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Abstract

Symbolic regression (SR) is the study of algorithms that automate the search for analytic expressions that fit data.
While recent advances in deep learning have generated renewed interest in such approaches, the development of
SR methods has not been focused on physics, where we have important additional constraints due to the units
associated with our data. Here we present Φ-SO, a physical symbolic optimization framework for recovering
analytical symbolic expressions from physics data using deep reinforcement learning techniques by learning units
constraints. Our system is built, from the ground up, to propose solutions where the physical units are consistent by
construction. This is useful not only in eliminating physically impossible solutions but also because the
grammatical rules of dimensional analysis enormously restrict the freedom of the equation generator, thus vastly
improving performance. The algorithm can be used to fit noiseless data, which can be useful, for instance, when
attempting to derive an analytical property of a physical model, and it can also be used to obtain analytical
approximations of noisy data. We test our machinery on a standard benchmark of equations from the Feynman
Lectures on Physics and other physics textbooks, achieving state-of-the-art performance in the presence of noise
(exceeding 0.1%) and show that it is robust even in the presence of substantial (10%) noise. We showcase its
abilities on a panel of examples from astrophysics.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Regression (1914); Astronomy data modeling
(1859); Algorithms (1883)

1. Introduction

Galileo famously intuited in Opere Il Saggiatore (Galilei 1623)
that the book of the Universe “è scritto in lingua matematica”
(i.e., it is written in mathematical language). Ever since, it has
been a central concern of physics to attempt to explain the
properties of nature in mathematical terms, by proposing
or deriving mathematical expressions that encapsulate our
measurements from experiment and observation. This approach
has proven to be immensely powerful. Through trial and error
over the centuries, the great masters of physics have developed
and bequeathed us a rich toolbox of techniques that have
allowed us to understand the world and build our modern
technological civilization. But now, thanks to the development
of modern deep learning networks, there is hope that this
endeavor could be accelerated by making use of the fact that
machines are able to survey a vastly larger space of trial
solutions than an unaided human.

Of course, since the beginning of the computer revolution,
many methods have been developed to fit coefficients of linear
or nonlinear functions to data (see, e.g., Press et al. 2007).
While such approaches are undoubtedly very useful, the
procedures we wish to discuss in the present contribution are
more general, in the sense that they aim to find the functions
themselves, as well as any necessary fitting coefficients. In
particular, we wish to infer a free-form symbolic analytical
function ⟶f : n  that fits y= f (x) given (x, y) data. In

computer science, these procedures are generally referred to as
symbolic regression (SR).

1.1. Motivations from Physics and Big Data

Although there are multiple demonstrations of the capabil-
ities of SR in physics (e.g., Wu & Tegmark 2019; Liu &
Tegmark 2021; Liu et al. 2021; Reinbold et al. 2021; DiPietro
& Zhu 2022; Lemos et al. 2022; Bartlett et al. 2023) and
astrophysics (e.g., Wadekar et al. 2020; Delgado et al. 2022;
Matchev et al. 2022; Shao et al. 2022; Wong & Cranmer 2022;
Desmond et al. 2023; Wadekar et al. 2023), to date, SR has
never been used to discover new physical laws from
astrophysical measurements. Yet this may change thanks to
new observational missions and surveys such as Gaia (Gaia
Collaboration et al. 2016), Euclid (Laureijs et al. 2011), LSST
(Collaboration 2009; Željko et al. 2019), and SKA (Carilli &
Rawlings 2004). With these and other large surveys, our field is
entering a new era of data abundance, and there is considerable
excitement at the possibility of identifying new empirical laws
from these unprecedentedly rich and intricate data sets that
could eventually lead to the discovery of new physics.
However, the colossal amount of data also presents significant
conceptual challenges. Although deep learning will allow us to
extract valuable information from large surveys, it is both
blessed and plagued by the underlying neural networks that are
one of its most potent components. Neural networks are
flexible and powerful enough to model any physical system
(that can be described as a Lebesgue integrable function, Lu
et al. 2017) and work in high dimensions, but they
unfortunately largely consist of non-interpretable black boxes.
Clearly, interpretability and intelligibility are of great impor-
tance in physics, which begs the question, How can one
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harness information from these large data sets while retaining
their ability to interpret and connect with theory? After training
a deep neural network to fit a data set, can one open the black
box, to understand the physics modeled inside?

1.2. SR

SR addresses these issues by producing compact, inter-
pretable, and generalizable models. Indeed, the goal is to find
very simple prescriptions such as Newton’s law of universal
gravitation that can well explain a vast number of experiments
and observations. There are many advantages to discovering
physical laws in the form of succinct mathematical expressions
rather than large numerical models:

1. Compactness: SR methods can produce extremely
compact models, e.g., with expressions containing ∼101

symbols (La Cava et al. 2021), which is on a par with the
typical length of expressions in the Feynman Lectures on
Physics (Feynman et al. 1971), for example, which is of
16 (with the higher end of SR methods producing
expressions well below a length of 103). In contrast,
numerical models, such as neural networks, typically rely
on many more parameters. This makes the models
computationally inexpensive to run and in principle also
enables SR to correctly recover the exact underlying
mathematical expression of a data set using much less
data than traditional machine-learning approaches
(Wilstrup & Kasak 2021) and with a robustness toward
noise even for perfect model recovery (La Cava et al.
2021; Reinbold et al. 2021).

2. Generalization: In addition, unless the target equations
consist of arbitrarily long polynomials, the compact
expressions produced by SR are less prone to overfitting
on measurement errors and are much more robust and
reliable outside of the fitting range provided by the data
than large numerical models, showing overall much
better generalization capabilities as demonstrated in
Sahoo et al. (2018), Wilstrup & Kasak (2021), Kamienny
& Lamprier (2022), and Kamienny et al. (2022; we will
provide an example of this in Section 5.5). This makes
SR a potentially powerful tool for discovering the most
concise and general representation of the measurements.

3. Intelligibility and interpretability: Since the models
produced by SR consist of mathematical expressions,
their behavior is intelligible to us, unlike large numerical
models. This is of enormous value in physics (Wu &
Tegmark 2019) as SR models may enable one to connect
newly discovered physical laws with theory and make
subsequent theoretical developments. More broadly, this
approach fits into the increasing push toward intelligible
(Sabbatini & Calegari 2022), explainable (Arrieta et al.
2020), and interpretable (Murdoch et al. 2019) machine-
learning models, which is especially important in fields
where such models can affect human lives.3,4

However, although the prospect of using SR for discovering
new physical laws may be very appealing, it is also extremely
challenging to implement. It is useful to consider the difficulty
of this problem if one were to approach it in a naive way.
Suppose in the trial analytic expressions, we allow for an

expression length of 35 symbols (as we will do below), and that
there are 15 different variables or operations (e.g., x, +, −, ×, /,
sin, log, ...) to choose from for each symbol (which is on a par
with what we will do below). A naive brute force attempt to fit
the data set might then have to consider up to 1535≈ 1.5× 1041

trial solutions, which are obviously vastly beyond our
computational means to test against the data at the present
day or at any time in the foreseeable future, making SR an NP
hard (nondeterministic polynomial time) problem (Virgolin &
Pissis 2022). Furthermore, one has to account for the
optimization of free constants in the proposed expressions.
The obvious conclusion one draws from these considerations is
that SR requires one to develop highly efficient strategies to
prune poor guesses.

1.3. Physical SR

There are multiple approaches to SR (detailed in Section 2)
that are capable of generating accurate analytical models.
However, in the context of physics, we have the additional
requirement that our equations must be balanced in terms of
their physical units, as otherwise, the equation is simply
nonsensical, irrespective of whether it gives a good fit to the
numerical values of the data. Although powerful, to the best of
our knowledge, all of the available SR approaches spend most
of their time exploring a search space where the immense
majority of candidate expressions are unphysical in terms of
units and thus often end up producing unphysical models (with
the exception of approaches in which variables are rendered
dimensionless beforehand as discussed in Section 3.2). A very
simple solution to this problem would have been to use an
existing SR code, and check post hoc whether the proposed
solutions obey that constraint. Not only does that constitute an
immense waste of time and computing resources, which could
render many interesting SR tasks impossible, it also makes a
significant fraction of the resulting best analytical models
unusable and uninterpretable. We note that for the sake of
clarity, throughout this paper we refer to a system of unique
quantities such as physical dimensions {L, M, T, I, Θ, N, J},
i.e., with physical units {m, kg, s, A, K, mol, cd} a subset
thereof, or problem-specific quantities such as {L, V, ρ, P, v},
i.e., with physical units {m, m3, kg m−3, Pa, m · s−1} as units5.
At first glance, one could think of units constraints as severe

restrictions that limit the capabilities of SR as they would
prevent the generation of unphysical intermediary expressions.
However, in this work, we show that respecting physical
constraints actually helps improve SR performance not only in
terms of interpretability but also in accuracy by guiding the
exploration of the space of solutions toward exact analytical
laws. This is consistent with the studies of Kammerer et al.
(2020) and Petersen et al. (2021a, 2021b), who found that using
in situ constraints during analytical expression generation is
much more efficient as it vastly reduces the search space of trial
expressions (though we note that incorporating such constraints
in those frameworks would not be straightforward as one would
need to recompute the whole relational graph representing an
analytical expression and its underlying units constraints each
time a new symbol is added).
Here we present our physical symbolic optimization frame-

work (Φ-SO), which was designed from the beginning to

3 https://www.congress.gov/bill/117th-congress/house-bill/6580/
4 https://artificialintelligenceact.eu/

5 Although this can also be extended to systems with nonphysical quantities,
such as {scalar, vector, matrix} or even {dollars, capita, annum}.
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incorporate and take full advantage of information on physical
units during SR by storing and managing information related to
dimensional analysis. This addresses, in part, the combinatorial
challenge discussed above in Section 1.2. Our Φ-SO frame-
work includes the unit constraints in situ during the equation
generation process, such that only equations with balanced
units are proposed by construction, thus also greatly reducing
the search space as illustrated in Figure 1.

