 = 100 (panels 𝑏, 𝑑, 𝑓 ). SPH method is
indicated in each panel.
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Fig. 6. Concentrations for anisotropic dispersion at 𝑇 = 300[d] with quasi-random
distribution, 𝑁 = 300 × 300 particles, and flow aligned with the 𝑥-axis. First column
group numerical results for each solver with 𝜆𝐃 = 10 and second column for 𝜆𝐃 = 100.
White bands (if present) indicate negative values.

quasi-random particle distribution (similar to the random case) for the
highest dispersion anisotropy (Fig. 5𝑑). The same does not occur with
the ER (Fig. 5𝑎, 𝑏) and TFD (Fig. 5𝑒, 𝑓 ) methods which are able to pre-
serve clear differences with respect to the worst case scenario regardless
of anisotropy. Furthermore, the contour maps of anisotropic simula-
tions with quasi-random particle distribution show that ER (Fig. 6𝑎, 𝑏)
and TFD (Fig. 6𝑒, 𝑓 ) yield results which are consistent with the uniform
case (Fig. 3). With this last scheme, the simulation of highest anisotropy
now presents a more evident pattern of negative values, reaching a
minimum concentration of 𝐶̃ = −4 × 10−7, illustrating the influence
of the particle disorder on error propagation. Regardless, it is clear
that the method is robust with respect to the distribution of particles,
leading to an accurate representation of concentration profiles (Fig. 7).
Contours predicted by ASPHAD, in contrast, are highly impacted by the
particle disorder (Fig. 6𝑐, 𝑑). The effect was discussed in Tran-Duc et al.
(2016), but only considering ratios of anisotropy of up to 𝜆𝐃 = 10. In
this case, numerical peak concentration is ≈ 14% higher than the ref-
erence solution (Fig. 7𝑎, 𝑏). Even more drastical discrepancies arise for
anisotropy 𝜆 = 100, where the peak concentration is now ≈ 53% higher
8

𝐃

Fig. 7. Numerical and analytical concentration profiles through the center of a
Gaussian plume at time 𝑇 = 300[d], considering 𝑁 = 300 × 300, quasi-random
distribution, and flow aligned with the 𝑥-axis. Panels (𝑎, 𝑏) present the longitudinal (𝑥)
and transverse (𝑦) profiles, respectively, for dispersion anisotropy 𝜆𝐃 = 10 and panels
(𝑐, 𝑑) the analogous for 𝜆𝐃 = 100.

than the analytical model (Fig. 7𝑐, 𝑑), also with major differences in the
longitudinal extent of the plume (i.e., the actual anisotropy appears to
be markedly lower than intended). These results indicate that ASPHAD
will overpredict concentration gradients in scenarios of anisotropy and
disordered particle distribution. Still, it remains to be seen whether this
effect will be equally relevant in simulations where the main transport
mechanism is the advection of particles, which is discussed in a later
section.

3.1.3. Number of particles and consistency
The parameters of simulations that yielded the minimum error,

considering the flow aligned with the 𝑥-axis, are discussed as a function
of the total number of particles, in order to characterize the consis-
tency of SPH schemes. As outlined previously, it should be satisfied
that as the number of particles increases, kernel sizes decrease while
simultaneously increasing the number of neighbors (Zhu et al., 2015;
Sigalotti et al., 2016). Expression (11) relates the kernel size with
these principles of consistent scaling. The trend of the minimum-error
𝛾 for each SPH method, with respect to the number of particles is
shown in Fig. 8, and compared with the reference scaling for two-
dimensional domains (𝛽 = 4 in Eq. (11)). Overall, the ER and TFD
schemes display an increasing value of 𝛾 for increasing number of
particles, almost independently from the dispersion anisotropy, which
leads to a consistent decrease in error for both uniform and quasi-
random distributions of particles (Fig. 8𝑏 and 𝑓 , respectively). Errors
Table 2
Parameters of expression (11) obtained from fitting 𝛾 and 𝑁 of the minimum error homogeneous simulations. Fitting is performed individually
for each combination of dispersion anisotropy and particle distribution (Uni: uniform; Q.R.: quasi-random). 𝑟2 is the coefficient of determination.
Dist. 𝜆𝐃 ER ASPHAD TFD