Although our framework could be applied to virtually any
one of the SR approaches described in Section 2, we chose to
implement our algorithm in PyTorch (Paszke et al. 2019,
currently the most popular deep learning library in research,6

building our method from scratch yet using some of the
mathematical principles and key strategies pioneered in the
state-of-the-art deep SR (DSR) framework proposed in
Petersen et al. (2021a) and Landajuela et al. (2021b), which
relies on reinforcement learning via a risk-seeking policy
gradient (which is based on Rajeswaran et al. 2017).

In the present study, we develop a foundational symbolic
embedding for physics that enables the entire expression tree
graph to be tackled, as well as local units constraints. Unlike
previous attempts to consider units in which data sets were
rendered dimensionless before applying standard SR techni-
ques (Udrescu & Tegmark 2020; Matchev et al. 2022; Keren
et al. 2023), our approach allows us to anticipate the required
units for the subsequent symbol to be generated in a partially
composed mathematical expression. By adopting this approach,
we not only focus on training a neural network to generate
increasingly precise expressions, as in Petersen et al. (2021a),

but we also generate labels of the necessary units and actively
train our neural network to adhere to such constraints. In
essence, our method equips the neural network with the ability
to learn to select the appropriate symbol in line with local units
constraints.
To the best of our knowledge, such a framework was never

built before. This constitutes the first step in our planned
research program of building a powerful general-purpose SR
algorithm for astrophysics and other physical sciences. Our aim
here is to present the algorithm to the community, show its
workings, and its potential, while leaving concrete astrophy-
sical research applications to future studies.
This study is organized as follows. We first provide a brief

overview of the recent SR literature in Section 2. Our Φ-SO
framework is described in detail in Section 3, in Section 4 we
apply it to a benchmark of 120 equations from the Feynman
Lectures on Physics (Feynman et al. 1971) and compare it to 17
other popular SR algorithms, reporting state-of-the-art perfor-
mance. In Section 5, we showcase Φ-SO’s capabilities on a
panel of astrophysical test cases and perform an ablation study.
Finally, in Sections 6 and 7, we discuss the results and draw
our conclusions.

2. Related Works—A Brief Survey of Modern SR

SR has traditionally been tackled using genetic programming
where a population of candidate mathematical expressions is
iteratively improved through operations inspired by natural
evolution such as natural selection, crossover, and mutation.
This type of approach includes the well-known Eureqa
software (Schmidt & Lipson 2009, 2011; see Graham et al.
2013 for a benchmark of Eureqa’s capabilities on astrophysical

Figure 1. Illustration of the symbolic expression search space reduction enabled by our in situ physical units prior. We represent paths (in prefix notation) leading to
expressions with physically possible units (in red), a sample of the paths that lead to expressions with unphysical units (in black) with other unphysical paths redacted
for readability summarized with dotted lines and their total number. Here we consider the recovery of a velocity v using a library of symbols /+{ }v x t, , cos, , ,0 , where
v0 is a velocity, x is a length, and t is a time (limiting ourselves to five symbol long expressions for readability). This reduces the search space from 268 expressions to
only six.

6 https://paperswithcode.com/trends
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test cases), as well as more recent works (Stephens 2015;
Cava et al. 2019; La Cava et al. 2019; Virgolin et al. 2019;
Cranmer et al. 2020; Cranmer 2020; Kommenda et al. 2020; de
Franca & Aldeia 2021; Virgolin et al. 2021). In addition, SR
has been implemented using various methods ranging from
brute force to (un-)guided Monte Carlo, all the way to
probabilistic searches (McConaghy 2011; Jin et al. 2019;
Kammerer et al. 2020; Brence et al. 2021; Bartlett et al. 2023),
as well as through problem simplification algorithms (Luo et al.
2022; Tohme et al. 2023).

Given the great successes of deep learning techniques in
many other fields, it is not surprising that they have now been
applied to SR, and now challenge the reign of Eureqa-type
approaches (La Cava et al. 2021; Matsubara et al. 2022).
Multiple methods for incorporating neural networks into SR
have been developed, ranging from powerful problem
simplification schemes (Cranmer et al. 2020; Udrescu &
Tegmark 2020; Udrescu et al. 2020), to end-to-end SR methods
where a neural network is trained in a supervised manner to
map the relationship between data sets and their corresponding
symbolic functions (Biggio et al. 2020; Aréchiga et al. 2021;
Biggio et al. 2021; Alnuqaydan et al. 2022; Becker et al. 2022;
d’Ascoli et al. 2022; Kamienny et al. 2022; Vastl et al. 2022;
Bendinelli et al. 2023; Kamienny et al. 2023), all the way to
incorporating symbols into neural networks and sparsely fitting
them to enable interpretability or to recover a mathematical
expression (Brunton et al. 2016; Martius & Lampert 2017;
Ouyang et al. 2018; Sahoo et al. 2018; Kim et al. 2020; Panju
& Ghodsi 2020; Valle & Haddadin 2021; Zheng et al. 2022).
See La Cava et al. (2021), Makke & Chawla (2022), and
Angelis et al. (2023) for recent reviews of SR algorithms.

While some of the aforementioned algorithms excel at
generating very accurate symbolic approximations, the rein-
forcement learning-based deep SR framework proposed in
Petersen et al. (2021a) is the new standard for exact symbolic
function recovery, particularly in the presence of noise (La
Cava et al. 2021; Matsubara et al. 2022). This has resulted in a
number of studies in the literature built on this framework
(Landajuela et al. 2021a, 2021a; Landajuela et al. 2021b;
Petersen et al. 2021b; Kim et al. 2021; DiPietro & Zhu 2022;
Du et al. (2022; Landajuela et al. 2022; Usama & Lee 2022;
Zheng et al. 2022).

3. Method

Considering the success of deep reinforcement learning
methods in accurately recovering exact symbolic expressions,
which is particularly important in the field of physics where
precise physical law recovery is crucial, we have chosen to
incorporate this methodology into the machine-learning comp-
onent of our physical SR approach. In Section 3.1, we describe
how we generate analytical expressions from a recurrent neural
network (RNN). Section 3.2 provides details about the
algorithm we use to generate in situ units constraints, which
are used to teach the RNN dimensional analysis rules and help
reduce the search space. In Section 3.3, we describe the
reinforcement learning strategy we adopted to make our RNN
not only produce accurate expressions but also physically
meaningful ones. Finally, we give computational details
regarding our physical symbolic optimization implementation
(PhySO) in Section 3.4.

3.1. Generating Symbolic Expressions

Symbolic expressions can be regarded as binary trees where
each node represents a symbol of the expression in the library
of available symbols, i.e., an input variable (e.g., x, t), a
constant (e.g., v0), or an operation (e.g., +, −, ×, /, sin, log, ...).
In this representation, input variables and constants can be
referred to as terminal nodes or symbols (having no child
node), operations taking a single argument (e.g., sin, log, ...) are
unary symbols (having one child node) and operations taking
two arguments (e.g., +, −, ×, /, ...) are binary symbols. By
considering each node first in-depth and then left to right, one
can compute a one-dimensional list, i.e., a prefix7 notation in
which operators are placed before the corresponding operands
in the expression, alleviating the need for parentheses. Using
the prefix notation and treating symbols, referred to as tokens,
as categories allows us to treat any expression as a mere
sequence of categorical vectors. For example, considering a
short toy library of tokens +{ }x, cos, , the operator + can be
encoded as [1, 0, 0], the function cos as [0, 1, 0], and the
variable x as [0, 0, 1].
As in previous deep SR studies (e.g., Petersen et al. 2021a;

DiPietro & Zhu 2022; Du et al. 2022; Kamienny et al. 2022;
Vastl et al. 2022), treating mathematical expressions as
sequences allows us to employ traditional natural language
processing techniques to sample them. Token sequences are
generated by using an RNN, which in essence, is a neural
network that can be invoked multiple times to create a logical
chain of similar operations. At each invocation i<N (N
representing the maximum number of steps), the RNN
generates a time-dependent output and a corresponding
memory state Si. The RNN takes as input some time-dependent
observations Oi

8 as well as the state of the previous call Si−1. In
practice, we use the RNN to generate a categorical probability
distribution over the library of available tokens, which we then
simply sample to draw a definite token. Once a token is
generated, we feed the minimum number of tokens still needed
to obtain a valid analytical expression (i.e., the number of
dangling nodes), the token’s properties, and the properties of its
surroundings as observations for the next RNN call. Namely,
we give the nature of the token that was sampled at the
previous step (since the RNN does not have access to this
information which is derived from a stochastic process),9 the
sibling (if any at this step) and parent tokens of the token to be
generated in a tree representation, to which in the context of our
Φ-SO framework we add the physical units of all of these
tokens and the units required for the token to be generated so as
to respect units rules. This allows the inner mechanisms of the
neural network to take into account not only the local structure
of the expression for generating the next token, but also to take
into account local units constraints. The process described
above can be repeated multiple times until a whole token
function is generated in prefix notation, as illustrated in
Figure 2.
It is important to note here that one can artificially tune the

generated categorical distribution to incorporate prior

7 This is also called “Polish” notation and can be converted to a tree
representation or the “infix” notation, which we are more familiar with, as there
is a one-to-one relationship between them.
8 We refer to observations in the context of reinforcement learning, here
pertaining to contextual analytical information related to the expression being
generated, rather than to the scientific data being fitted.
9 Not providing this information typically hinders performance.
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knowledge in situ while expressions are being generated. One
can for example zero out the probability of some token
depending on the context encoded in the expression tree being
generated, thus greatly reducing search space (Petersen et al.
2021a, 2021b). We, therefore, adopt priors that force expres-
sion sizes to be <35 tokens long, encourage expressions to be
concise through a soft length prior consisting of a Gaussian of
variance σ2= 5 centered around a length of 8, to contain no
more than two levels of nested trigonometric operations (e.g.,
forbidding + +( ( ( )))f t x xcos . sin 0 tan but still allowing

+( ( ))f t x xcos . sin 0 ), contain no self-nesting of exponent and
log operators (e.g., forbidding


ee ), and forbid useless inverse

unary operations (e.g., forbidding elog ). It is worth noting that
the combination of priors we employ can conflict in some
cases, in which case we discard the resulting candidate (e.g.,
the physical units prior detailed below could require a certain
number of tokens to satisfy units constraints, which could
conflict with the length prior requiring the expression to be
terminated prematurely).

In addition to the above priors whose formulation depends
on the local tree structure (parent, sibling, ancestors), our
method is able to accommodate any priors that take into
account the entire tree structure without having to recompute it
from scratch at each step. This is rendered possible by the fact
that contrary to other deep-learning-based SR algorithms, in the
Φ-SO framework we compute and keep track of the full
graph of the tree representation and its underlying grammatical
information (such as units, symbol types like functions, free
parameters, fixed constants, or the number of arguments a
symbol requires), while the expression is being generated, as it

is an essential ingredient to compute units constraints as
detailed in the following subsection. Note that this also enables
Φ-SO to accommodate any future prior relying on such
information.

3.2. In Situ Physical Unit Constraints

Algorithm 1. In situ units requirement algorithm

Input: (In)-complete expression t <{ }j j N , Position of token i
Output: Required physical units Fi of token at i
1 Function ( t <({ } )iComputeRequiredUnits ,j j N )
2 ¬ ( )p iPositionOfParent
3 ¬ ( )s iPositionOfSibling
4 tF ¬ ( )Unitsp p

5 tF ¬ ( )Unitss s

6 ¬NodeRank 1ifleftsidenodeand2ifrightnode
7 ¬ + -{ }AdditiveTokens ,
8 /¬ ´{ }MultiplicativeTokens ,
9   ¬ { }PowerTokens 1 , , n

10   ¬ -{ }nPowerValues 1 : 1, : 1 2, :n

11 ¬ { }DimensionlessTokens cos,sin,tan,exp,log
12 if tp is in AdditiveTokens and Fs is known then
13 F ¬ Fi s

14 else if tp is in AdditiveTokens and Fp is free and NodeRank is 2 and Fs is
free then

15 BottomUpUnitsAssignment(start = s, end = -i 1)
16 F ¬ Fi s

17 else if Fp is free and tp is not in MultiplicativeTokens and ts is not a
placeholder then

18 F ¬ free;i

19 else if i = 0 then
20 F ¬ ( )Units rooti

Figure 2. Expression generation sketch. The process starts at the top left RNN block. For each token, the RNN is given the contextual information regarding the
surroundings of the next token to generate, namely, the parent, sibling, and previously sampled token along with their units, the required units for the token to be
generated, and the dangling number (i.e., the minimum number of tokens needed to obtain a valid expression). Based on this information, the RNN produces a
categorical distribution over the library of available tokens (top histograms) as well as a state that is transmitted to the RNN on its next call. The generated distribution
is then masked based on local units constraints (bottom histograms), forbidding tokens that would lead to nonsensical expressions. The resulting token is sampled from
this distribution, leading to the token “+” in this example. Repeating this process, from left to right, allows one to generate a complete physical expression, here [+,
v0,/, x, t], which translates into v0 + x/t in the infix notation we are more familiar with.
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(Continued)

21 else if tp is in AdditiveTokens then
22 F ¬ Fi p

23 else if tp is in PowerTokens then
24 t¬ [ ]n PowerValues p

25 F ¬ F ni p

26 else if F = 0p or tp is in DimensionlessTokens then
27 F ¬ 0i

28 else if tp is in MultiplicativeTokens then
29 if ti is a placeholder and ts is a placeholder then
30 F ¬ freei

31 else if NodeRank is 1 then
32 F ¬ freei

33 else if Fp is free then
34 F ¬ freei

35 else
36 BottomUpUnitsAssignment(start = s, end = -i 1)
37 if ti is ´{ } then
38 F ¬ F - F ;i p s

39 else if ti is { } then
40 F ¬ F - F ;i s p

41 return Fi

Our work is part of the broader field of grammar-guided SR
(Hoai et al. 2002; Manrique et al. 2009; Korns 2011; Worm &
Chiu 2013; Brence et al. 2021; Ali et al. 2022; Crochepierre
et al. 2022), which aims at constraining the symbolic
arrangement of mathematical expressions based on domain-
specific rules. Specifically and as discussed above, in physics
we already know that some combinations of tokens are not
possible due to units constraints. For example, if the algorithm
is in the process of generating an expression in which a velocity
(v0) is summed with a length (x) divided by a token or
subexpression that is still to be generated (,):


+ ( )v

x
, 10

then based on the expression tree (as shown in Figure 2), we
already know that , must be a time variable or a more
complicated sub-tree that eventually ends up having units of
time, but that it is definitely not a length or a dimensionless
operator such as the log function.

Computing such constraints in situ, i.e., in incomplete, only
partially sampled trees (containing empty placeholder nodes) is
much harder than simply checking post hoc whether the units
of a given equation make sense because in some situations it is
impossible to compute such constraints until later on in the
sequence, leaving the units of some nodes free (i.e., compatible
with any units at this point in the sequence). For example, it is
impossible to compute units requirement in the left child node
of a (binary) multiplication operator token ,×!, as any units
in the , left child node could be compensated by units in the !
right child node. Following the dimensional analysis rules
summarized in Table 1, we devised Algorithm 1. This
algorithm gives the pseudo-code of the procedure we devised
to compute the required units whenever possible and leaves
them as free otherwise. The procedure is applied to a token at
position i<N in an incomplete or complete sequence of tokens
t <{ }j j N of size N, knowing the units of terminal nodes and of
the root node (e.g., respectively {v0, x, t} and {v} in the
example of Figure 2). The sequence may be partially made up

of placeholder tokens of yet undetermined nature (representing
dangling nodes). Running Algorithm 1 before each token
generation step allows one to have a maximally informed
expression tree graph in terms of units.
Having access in situ to the (required) physical units of

tokens allows us not only to inform the neural network of our
expectations in terms of units as well as to feed it units of
surrounding tokens, thus allowing the model to leverage such
information, but also to express a prior distribution over the
library. This enables the algorithm to zero out the probability of
forbidden symbols that would result in expressions that violate
units rules. Combining this prior distribution with the
categorical distribution given by the RNN while expressions
are being generated results in a system where by construction
only correct expressions with correct physical units can be
formulated and learned on by the neural network.
We acknowledge a previous attempt by Udrescu & Tegmark