 𝛽 𝑟2  𝛽 𝑟2  𝛽 𝑟2

Uni
1 2.72 3.52 0.91 2.70 3.61 0.99 0.46 4.39 0.99
10 2.03 3.64 0.98 32.9 2 – 0.79 3.85 0.99
100 0.56 4.26 0.97 24.7 2 – 0.93 3.77 0.99

Q.R.
1 284 2.08 0.01 0.04 8.11 0.82 0.31 4.87 0.95
10 43.6 2.48 0.41 2.36 2.68 0.33 1.08 3.80 0.93
100 266 2.05 0.01 3.62 3.04 0.80 0.33 4.79 0.98
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Fig. 8. Minimum error simulations with respect to the number of particles, for all
scenarios of dispersion anisotropy, with uniform (solid) and quasi-random (dashed)
distribution of particles. SPH method is indicated in each panel. Panels (𝑎), (𝑐), (𝑒)
present the 𝛾 factor, and panels (𝑏), (𝑑), (𝑓 ) the corresponding error. Reference curves
consider 𝛽 = 4.

obtained from ASPHAD (Fig. 8𝑑) decay while increasing the number
of particles only in scenarios of isotropic dispersion. In anisotropic
conditions, the minimum error is always obtained for the same value of
𝛾 in cases with uniform particle distribution, regardless of the particle
resolution (Fig. 8𝑐). In the quasi-random case, this parameter displays
more variability, although, in any case, the error remains insensitive
to the resolution in anisotropic simulations (Fig. 8𝑑). The 𝛾 values
from simulations with minimum error are fitted to expression (11)
with coefficients shown in Table 2. The determination coefficients for
simulations performed with TFD were always higher than 𝑟2 = 0.93,
confirming that the scheme follows the scaling from Eq. (11), with error
decaying consistently with the proportionality 𝑒𝑅 ∝ 𝑁−0.5. Although
for the quasi-random distribution of particles the error magnitude
increases, the results of this analysis underline the robustness of TFD
with respect to the particle disorder, with fitted coefficients similar to
the uniform case in all scenarios of anisotropy.

3.2. Transport through a heterogeneous medium

This test considers a two-dimensional aquifer with spatial variability
of hydraulic properties (Fig. 9) composed of 𝑁𝑐 = 1500 × 300 uni-
tary cells (𝛥𝑥, 𝛥𝑦) = (1, 1)[m]. The natural logarithm of the hydraulic
conductivity 𝑌 (𝐱) represents one individual realization of a sequential
Gaussian simulation with zero mean and spherical variogram with
correlation length 𝐼𝑌 = 20𝛥𝑥. Heterogeneities are controlled by log-
conductivity variances 𝜎2𝑌 ∈ {0.25, 1.00, 2.25} through the relation
𝐾(𝐱) = exp

(

𝜎𝑌 𝑌 (𝐱)
)

. For each hydraulic conductivity distribution,
groundwater flow is obtained from solving on the numerical grid the
steady-state Darcy’s equation ∇ ⋅ 𝐪 = 0, where 𝐪 = −𝐾(𝐱)∇, and 
is the hydraulic head. Flow is induced by a unit-mean hydraulic head
9

Fig. 9. Initial condition for heterogeneous aquifer with high spatial variability of
hydraulic conductivity. Groundwater flow is from left to right and reference streamlines
are initially spaced by 66 flow cells.

gradient along the 𝑥-axis, by prescribing the hydraulic head values at
the upstream and downstream aquifer boundaries. North and south
aquifer boundaries are defined as impermeable. Divergence-free flow
is verified for all degrees of heterogeneity. As before, solute transport
simulations are performed for different ratios of dispersion anisotropy,
setting 𝛼𝐿 = 0.05𝛥𝑥 which leads to advection-dominated transport,
with a field Péclet number of Pe = 𝐼𝑌 ∕𝛼𝐿 = 400. A rectangular
solute plume is initially released near the aquifer inlet with uniform
concentration 𝐶0. The plume size is 𝑑𝑥 × 𝑑𝑦 = 30𝛥𝑥 × 200𝛥𝑦, with
the lower left corner placed at (𝑥0, 𝑦0) = (15𝛥𝑥, 50𝛥𝑦). To minimize
the singularity near extremely sharp gradients for the TFD scheme,
a slightly smoothed version of the initial condition is used (as in
Biriukov and Price, 2018, see Appendix B). All SPH simulations begin
with a uniform distribution of particles. Groundwater flow velocities
are known at the cell faces and linearly interpolated to the particle
positions. Particles leaving the aquifer are reinjected upstream by
resetting the 𝑥-coordinate to zero and defining the 𝑦-coordinate from
the intersection of a random number 𝜉𝑟 ∼ 𝑈 (0, 1) with the normalized
cumulative probability distribution of the inflow velocity, ensuring an
entrance of particles that is statistically consistent with the non-uniform
distribution of inflow velocities. Aquifer boundaries are surrounded by
fixed SPH particles that compensate the loss of particle support while
computing density near the borders. These fixed particles are defined
as no-flux boundaries from the solute transport perspective (as in Wang
et al., 2019). SPH results are compared with a high-resolution RWPT
model, which in contrast, interprets particles as individual components
of a solute cloud (e.g., Salamon et al., 2006). In RWPT, the number
of particles determines the accuracy of concentrations. The individual
particle mass for the RWPT simulations is 𝑚𝑅 = 𝐶0𝑉𝑀∕𝑁𝑅, where 𝑉𝑀 is
the volume occupied by the solute injection and 𝑁𝑅 = 108 the number
of particles. These parameters lead to a concentration resolution of
𝐶min = 6 × 10−5𝐶0, estimated as the mass of one particle inside a flow-
model cell. These parameters provide enough confidence to presume
that the binning of solute particles is a reasonable proxy for the exact
concentrations.

3.2.1. Particle resolution and peak concentrations
SPH simulations performed with different particle resolution reveal

the influence of this parameter on the accuracy of peak concentrations.
This is particularly relevant in cases of medium-to-low aquifer het-
erogeneity and high dispersion anisotropy, where strong concentration
gradients can remain persistently throughout the simulation. Three
degrees of particle resolution are considered, 𝑁 ∈ {0.2M, 0.8M, 1.8M},
which translates into averaged densities of 𝜌̄ ∈ {0.4, 1.8, 4} parti-
cles per flow-model cell, respectively. Herrera et al. (2009) reported
results for a similar problem considering isotropic dispersion and a
reference density of 𝜌̄ = 8 particles per cell. Notice that the particle
resolution not only influences the accuracy of SPH schemes from a
dispersion perspective (as in the homogeneous test case), but also
determines the sampling of the groundwater flow velocities, the latter
being independent from the selected dispersion scheme. To illustrate,
the case of medium variability 𝜎2 = 1, and the highest dispersion
𝑌
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Fig. 10. Cell concentration profiles for different particle resolution in the aquifer with
medium heterogeneity 𝜎2𝑌 = 1 and dispersion anisotropy 𝜆𝐃 = 100, at time 𝑇 = 300[d].
Horizontal sectioned line at 𝐶̃ = 0.1 marks symmetric log scale towards negative values
with linear threshold 10−6. Vertical grid in profiles correspond with grid in panel (𝑎),
spaced by 30𝛥𝑦. Arrows indicate peak concentration values at 𝑦 = 240𝛥𝑦 for each
particle resolution.