(2020) in the AI Feynman algorithm to consider units in the
context of SR. The approach adopted by AI Feynman addresses
SR problems by first transforming the variables to make them
dimensionless, often leading to a reduction in the number of
variables and allowing the generation of physically balanced
expressions. However, if this method fails, the algorithm reverts
to the original problem setup. This results in AI Feynman
resorting to fitting high-order polynomials or complicated
expressions that although very accurate lack physical meaning
from a dimensional analysis perspective most of the time when it
is not able to find a perfect fit solution. For instance, even in the
shorter range of expressions it proposes, one can find equations
such as = * - * +( )K earcsin 0.169 m w3.142 , where K, m, and w
denote an energy, a mass, and a velocity for Feynman problem
I.13.4 (details about the Feynman SR problems can be found in
Section 4.1). In contrast, Φ-SO is designed to yield only
physically plausible expressions by construction all of the time.
Contrary to AI Feynman, Φ-SO works on dimensional data by
leveraging constraints on the functional forms, while generating
expressions as outlined in Table 1. It is worth noting, however,
that making problems dimensionless, as implemented in AI

Table 1
Dimensional Analysis Prescriptions to Enforce

Rules of Dimensional Analysis

Expression Units
τA ± τB ΦA or ΦB

−τA ΦA

τA × τB ΦA + ΦB

τA/τB ΦA − ΦB

t A
n n × ΦA

op0(τA) 0

Rules of Units Requirements

Expression Requirement

τA ± τB ΦA = ΦB

y = τA Φy = ΦA

op0(τA) ΦA = 0

Note.With τA, τB, y, ΦA, ΦB, Φy referring to two nodes, the output variable and
the powers of their unit vectors, op0 denoting a dimensionless operation (e.g.,
{ }cos,sin,exp,log ), and t A

n representing any power operation (including, e.g.,

t t= -1 A A
1, t t=A A

1
2 ).
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Feynman, is a valuable approach that can work in pairs with any
SR method to ensure outputs are not nonsensical.

Indeed, it could be argued that we could have tackled physical
units validity of expressions in SR by taking advantage of the
Buckingham Π theorem (Buckingham 1914), with variables and
constants rendered dimensionless by means of multiplicative
operations among them. Such an approach can actually be
adopted as a preliminary step in conjunction with any SR
framework (see, e.g., Matchev et al. 2022; Keren et al. 2023).
However, although working with so-called Π groups ensures the
generation of physically valid expressions (since all terms
become dimensionless), it simultaneously removes constraints
imposed by dimensional analysis, complicating the SR process. It
is interesting to note that nature (or at least physics) is not
dimensionless, so information is lost during the process of
making variables and constants dimensionless, preventing us
from leveraging the powerful constraints on the functional form
associated with this dimensional information. Drawing from the
example presented in Udrescu & Tegmark (2020), let us consider
a data set associated with the target expression

=
- + - + -( ) ( ) ( )

( )F
Gm m

x x y y z z
. 21 2

2 1
2

2 1
2

2 1
2

When rendered dimensionless, the target expression becomes

=
- + - + -( ) ( ) ( )

( )y
1

. 3

m

m

x

x

y

x

y

x

z

x

z

x

2 2 2

2

1

2

1

2

1

1

1

2

1

1

1

While this transformation decreases the number of input
variables to { }, , ,m

m

x

x

y

x

z

x
2

1

2

1

2

1

1

1
, it simultaneously nullifies the

inherent dimensional analysis constraints. Consequently, the
SR algorithm could potentially produce expressions such as

-m

m

x

x
2

1

2

1
or - +( )1x

x

y

x

2
2

1

2

1
. In contrast, with our in situ

constraints, lengths could only be summed with length terms,
similarly, squared lengths could only be summed with squared
lengths and having Gm1m2 in the numerator would be enforced
by the requirement of the expression being homogeneous to a
force. In essence, while rendering variables dimensionless
ensures physicality of the expressions, it simultaneously
relinquishes valuable constraints on their functional forms.

Finally, we note that after the first submission of our paper,
two approaches similar to ours were presented, the first
working in pair with a sparsity fitting method (Purcell et al.
2023) and the second working in pair with a probabilistic
search method (Brence et al. 2023).

3.3. Learning

One might imagine that SR problems could be solved by
directly optimizing the choice of symbols to fit the problem,
using the auto-differentiation capabilities of modern machine-
learning frameworks.10 Unfortunately this approach cannot be
used for SR because the cost function is nondifferentiable (the
choice of selecting say the sin function over log is not
differentiable with respect to the data), which prevents one
from using gradient descent. A practical solution is to use a
neural network as a middleman to generate a categorical

distribution from which we can sample symbols. One can then
optimize the parameters of this neural network whose task is to
generate these symbols according to fit quality and physical
units constraints.
The training of the network that generates the distribution of

symbols relies on the reinforcement learning strategy (Sutton &
Barto 2018), which is a common method used to train artificial
intelligence agents to navigate virtual worlds such as video games,11

or master open-ended tasks (Bauer et al. 2023). In the present
context, the idea is to generate a set (usually called a batch in
machine learning) of trial symbolic functions, and compute a
scalar reward for each function by confronting it to the data.
We can then require the neural network to generate a new batch
of trial functions, encouraging it to produce better results by
reinforcing behavior associated with high reward values,
approximating gradients via a so-called policy (i.e., a
quantitative strategy). The hope is that, by trial and error, the
learnable parameters of the network will converge to values
that are able to generate a symbolic function that fits the
data well.
Following the insight by Petersen et al. (2021a), we adopt

the risk-seeking policy gradient along with the entropy
regularization scheme found by Landajuela et al. (2021b). In
essence, we only reinforce the best 5% of candidate solutions,
not penalizing the neural network for proposing the 95% of
other candidates, therefore maximizing the reward of the few
best-performing candidates rather than the average reward.
With our chosen batch size of 10k, detailed in Table 2, this
strategy reinforces the leading 500 candidates. This enables
efficient exploration of the search space at the expense of
average performance, which is of particular interest in SR as we
are often mostly concerned with finding the very best
candidates in particular if the goal is exact symbolic recovery
and do not care if the neural network performs well
on average12. This novel risk-seeking policy, inspired by
Rajeswaran et al. (2017) and first proposed by Petersen et al.
(2021a), has significantly boosted performance in SR.
It is worth noting that our approach reinforces candidates

that are sampled based on not only the output of the RNN, but
also local units constraints derived from the units prior
distribution, which ensures the physical correctness of token
choices. As a result, our approach effectively trains the RNN to
make appropriate symbolic choices in accordance with local
units constraints, in a quasi-supervised learning manner. This
combined with the general reinforcement learning paradigm
enables us to produce both accurate and physically relevant
symbolic expressions.
We allow the candidate functions f to also contain constants

with fixed physical units specified by the user, but with free

Table 2
Learning Parameters

Learning Parameters

Batch size 10,000
Learning rate 0.0025
Entropy coefficient 0.005
Risk factor 5%

10 Most machine-learning tasks use the differentiability of the implemented
model with respect to the data to implement a (stochastic) gradient descent
toward an optimal model solution that fits the data best.

11 See, e.g., https://www.youtube.com/watch?v=QilHGSYbjDQ
12 This is contrary to many other applications of reinforcement learning (e.g.,
robotic automation, video games), which can even sometimes require risk-
averse gradient policies (e.g., self-driving cars; Rajeswaran et al. 2017).
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numerical values. These free constants allow us the possibility
to model situations where the problem has some unknown
physical scales. A (somewhat contrived) example from galactic
dynamics could be if we were provided a set of potential values
Φ, and cylindrical coordinate values (R, z) of some mystery
function that was actually a simple logarithmic potential model

F = + + ( )v R R
z

q

1

2
ln , 4c0

2 2 2
2

2
⎜ ⎟
⎛
⎝

⎞
⎠

whose parameters are the velocity parameter v0, the core radius
Rc, and the potential flattening q. Of course, we will generally
not know in advance either the number of such parameters that
the correct solution requires, or their numerical values. Yet to
be able to evaluate the loss of the trial functions f, we need to
assign values to all such free constants they may contain. We
accomplish this task by processing each trial function, with the
L-BFGS (Zhu et al. 1997) optimization routine in pytorch
(optimizing over 20 steps and using a mean squared error
metric), leveraging the fact that we can encode the symbols of f
using pytorch functions. Since pytorch has in-built auto-
differentiation, finding the optimal value of the constants via
gradient descent is extremely efficient.

Then, as in Petersen et al. (2021a) for each candidate f, we
compute a reward r that is representative of fit quality: r= 1/
(1+NRMSE), where NRMSE is the root mean squared error
normalized by the deviation of the target σy:

= å -
s = ( ( ))xy fNRMSE

N i
N

i i
1 1

1
2

y
. We apply the policy

gradients by means of an Adam optimizer Kingma & Ba
(2014) and use a long short-term memory (LSTM) type RNN
(Hochreiter & Schmidhuber 1997). Our additional learning
hyperparameters can be found in Table 2. It is worth noting that
the empirically tuned batch size we found (10 k) is larger than
the one found by Petersen et al. (2021a), which was of 1k. We
attribute this to the very strong constraints offered by our Φ-SO
setup, which require a strong exploration counterpart to avoid
getting stuck in local minima. This helps ensure that the model
does not prematurely converge by continuously reinforcing a
locally optimal expression, but rather seeks more solutions until
identifying the most favorable one.