anisotropy (𝜆𝐃 = 100) is considered for discussion (Fig. 10). The
particle resolution determines the accuracy of the concentration profile.
The lowest-resolution case leads to oversmoothed concentrations in
comparison to the reference result, regardless of the selected SPH
solver (𝑁0.2M in Fig. 10𝑏, 𝑐, 𝑑). Increasing the particle resolution above
one particle per cell recovers most of the qualitative aspects of the
concentration profile (𝑁0.8M and 𝑁1.8M in Fig. 10𝑏, 𝑐, 𝑑), and from here
the magnitude of the peak concentrations appears to be determined by
the specific properties of each SPH scheme. An aspect to note from the
SPH results is that transitions towards low concentrations are always
less abrupt than the reference RWPT model, due to the intrinsically
continuous nature of SPH. Notice, for instance, in the shaded areas of
Figure (10𝑏, 𝑐, 𝑑), that all SPH solvers predicted non-zero concentrations
regardless of the particle resolution, while simultaneously displaying a
good agreement with the reference peak concentration in the cases with
higher resolution. The exception to this remark is the ER scheme, which
displays negative values within said region (Fig. 10𝑏).
10
3.2.2. On the occurrence of negative concentrations
In general, SPH solvers displayed a reasonably good agreement

with the reference RWPT models for all scenarios of heterogeneity
and dispersion anisotropy (e.g., Fig. 11; Fig. 12). This is in itself
a promising result for the method, taking into account that RWPT
is known to be a robust approach for simulating transport through
heterogeneous systems (e.g., LaBolle et al., 1996; Lichtner et al., 2002;
Fernàndez-Garcia et al., 2005; Salamon et al., 2006). Still, some simula-
tions, particularly those with anisotropic dispersion, displayed negative
concentrations. The ER scheme’s instabilities generate patterns of neg-
ative concentrations throughout the entire domain, mostly surrounding
the solute plume and regardless of heterogeneity (e.g., Fig. 11𝑒, 𝑓 ;
Fig. 12𝑏). In the simulations with the highest dispersion anisotropy
the method predicted negative concentrations of significant magnitude
(as high as nearly 𝐶̃ = −10−1) in regions where every other approach
yielded positive values (e.g., Fig. 10𝑏, Fig. 13𝑐). ASPHAD produced
concentrations without negative values for all scenarios of anisotropy
and heterogeneity (e.g., Fig. 11ℎ, 𝑖; Fig. 12𝑐). Although the scheme
displayed a high sensitivity to the particle disorder, specifically in
scenarios with anisotropic dispersion, the results from this test sug-
gest in a broad sense that the impact of this flaw might be minor
for mild dispersion anisotropies and advection-dominated transport.
The method still overpredicts peak concentrations for the scenarios of
highest anisotropy (Fig. 11𝑖, Fig. 13𝑐), but with discrepancies nowhere
close to the effects observed in the homogeneous test. Nevertheless, it is
worth reminding that ASPHAD might not actually produce the intended
degree of local dispersion anisotropy under particle disorder, as seen
in Section 3.1.2. Concentrations obtained with TFD are in agreement
with the reference models, with some particles displaying negative
values in scenarios of anisotropy (e.g., Fig. 11𝑙; Fig. 12𝑑). However,
their occurrence appears as isolated events, not influencing the main
solute plume. The origin of negative values in the TFD method can be
two-fold. In the first place, homogeneous simulations exhibited low-
magnitude negative concentrations for the case with highest dispersion
anisotropy, rooted in the propagation of numerical rounding errors. The

Fig. 11. Cell concentrations for low heterogeneity aquifer (𝜎2𝑌 = 0.25). Columns group
results by dispersion anisotropy 𝜆𝐃, for the reference model and all SPH solvers. Results
correspond to 𝑇 = 800[d] with 𝑁 = 0.8M particles and 𝛾 = 2. Black cells indicate
negative values. Dashed white line marks the profile shown in Fig. 13. Concentrations
are shown until a minimum of 𝐶̃ = 10−5.
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Fig. 12. Cell concentrations for high heterogeneity aquifer at time 𝑇 = 800[d].
Dispersion anisotropy is 𝜆𝐃 = 10 and SPH models consider 𝑁 = 1.8M particles and
𝛾 = 2. Black cells indicate negative values. Concentrations are shown until a minimum
of 𝐶̃ = 10−5.

second source of negative concentration values is the known response
to sharp concentration gradients. Depending on the medium hetero-
geneity, fluid stretching can rapidly enhance concentration gradients.
A particle with high concentration and traveling on a fast streamline,
could be suddenly surrounded by low concentration particles, creating
the conditions for the singular behavior. This can occur independently
of the dispersion anisotropy and some particles with negative values
could be expected even in scenarios of isotropic dispersion. Anisotropy
plays a role because it ultimately controls the magnitude of gradients
in the transverse direction. In any case, this problem differs both
by cause and by significance from the case of ER, where negative
concentration values originate from a known unphysical behavior of
the scheme. In simulations with this method considering anisotropic
dispersion, approximately 40% of the particles presented negative val-
ues persistently in time. The TFD scheme is fundamentally stable for
anisotropic dispersion, with a reported singularity near sharp gradients
which needs further research for proper handling. Similar issues exist in
other SPH applications ultimately requiring some form of dissipation to
regulate the abrupt response (e.g., Monaghan and Gingold, 1983; Price,
2008). The medium heterogeneity modulates the sudden generation of
strong concentration gradients eventually leading to the occurrence of
isolated particles with negative values.

3.2.3. Potential for mixing-controlled reactive transport
A direct potential application for the SPH schemes assessed in this

paper is reactive transport modeling. Under certain assumptions, a
reactive transport problem can be conveniently reformulated as an
equivalent conservative transport simulation (e.g., Saaltink et al., 1998;
Cirpka and Valocchi, 2007; De Simoni et al., 2007). Reaction rates
can then be locally calculated from the mixing rate of the conserva-
tive component and a term characterizing the chemical system. The
domain-integrated mixing rate is also known as the scalar dissipation
rate (Le Borgne et al., 2010; Engdahl et al., 2013),

𝜒(𝑡) = −1 𝑑 𝐶2𝑑𝛺 = ∇𝑇𝐶𝐃∇𝐶𝑑𝛺, (30)
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2 𝑑𝑡 ∫𝛺 ∫𝛺
Fig. 13. Grid concentration profiles at 𝑥 = 800𝛥𝑥 for aquifer of low spatial variability
(𝜎2𝑌 = 0.25), 𝑁 = 0.8M and 𝛾 = 2. Horizontal dashed line at 𝐶̃ = 0.1 marks the
beginning of a symmetric log-scale plot towards negative values with linear threshold
10−6. Scenario of dispersion anisotropy is indicated in each respective panel.

which can be computed from the temporal derivative of the domain-
integrated squared concentrations (left-hand side in Eq. (30)), or as
the domain-integrated mixing rate (right-hand side in Eq. (30)). This
index can be used as a proxy representation of the integrated reaction
rates under mixing-limited transport conditions. The relation shown
in Eq. (30) remains valid for cases with zero solute flux through the
domain boundaries (refer to Le Borgne et al., 2010, for a discussion),
as is the case in the previously shown heterogeneous simulations. The
index 𝜒(𝑡) is employed here while comparing SPH results with the refer-
ence RWPT models, in order to assess from an integral perspective the
potential of SPH for simulating mixing-controlled reactive transport in
heterogeneous systems. A reference RWPT scalar dissipation rate is ob-
tained for each combination of dispersion anisotropy and heterogeneity
by numerically evaluating the temporal derivative of the domain-
integrated squared concentrations. From the SPH results, the index is
obtained by evaluating the domain-integrated mixing rate at different
instants of the simulation. The scalar dissipation rate is discussed in
non-dimensional form, 𝜒 = 𝜒𝜏∕𝛺, where 𝜏 = 𝐼𝑌 ∕𝐯̄ is the characteristic
advection timescale of the porous medium, with 𝐯̄ the domain-averaged
flow velocity. Concentrations in Eq. (30) are considered dimensionless.
The results (Fig. 14) indicate that for isotropic dispersion, regardless
of heterogeneity, all SPH models would correctly predict integrated
reaction rates. Visible differences between schemes arise for anisotropic
dispersion coefficients. In particular, the ER method provides accurate
results up to the anisotropy ratio 𝜆𝐃 = 10, supporting the observation
that for these cases concentration gradients are not strongly influenced
by the instability. In contrast, the scheme deviates considerably from
the reference when 𝜆𝐃 = 100, with overprediction for the case of
low heterogeneity and underprediction for high heterogeneity. The AS-
PHAD method consistently overpredicted the scalar dissipation rate for
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Fig. 14. Comparison of scalar dissipation rates obtained from the reference RWPT
model (solid lines) and the SPH results (scatter). Simulations were performed with
𝑁 = 0.8M particles and 𝛾 = 2. Each panel group the results for a given degree of
heterogeneity and color codes group the degree of dispersion anisotropy.