It is also worth noting that in the reinforcement learning
framework, the reward function can be considered as a black box,
which does not have to be differentiable; therefore, one could use
anything as the reward. For example, we can also include the
complexity of the symbolic function in the reward function, so as
to have a criterion akin to Occam’s razor. But actually one could
in principle implement many ideas into the reward function:
symmetries, constraints on primitives or derivatives, fitness in a
differential equation, the results of some symbolic computation
using external packages such as Mathematica (Wolfram 2003)
or SymPy (Meurer et al. 2017), behavior of the function when
implemented an n-body simulation, and so on. Note that in the
context of this work, although there are more sophisticated
schemes to define complexity (see, e.g., Vladislavleva et al.
2009), we simply define it as length, i.e., the number of tokens
appearing in the expression excluding parentheses or the number
of nodes in a tree representation.

3.4. Computational Details

Due to the number of trial expressions to evaluate at each
iteration and considering that each expression must be

evaluated multiple times to optimize its free constants, the
optimization step is one of the main performance bottlenecks of
our PhySO algorithm. This step was therefore parallelized
across the batch, resulting in a free constants optimization time
of a given expression typically being of the order of the
milliseconds. We show an efficiency plot in a realistic scenario
in Figure 3.13

In addition, the management of symbolic information that is
necessary to compute priors and contextual information to be
passed to the neural network can also occupy a non-negligible
part of the computational time. In PhySO, these operations are
therefore vectorized across both equation lengths and batches.
Lastly, it is worth mentioning that upon concluding the

exploration of the equation space, PhySO saves Pareto front
equations (optimal solutions balancing fitness and low com-
plexity), including the overall best-fitting equation, the best-
fitting equation across iterations, and stores a comprehensive
log of all equations generated during the run.

4. Feynman Benchmark

To validate the efficacy of our Φ-SO method, we conducted
benchmark tests using the widely recognized Feynman SR
benchmark. This set of challenges, first introduced by Udrescu
& Tegmark (2020) and subsequently formalized in SRBench
(La Cava et al. 2021), encompasses 120 equations, including
100 sourced from the renowned Feynman Lectures on Physics
(Feynman et al. 1971) with the other 20 sourced from other
textbooks: Weinberg (1972), Goldstein et al. (2002), Jackson
(2012), and Schwartz (2014). The primary objective is to

Figure 3. Computational time optimizing free constants {a, b} in
= + -( )y a b x esin . x over 20 iterations using 103 data points when running

this task 10,000 times in parallel with our PhySO algorithm on an Apple M1
laptop (a machine with four fast CPU cores) and an Intel Xeon W-2155 CPU (a
machine with a high number of cores).

13 The Apple M1 machine employed for the tests contains four high-
performance cores and four energy-efficient cores, explaining the observed
stagnation when increasing the cores count to eight.
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retrieve these equations using only the provided data points at
various levels of noise.

Although this benchmark has inherent limitations, such as
treating constants of nature (e.g., G, c, ÿ) and discrete physical
values from quantum mechanics as continuously varying input
variables (which places a higher emphasis on the implementa-
tion of the problem simplification schemes developed in
Udrescu & Tegmark 2020), it offers a comprehensive
representation of the diversity of physical functional forms
and remains a valuable standard for comparison as most SR
methods have been thoroughly benchmarked on it (see La Cava
et al. 2021).

Details on the benchmarking procedure can be found in
Section 4.1. Results on exact symbolic recovery are provided in
Section 4.2, while findings regarding fit quality are presented in
Section 4.3. Finally, we provide training curves in Section 4.4.

4.1. Benchmarking Procedure

We meticulously adhered to the established protocol
delineated in SRBench by La Cava et al. (2021), setting our
PhySO algorithm to identify expressions that fit 10,000 data
points corresponding to each Feynman benchmark equation.
PhySO was only allowed to evaluate a maximum of 1 million
expressions during each run and exact symbolic recovery was
assessed by ensuring the difference between the expression
generated by PhySO and the target expression was reduced to a
constant or that the fraction simplified to a constant using the
SymPy library for symbolic mathematics (Meurer et al. 2017).
In addition, fit quality was assessed using the R2 metric defined

as = - å -

å -
=

=

( ( ))
( ¯)

R 1
xy f

y y
2 i

N
i i

i
N

i

1
2

1
2 on 100,000 noiseless test data

points. As per benchmark rules, in order to ensure robustness,
for each equation, this procedure was repeated multiple times
(opting here for five trials over 10, due to the considerable
computational demands associated with such benchmarks),
each with a unique random seed, and the recovery rates were
subsequently averaged. In alignment with SRBench stipula-
tions, equations I.26.2, I.30.5, and test_10 (containing arccos

and arcsin functions) as well as II.11.17 were excluded from
our results. The whole benchmark tests were conducted across
four noise levels: 0%, 0.1%, 1%, and 10%, leading to the
evaluation of 2,320,000,000 expressions.
We ran PhySO using the hyperparameters and reward metric

given in Section 3 (with the notable exception of the trigonometric
prior, which was set to a maximum nesting of one) and allowing
the use of /    + - ´ -{ }, , , , 1 , , , , exp,log,cos,sin2

as well as two dimensionless adjustable free constants and a
constant equal to 1 {θ1, θ2, 1}. After each run, the first few
expressions (in accuracy) of the Pareto front were inspected, which
proved beneficial for cases where SymPy faced simplification
challenges only and made a marginal difference of approximately
1% in recovery rate. Notably, while the Feynman data set includes
unit information for each variable, PhySO is the only method that
capitalizes on this feature since its introduction in Udrescu &
Tegmark (2020), a testament to its unique physics-specific design.
For the sake of reproducibility, we provide all the code required to
execute the benchmark using PhySO as well as the detailed
SRBench-style results regarding each run.
We compare the performance of our Φ-SO approach to other

SR algorithms with documented exact symbolic recovery rates,
as reported in La Cava et al. (2021) and Landajuela et al.
(2022). These algorithms are summarized in Table 3.
Remarkably, this includes AFP_FE a Eureqa-like method,
by the same authors combining AFP with the Eureqas method
for fitness estimation (La Cava et al. 2021) and which we
denote as AFP_FE (∼Eureqa). In La Cava et al. (2021), DSR
(Petersen et al. 2021a) was not permitted to use any free
parameters when generating expressions, greatly hindering its
capabilities; we therefore also consider the performance of the
latest version of DSR (Landajuela et al. 2021b) self-reported in
the ablation study of Landajuela et al. (2022), which relies on
more suitable hyperparameters as a baseline. However, we note
that is important to exercise caution when interpreting this
additional DSR performance data point as well as the
performances of SINDy, NeSymReS, and uDSR as our
available data only offers their final scores on a composite

Table 3
Summary of Baseline SR Methods along with the Underlying Techniques They Rely On

Method Technique(s) Description Reference

PhySO RL, DA Physical symbolic optimization This work
uDSR RL, GP, Simp., Sup. A unified framework for deep SR Landajuela et al. (2022)
AIFeynman 2.0 Simp., DA SR exploiting graph modularity Udrescu et al. (2020)
AFP_FE GP AFP with co-evolved fitness estimates, Eureqa-esque Schmidt & Lipson (2009)
DSR RL Deep SR Petersen et al. (2021a)
AFP GP Age-fitness Pareto optimization Schmidt & Lipson (2011)
gplearn GP Koza-style SR in Python Stephens (2015)
GP-GOMEA GP GP-optimal mixing evolutionary algorithm Virgolin et al. (2021)
ITEA GP Interaction-transformation EA de Franca & Aldeia (2021)
EPLEX GP ò-lexicase selection La Cava et al. (2019)
NeSymReS Sup. Neural SR that scales Biggio et al. (2021)
Operon GP SR with nonlinear least squares Kommenda et al. (2020)
SINDy NeuroSym Sparse identification of nonlinear dynamics Brunton et al. (2016)
SBP-GP GP Semantic back-propagation genetic programming Virgolin et al. (2019)
BSR MCMC Bayesian SR Jin et al. (2019)
FEAT GP Feature engineering automation tool Cava et al. (2019)
FFX Rand. Fast function extraction McConaghy (2011)
MRGP GP Multiple regression genetic programming Arnaldo et al. (2014)