the highest anisotropy (𝜆𝐃 = 100). This stems from the overestimation
of concentration gradients under scenarios of particle disorder. The TFD
method, on the other hand, consistently exhibits the best agreement
with the reference curves for all of the simulation scenarios, underlining
the robustness of this method when faced with different conditions
of dispersion anisotropy and aquifer heterogeneity. Overall, and in
agreement with results from previous sections as well, the TFD scheme
appears as a suitable alternative for modeling mixing-limited reactive
transport, still with some challenges and improvements to be addressed
in future developments.

4. Conclusions

This article reviewed three different SPH dispersion schemes com-
patible with anisotropic dispersion coefficients, focusing on their ap-
plicability to simulate solute transport through heterogeneous porous
media. The analysis was motivated by a recurrent discussion in the
literature where negative concentrations are reported in conservative
simulations under anisotropic dispersion. This result poses a potential
problem for the application of SPH to solute transport in porous media,
where hydrodynamic dispersion is intrinsically anisotropic. Further-
more, the accurate representation of anisotropy is necessary for reactive
transport modeling purposes because transverse mixing has been shown
to control the amount and extent of reactions. In one of the integration
methods (ER) the occurrence of negative concentrations is explained
by an unphysical solute transfer from particles of low concentration
to particles of high concentration. This occurs for values of anisotropy
above a relatively low threshold so it is likely for instabilities to
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develop in most practical scenarios. The artifact can influence local
concentration gradients near plume limits, particularly in scenarios
of high anisotropy and medium-to-low aquifer heterogeneity, where
large transverse concentration gradients are likely to be preserved
throughout simulations. Two novel SPH formulations compatible with
anisotropic dispersion coefficients were applied for the first time in
heterogeneous porous media. A dispersion scheme based on a modified
form of the isotropic SPH interpolator (ASPHAD) was shown to be
strongly influenced by the particles’ disorder, specifically in scenarios
with anisotropy. This causes an overprediction of peak concentrations
and underprediction of the longitudinal extent of solute plumes. This
effect was highly visible in the homogeneous medium test. While
simulating solute transport through a heterogeneous medium under
advection-dominated conditions, in particular for scenarios of mild
anisotropy, the shortcomings of the scheme were less obvious than in
the homogeneous case when simply comparing concentration profiles,
but the analysis of the domain-integrated mixing rate revealed that
the overprediction of longitudinal concentration gradients produced a
consistent overprediction of mixing, regardless of the degree of aquifer
heterogeneity. Still, the scheme did not generate negative concentra-
tions for any of the discussed conditions and it can potentially be
considered for some porous media applications with mid-low dispersion
anisotropy. A second alternative SPH interpolator based on a two-stage
integration of dispersion (TFD) exhibits desirable numerical proper-
ties with a robust behavior when faced to the different conditions
of particle distribution and dispersion anisotropy. The scheme always
provided results in agreement with the reference solutions, although
some challenges remain to be addressed. In particular, the method
is known to be affected by a singularity near sharp concentration
gradients. This has the potential to produce negative concentration
values regardless of dispersion anisotropy. Effects of this kind exist in
other SPH applications, and are usually handled by the introduction of
artificial dissipation, which was not addressed in this study. Regardless,
particles with negative concentration were rather isolated and of low
magnitude, not influencing the main characteristics of the solute plume
and not affecting the mixing rate calculations, which displayed accurate
and robust results for the various conditions of anisotropy and hetero-
geneity. In summary, the results of this work contribute to the advance
of SPH as an alternative for modeling solute transport with anisotropic
dispersion through heterogeneous porous media.
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Fig. B.1. Concentrations from TFD one time step after injection for sharp (𝑎) and
smoothed (𝑏) initial conditions. Dispersion anisotropy is 𝜆𝐃 = 10, 𝑁 = 0.8M and 𝛾 = 2. In
panel (𝑎) negative concentrations are shown in black. Minimum value is 𝐶̃ = −6.3×10−5.