Note. Reinforcement learning (RL), programming (GP), problem simplification schemes (Simp.), end-to-end supervised learning (Sup.), dimensional analysis (DA),
neuro-symbolic/auto-differentiation based sparse fitting techniques (NeuroSym), Markov Chain Monte Carlo (MCMC), and random search (Rand).
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data set, which encompasses both the Feynman benchmark and
the Strogatz benchmark (La Cava et al. 2016)—the latter
accounting for approximately 5% of the total score. This
aggregated score is what we illustrate in our figures throughout
this section. In addition, it is worth noting that the exact
conditions under which SINDy and NeSymReS were bench-
marked are unknown and that in the case of uDSR and the
additional DSR data point, the benchmarking, respectively,
permitted an evaluation of up to 2 million and 0.5 million
expressions, respectively, in contrast to the 1 million limit set
for other methods. Furthermore, detailed results for these
methods, in particular those regarding the specific expressions
they identified, are unavailable, preventing their inclusion in
our comparative analysis when concerning expression metrics
(complexity or number of free parameters). Although per
SRBench rules, we permitted our method to evaluate up to 1
million expressions compared to DSRʼs 0.5 million, PhySO
typically identifies the correct expression well before reaching
this limit or not at all. Additionally, while DSRʼs 42% score is
influenced by another benchmark, the impact is very low,
accounting for only 5%. This external benchmark is relatively
straightforward, with DSR achieving around 25% even without
free parameters (La Cava et al. 2021), indicating its limited
effect on the overall score. Thus, we believe a direct
comparison between PhySOʼs score and DSRʼs from Land-
ajuela et al. (2022) is valid, especially considering the gap in
performance as detailed in the next subsection.

4.2. Exact Symbolic Recovery

Figure 4 presents the performance of PhySO against baseline
algorithms from Table 3 on the Feynman benchmark. This
includes the average exact symbolic recovery rate, accurate
expression rate (defined as those with a fit coefficient
R2> 0.999), and normalized accurate expression rate considering

the number of free parameters in the expressions, across different
noise levels. Compared to DSR, which strictly relies on
reinforcement learning, PhySO utilizes both reinforcement
learning and dimensional analysis. With DSRʼs score at roughly
42%, our method’s 58.5% score highlights the significant
benefits of incorporating dimensional analysis. In the realm of
physics, the exact symbolic recovery rate is a paramount metric,
and given that real-world physics data is often noisy, the
resilience of an algorithm to noise is also crucial. However, with
a minor noise level of 0.1%, many high-performing methods see
their recovery rates almost halved. In contrast, PhySO maintains
consistent performances. Remarkably, at a 10% noise level,
where most methods’ recovery rates dip below 20%, and even
high performers like uDSR and AI Feynman 2.0 score only
10.7% and 0.7%, respectively, PhySO continues to accurately
recover expressions over 53% of the time.
In noiseless scenarios, PhySO is only surpassed by uDSR,

which relies on a cocktail of five of the most potent SR
techniques: reinforcement learning for iterative adjustments,
genetic programming for enhanced randomization and explora-
tion, supervised learning to leverage existing knowledge,
neuro-symbolic style sparse coefficient fitting for its linear
symbolic modules, and powerful simplification strategies,
similar to those utilized by AI Feynman 2.0, which narrowly
lags behind PhySO. These techniques rely on the exploitation
of separability (e.g., simplifying the search of f (x1, x2) to the
search of the simpler functions f1(x1) and f2(x2) with f (x1,
x2)= f1(x1)+ f2(x2)), symmetry (e.g., simplifying the search of
f (x1, x2) to the search of f1(x1, x2) and f2(x2) with f (x1,
x2)= f1(x1, f2(x2))), and many other schemes to circumvent the
intricate functional forms in the benchmark. Despite relying
solely on reinforcement learning and dimensional analysis, on
noiseless data PhySO rivals uDSR and surpasses AI Feynman
2.0, demonstrating the effectiveness of our approach.

Figure 4. Exact symbolic recovery rates, rates of accurate expressions (having R2 > 0.999), and rates of accurate expressions normalized by the number of free
parameters appearing in expressions for PhySO and other baseline methods on the Feynman benchmark. PhySO vastly outperforms all other methods in symbolic
recovery in the presence of even minimal levels of noise (>0.1%). In addition, the effectiveness of the dimensional analysis schemes of our Φ-SO approach are clearly
visible when comparing DSR (a purely RL method) with our implementation: PhySO (combining RL with dimensional analysis). Error bars indicate a 95% confidence
interval, ♦ denotes performances of DSR (Landajuela et al. 2021b) reported in Landajuela et al. (2022) on noiseless data with free constants allowed and * denotes that
benchmarking conditions may vary and scores are polluted by approximately 5% of results from another benchmark.
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It is worth noting that while the aforementioned AI
Feynman-style divide and conquer simplification strategies
are effective, they are extremely noise sensitive, a scenario
where PhySOʼs approach remains stable. In summary, this
benchmark shows that incorporating dimensional analysis
constraints into SR significantly bolsters performance. Given
the improvements shown by PhySO over DSR thanks to the
inclusion of unit constraints, and given uDSRʼs impressive
performances in noiseless scenarios, we believe combining Φ-
SO with uDSR could elevate outcomes even further.

4.3. Fit Quality

Regarding the fraction of expressions with an R2> 0.999,
many methods achieve high scores by incorporating an extensive
number of free constants, resulting in intricate expressions that
often lack interpretability and are nonsensical from a dimensional
analysis standpoint. For example, AI Feynman 2.0, when not
identifying the precise symbolic expressions, tends to generate
complex expressions comprising, post-simplification, an average
of 147 symbols, and 18 free constants due to its brute force
polynomial fitting approach. Similarly, Operon14 and MRGP
expressions contain on average respectively 17 and 88 free
constants post-simplification at a 10% noise level. This is not a
problem in many fields where human interpretability is not
a priority. However, given the importance of this criterion in
physics, we also show in Figure 4 the rate of accurate
expressions normalized by the number of free constants plus 1.
PhySO emerges as the leading method in generating succinct,

physically coherent, and interpretable expressions that best
approximate a data set, that is when it is not able to recover the
exact underlying expression altogether.
This is further illustrated in Figure 5, where we show Pareto

frontiers of expression complexity versus fit quality at a 10%
noise level for all benchmarked methods with available output
expression information. On this plot, PhySO is a Pareto
optimum demonstrating its ability to produce simple yet good-
fitting expressions.

4.4. Learning Curves

Due to its very constraining nature, using a yet untrained
neural network, our in situ units prior often conflict with the
length prior which is essential to avoid the expression generation
phase going on forever. This typically results in the majority of
expressions being discarded due to this conflict during the first
iterations of the training process. However, enabling the neural
network to learn on physically correct expressions, and enabling
it able to observe local units constraints, allows it to actively learn
dimensional analysis rules. This is shown in Figure 6, which
gives the fraction of physical expressions successfully generated
over iterations of learning averaged over all runs of the Feynman
benchmark at each level of noise.
Moreover, Figure 6 presents the evolution of the R2

fit
coefficient on training data for the best expression identified at
each iteration. The figure demonstrates that as the iterations
progress, the neural network not only improves in generating
expressions with better fits but also refines its capacity to
produce expressions that are physically meaningful.
In our observations, while Φ-SO occasionally escapes local

minima through stochastic variations, convergence is typically
characterized by the neural network mostly producing identical
expressions. This state of convergence is typically reflected by
both average fit quality and rate of physical expression
remaining static, as well as by the reward distribution peaking.
The rate of convergence is dependent on the difficulty of the
case, the level of noise, and the chosen hyperparameters. As
depicted in Figure 6, under the hyperparameters detailed in this
study, Φ-SO typically reaches convergence well within several
hundred iterations. Note that since it is operating in a
reinforcement learning framework, Φ-SO is trained on moving
targets as its targets consist of expressions generated by itself
during the last iteration, which is characterized by the loss not
decreasing during training except when it starts consistently
producing similar equations while converging.

5. Astrophysical Case Studies

We now showcase our Φ-SO method on a panel of
astrophysical test cases: the relativistic energy of a particle is
examined in Section 5.1, the law describing the expansion of
the Universe in Section 5.2, the isochrone action from galactic
dynamics in Section 5.3, and additional toy test cases given in
Section 5.4. We give the results along with an ablation study,
disabling specific components of our system to determine their
impact on performance, in Section 5.5. We perform this
ablation study in a noiseless scenario using mock data but still
demonstrate Φ-SO’s abilities on observational noisy data for
the case detailed in Section 5.2, showing that the method can
successfully recover physical laws and relations from real or
synthetic data. Mock data generation details are given in
Appendix A along with units of all variables and constants

Figure 5. Complexity vs. rate of expressions having R2 > 0.999 at a 10% noise
level for PhySO and other SR methods from the literature on the Feynman
benchmark (La Cava et al. 2021). Lines and colors denote the 1st, 2nd, 3rd, 4th,
5th, and 6th Pareto fronts following the SRBench algorithm comparison
framework. PhySO is a Pareto optimum producing simple yet effective
expressions.

14 It should be noted that a recent improvement of Operon (see Burlacu 2023)
allowing it to produce simpler expressions was introduced after the first
submission of our paper. We expect this improved version to perform better on
the Feynman benchmark.
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involved. Note that for each of these showcases, we explicitly
add the free constants described in Appendix A along with their
units in Φ-SO’s library of available tokens. We use the
hyperparameters and reward metric detailed in Section 3 and
limit ourselves to the exploration of 10 million trial expressions
which roughly takes ∼4 hr (using all cores of the systems
shown in Figure 3) and is only necessary for the most difficult
case (the relativistic energy). In addition, for the relativistic
energy showcase, we give a Pareto front, which shows the most
accurate expression based on RMSE (root mean squared error)
for each level of complexity. Moreover, similarly to the
benchmarking in Section 4, we define the successful exact
symbolic recovery of an expression by its symbolic equiva-
lence using the SymPy symbolic simplification subroutine
(Meurer et al. 2017). Finally, we agnostically rely on the
same library of choosable tokens for all test cases:

/   + - ´{ }, , , , 1 , , , exp, log, cos, sin, 12 to which
we only add input variables and free or fixed constants
depending on the test cases.

5.1. Relativistic Energy of a Particle

Let us consider the expression for the relativistic energy of a
particle:

=
-

( )E
mc

1
, 5

v

c

2

2

2

where m, v, and c are, respectively, the mass of the particle, its
velocity, and the speed of light.
Using the aforementioned library of tokens as well as the

{m, v} input variables and a free constant {c}, Φ-SO is able to
successfully recover this expression 100% of the time. Figure 7
contains the Pareto front of recovered expressions where
similarly to Udrescu et al. (2020), we showcase that we are able
to recover the relativistic energy of a particle as well as the
classical approximation, which has a lower complexity.
However, we note that our system is able to recover the exact

expression for the relativistic energy test case without any of
the powerful simplification on which relies the AI Feynman
2.0 approach proposed in (Udrescu et al. 2020; in particular,
the identification of symmetries as well as the identification of
additive and multiplicative separability), nor by simplifying the
problem further by treating c (a constant of nature) as a variable
taking a range of different values as in (Udrescu et al. 2020).
Neither DSR (Landajuela et al. 2021b) nor AI Feynman
(Udrescu et al. 2020) are able to crack this case under these
more stringent conditions.

5.2. Expansion of the Universe

The next case study we examine is the Hubble diagram of
supernovae (SNe) type Ia, namely, the change in the observed
luminosity of these important standard candles as a function of
redshift z. This is one of the major pieces of evidence that
indicates that the Universe is experiencing an accelerating

Figure 6. R2 value on training data and percentage of expressions natively proposed by the neural network that have balanced physical units averaged across the
Feynman benchmark with error regions indicating a 95% confidence interval. Φ-SO’s neural network learns to produce not only good-fitting expressions but also
physically meaningful ones.
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expansion, and it is also one of the observational pillars
underlying Lambda cold dark matter (ΛCDM) cosmology in
which Dark Energy dominates the energy-density budget of the
Universe.

We will use the so-called Pantheon state-of-the-art compila-
tion data set (Scolnic et al. 2018), shown in Figure 8. We use a
similar calibration and follow an almost identical methodology
as Bartlett et al. (2023), to find the Hubble parameter H(z) from
the measured supernova (SN) magnitude and redshift pairs.
Following Bartlett et al. (2023), we use the auxiliary function

º + º( ) ( ) ( )y x z H z1 , 62

which for ΛCDM in a flat Universe with negligible radiation
pressure is

= W + - WL ( ) ( ( )) ( )y x H x 1 , 7m mCDM 0
2 3

where Ωm is the matter density parameter and H0 is the Hubble
constant. In a flat Universe model the cosmological luminosity
distance is

ò= +
¢
¢

( ) ( )
( )

( )d z z
c dz

H z
1 , 8L

z

0

where c is the speed of light.
We adapt our machinery to the Hubble diagram problem by

integrating numerically the º - =( ) ( )H z x y x1 functions
proposed by the algorithm under Equation (8) the implied
luminosity distance dL. These are then trivially converted into a
distance modulus m =( ) ( ( ) )z d z5 log 10 pcL10 , which we
compare to the Pantheon data following the procedure given in
Section 3.3.

This Hubble diagram example showcases the capability of
the software to include free constants (here we include one
having the units of H0 and the other being dimensionless as
Ωm) in the expression search, whose values are found thanks to
auto-differentiation via L-BFGS optimization, as mentioned in
Section 3.3. The optimal values of these constants need to be
calculated after being passed through the numerical integration
step (integrating Equation (8) via PyTorch differentiable

cumulative trapezoids), which turns out to be the main
bottleneck of the problem in terms of computational cost.
However, this also shows that the algorithm allows one to
derive expressions that are subsequently passed through
complicated operations before being compared to data.
The Pareto front is given in Table 4 alongside the ΛCDM

expression. Although we are able to recover it using synthetic
data, we note that as in Bartlett et al. (2023), using
observational data our system finds more accurate solutions
at lower complexities than the ΛCDM model. Although this
could signify that the ΛCDM theory is inaccurate, here we
refrain from jumping to this conclusion because our system is
only given the chance to confront its trial model of H(z) to a
relatively noisy data set of standard candles where there is an

Figure 7. Pareto front encoding accuracy complexity trade-off of recovered physical formulae typically recovered using our Φ-SO method when applied to data for the
relativistic energy of a particle. We recover the relativistic expression as well as the classical approximation. Note that although the exact classical expression mv1

2
2 is

encountered by Φ-SO it is Pareto dominated by the simpler mv2 expression.

Figure 8. SR results when applying the Φ-SO algorithm (allowing two free
parameters) to the Hubble diagram of SNe Ia from the Pantheon sample. Φ-SO
rediscovers the ΛCDM relation (in red) as well as another relation (in blue),
which has a slightly better fit than ΛCDM when solely considering Pantheonʼs
observational constraints due to the overabundance of low-z SNe.
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overabundance of low-z events, and is not provided other
observational constraints such as the cosmic microwave
background, which might tilt the balance in favor of ΛCDM
as the most accurate model at its level of complexity. However,
although the ΛCDM expression is not the global minimum
with this set of observational constraints, while exploring a
space of increasingly accurate expressions our system recog-
nizes it as an intermediate step, recording it in its history,
before eventually converging to a different expression. In
addition, we note that it is not surprising that our system
recovers the ΛCDM expression as we allowed a maximum of
two free parameters since the main goal was simply to
demonstrate our system’s capabilities. We defer multiparameter
studies to future contributions. Finally, we are able to recover
this expression by typically exploring <50,000 expressions
(which takes less than a minute on the systems shown in
Figure 3), the same order of magnitude as in the exhaustive SR
approach proposed in Bartlett et al. (2023) but allowing more
functions (cos, sin, exp, log).

5.3. Isochrone Action from Galactic Dynamics

Another interesting application of SR is to derive perfect
analytical properties of analytical models of physical systems.
To this end, we chose to attempt to find the radial action Jr of
the spherical isochrone potential.

F = -
+ +

( ) ( )r
GM

b b r
, 9

2 2

where G is the gravitational constant, M is the mass of the
model, b is the length scale of the model, and r is a spherical
radius (Binney & Tremaine 2011). Action variables are special
integrals of motion in integrable potentials that can be used to
describe the orbit of an object in a system, and they are of
particular interest in Galactic archeology as they are adiabatic
invariants, so they are preserved if a galaxy or stellar system
has evolved slowly. The isochrone is the only potential model
to have actions known in analytic form in terms of elementary
functions.15 For the case of the isochrone model, the radial
component of the action of a particle can be expressed as

=
-

- + - ( )J
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E
L L GMb
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where E and L are, respectively, the particle energy and total
angular momentum (Binney & Tremaine 2011).

We provide our algorithm numerical values of Jr (which has
units of angular momentum) given L and E, and leave b as a
free scaling parameter. Since we expect each occurrence of M
to be accompanied by an occurrence of the gravitational
constant, we provide the algorithm with GM as a single
variable.

This expression (Equation (10)) could not be solved either
by the standard DSR algorithm (Landajuela et al. 2021b), or by
the AI Feynman 2.0 algorithm (Udrescu & Tegmark 2020).
Our algorithm was also not able to identify the equation in 10
million guesses. However, one of the steps of the AI Feynman
2.0 algorithm is a test for additive and multiplicative
separability of the mystery function, and it creates new data

sets for each separable part. For the case of additive
separability, the units remain unchanged, and so it is trivial
to simply provide our Φ-SO algorithm-separated data generated
by AI Feynman 2.0 to be fitted in turn, one at a time. Thus,
the first term on the right-hand side of Equation (10) (with an E
dependence) was easily solved together with a fitted additive-
free constant. We then subtracted the fitted constant from the
second data set, and Φ-SO correctly recovered the second term
on the right-hand side of Equation (10) (with an L dependence).