Appendix A. Scaling relation for kernel size

The number of neighbor particles within the smoothing length
distance is given by (Dehnen and Aly, 2012)

ℎ = 𝑉𝜈ℎ
𝜈
( 𝜌
𝑚

)

(A.1)

where 𝑉𝜈 is the volume of the unit sphere in 𝜈 dimensions and the mean
particle size satisfies 𝛿𝑟 = (𝑚∕𝜌)1∕𝜈 , being 𝑚 the particle mass and 𝜌 the
SPH density estimate. Zhu et al. (2015) introduced the proportionality
ℎ ∝ 𝑁−1∕𝛽 , with 𝛽 > 0 a parameter that determines the rate at which the
smoothing length decreases as the total number of particles increases.
Further, by considering that the ratio between the neighbor particles
and ℎ𝜈 is proportional to the ratio of total particles per domain volume,
and introducing the aforementioned scaling for the smoothing length,
it is obtained

 ∝ 𝑁1−𝜈∕𝛽 (A.2)

where 𝛽 should satisfy 𝛽 > 𝜈 in order to increase the number of neigh-
bors as the total number of particles increases. Considering that both
the continuous and discrete SPH interpolation errors are approximately
of the same order and introducing (A.2) yields 𝛽 ∼ 𝜈 + 2∕𝜓 , where 𝜓
characterizes the influence of the particle distribution on the discrete
interpolation error (Zhu et al., 2015). For the best case scenario of
uniform particle distribution 𝜓 ≈ 1, which leads to the limit condition
𝛽 ≥ 𝜈 + 2. Introducing a parameter  to the scaling in Eq. (A.2) yields

 = 𝑁1−𝜈∕𝛽 , (A.3)

where neither the value of  nor its exact dependence is known
beforehand. Using Eq. (A.1), the parameter 𝛾 = ℎ∕𝛿𝑟 is obtained as

𝛾 = ℎ
( 𝜌 )1∕𝜈

=
(

ℎ
)1∕𝜈

, (A.4)
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𝑚 𝑉𝜈
which can be expressed in terms of  by considering that ℎ =
(ℎ∕𝐻)𝜈  (Dehnen and Aly, 2012). This yields

𝛾 = ℎ
𝐻

(


𝑉𝜈

)1∕𝜈
. (A.5)

Introducing Eq. (A.3), it is finally obtained

𝛾(𝑁) = 1
𝜅𝜈

(


𝑉𝜈

)1∕𝜈
𝑁1∕𝜈−1∕𝛽 , (A.6)

where the quotient between the kernel characteristic distances has been
replaced by the inherent kernel aspect ratio 𝜅𝜈 .

Appendix B. Smoothed initial condition

The rectangular initial condition for the heterogeneous test case is
smoothed in both directions as the product of error functions

𝐶̃(𝐱, 𝑡0) =
1
4

[

erf
(

𝑥
𝑙𝑥

)

− erf
(

𝑥 − 𝑑𝑥
𝑙𝑥

)]

⋅

[

erf
(

𝑦
𝑙𝑦

)

− erf
( 𝑦 − 𝑑𝑦

𝑙𝑦

)]

, (B.1)

where 𝑙𝑥, 𝑙𝑦 are smoothing distances in the 𝑥 and 𝑦 directions, respec-
tively. An example of the singularity near sharp gradients of the TFD
scheme is shown in Fig. B.1.
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