5.4. Supplementary Cases

In addition to the cases above, we consider the following set
of textbook equations for the ablation study in Section 5.5. We
include Newton’s law of universal gravitation:

= ( )F
Gm m

r
, 111 2

2

where G is the universal gravitational constant, m1 and m2 are
the masses of the attracting bodies, and r is the distance
separating them. For this test case, we use {m1, m2, r} as input
variables and leave G as a free constant.
We also include a damped harmonic oscillator, which

appears in a wide range of (astro)-physical contexts:

w= + Fa- ( ) ( )y e tcos , 12t

where α and ω are, respectively, the damping parameter and the
angular frequency of oscillations (both homogeneous to the
inverse of a time) and Φ is the (dimensionless) phase. We leave
these three parameters as free constants and use t as our input
variable.
Finally, we consider a Navarro–Frenk–White (NFW) halo

profile (Navarro et al. 1996), which is an empirical relation that
describes the density profile ρ(r) of halos of collisionless dark
matter in cosmological N-body simulations:

r
r

=
+( )

( )
1

, 13
r

R

r

R

0
2
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where r is the radius, which we use as an input variable, and ρ0
and Rs are, respectively, the density and radius scale
parameters, which we leave as free constants.

Table 4
Pareto Accuracy Complexity Trade-off Expressions

Expression Complexity ~
H θ R2

q q+ +
~ ( )H xlog

2 2 14 5.175 −0.01 0.9955

q +
~
H x

2 9 4.692 −1.01 0.9946
~ ( )H xlog

2 6 7.499 L 0.9627
~ ( )H xlog

2 2 8 28.276 L 0.9523

q q- +
~ ( )H x 1

2 3 a 14 73.3 0.315 0.9166

Notes. Expressions for the auxiliary function y(x ≡ 1 + z) ≡ H(z)2 applying the
Φ-SO algorithm (allowing two parameters) to the Hubble diagram of SNe Ia
from the Pantheon sample. Although Φ-SO generates the ΛCDM expression, it
is not a Pareto optimum when solely considering Pantheonʼs observational
constraints due to the overabundance of low-z SNe. We include it for reference
as the last line of this table.
a
ΛCDM expression for reference.

15 We have recently shown that actions can be calculated numerically from
samples of points along orbits in realistic galaxy potentials using deep learning
techniques (Ibata et al. 2021).
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5.5. Ablation Study

In physics, we often seek to build approximate models, such
as might be obtained via a polynomial function or a Fourier
series fit to some data. In those instances, the rms error is
usually the criterion of relevance to determine whether the
procedure worked well or not. However, here we wish to
recover the true underlying model, in which case the recovery
rate should be the criterion of success.

The performance of Φ-SO on noiseless mock data from the
test cases detailed above is summarized in the ablation study
reported in Table 5. There we also report SR performance after
disabling the units prior (only using the units informed RNN),
disabling the RNN’s ability to be informed of local units
constraints (only using the units prior and a standard SR RNN),
disabling both the units prior and units information (only using
a standard RNN, which is similar to the Landajuela et al. 2021b
setup), doing a units-guided random search by using a random
number generator in lieu of the RNN, and finally doing a purely
random search.

We show that merely constraining the choice of symbols
using the external units prior distribution scheme (described in
Section 3.2) is not enough to ensure perfect symbolic recovery
of physical laws, but that informing the RNN of local units
constraints (as described in Section 3.1) is essential as it allows
the RNN to actively learn units rules. In addition, we show that
our system does not only rely on a mere brute force approach
combined with units constraints, but that the deep reinforce-
ment learning setup described in Section 3.3 is an essential
ingredient of the success of Φ-SO.

It should be noted that in the NFW test case, simply
expressing the inverse of a third-degree polynomial is sufficient
to solve the problem. However, using the units prior without
enabling the RNN to observe local units constraints or utilizing
the units prior in conjunction with a random number generator
can result in a lower recovery rate compared to the use of a
standalone random number generator. This is due to the highly
restrictive nature of the units prior, which in a simple case like

this, can actually slow down the convergence toward the
solution.
Finally, we also illustrate the generalization capabilities

offered by virtue of finding the exact analytical expression
underlying a data set compared to a good approximation in
Figure 9, where we show that such analytical expressions, as
expected, vastly outperform a multilayer perceptron (MLP)
neural network (here five layers of 32 units MLP having
sigmoid activations and being trained until convergence on a
test set, following a mean squared error loss function at 10−3

learning rate using an Adam optimizer, Kingma & Ba 2014).

6. Discussion

Since the deep SR framework (Petersen et al. 2021a) and
most other SR methods work by maximizing fit quality, there
are few constraints on the arrangement of symbols. However,
the paths in fit quality and the paths in symbol arrangement
toward the global minima (perfect fit quality and perfect
symbol arrangement) are not necessarily correlated. This results
in the curse of accuracy-guided SR, as small changes in fit
quality can hide dramatic changes in functional form and
vice versa. In essence, one can improve the fit quality of
candidates over learning iterations while getting further away
from the correct solution in symbolic arrangement. Therefore,
strong constraints on the functional form, such as the one we
are proposing in our setup, are of great value for guiding SR
algorithms in the context of physics. This is an advantage that
physics has and that Φ-SO leverages by (i) reducing the search
space and (ii) enabling the neural network to actively learn
dimensional analysis rules and leverage them to explore the
space of solutions more efficiently. Although the possibility of
making a physical units prior was hinted by Petersen et al.
(2021b), to the best of our knowledge such a framework has
never been built before.
The guidance offered by the units constraints gives Φ-SO an

edge over other methods for finding the exact symbolic
solutions, improving performance from a purely predictive

Table 5
Exact Symbolic Recovery Rate Summary and Ablation Study on Our Panel of Astrophysical Examples Using Noiseless Synthetic Data, Averaged across Five Runs

Ablation Configuration Aa B C Db E Fc

Physical units prior ✓ K ✓ K ✓ K
Physical units informed neural network ✓ ✓ K K K K
Neural network enabled ✓ ✓ ✓ ✓ K K

Expression Number of expressions

=
-

E mc

v c1

2

2 2
10M 100% 0% 60% 0% 20% 0%

= - + -
- ( )J L L GMb4r
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2
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2
2 4M 100% 0% 80% 0% 60% 0%

r r= +( )1r

R
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R0

2

s s
⎛
⎝

⎞
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2M 100% 100% 40% 100% 20% 100%

w= + Fa- ( )y e tcost 1M 100% 0% 0% 0% 0% 0%

=F Gm m

r
1 2
2 100K 100% 80% 100% 20% 80% 0%

º + = W + - W( ) ( ( ))H x z H x1 1m m
2

0
2 3 100K 100% 100% 100% 100% 40% 40%

Average 100% 47% 63% 37% 37% 23%

Notes. By studying the performance in combinations of ablations of the in situ units prior, the neural networks’s ability to be informed of local unit constraints, and of
the neural network itself (i.e., replaced by a random number generator when not marked as enabled), we show that all three are essential ingredients of the success of
our Φ-SO method.
a Full Φ-SO method.
b Similar to Landajuela et al. (2021b).
c Solely relying on a random number generator.
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standpoint. This makes Φ-SO a potentially useful tool for
opening up black-box physics models such as neural networks
fitted on data of physical phenomena. In addition, we note that in
the context of physics, components of our Φ-SO framework can
not only be used to improve the performance of algorithms built
upon Petersen et al. (2021a)ʼs framework (Landajuela et al.
2021b; DiPietro & Zhu 2022; Du et al. 2022; Landajuela et al.
2022), but can also be used in tandem with other approaches. For
instance, our in situ units prior can be used to reduce search
space in the context of probabilistic or exhaustive searches (Jin
et al. 2019; Kammerer et al. 2020; Brence et al. 2021; Bartlett
et al. 2023), by severing physically impossible symbolic links in
neuro-symbolic approaches (Brunton et al. 2016; Martius &
Lampert 2017; Sahoo et al. 2018; Kim et al. 2020; Panju &
Ghodsi 2020; Valle & Haddadin 2021; Zheng et al. 2022),
during the seeding or mutation phases of genetic programming
algorithms (Schmidt & Lipson 2009, 2011; Cava et al. 2019; La
Cava et al. 2019; Virgolin et al. 2019; Cranmer et al. 2020;
Cranmer 2020; de Franca & Aldeia 2021; Virgolin et al. 2021;
Stephens 2015; Kommenda et al. 2020; Landajuela et al. 2022)
or for making a physically motivated data set of expressions,
which in conjunction with enabling the RNN to be informed of
local units constraints, could improve the performance of
supervised approaches (Biggio et al. 2020, 2021; Becker et al.
2022; Kamienny et al. 2022; Landajuela et al. 2022; Vastl et al.
2022; Kamienny et al. 2023).

We recognize that in its current form, Φ-SO needs to be given
the physical units of the free parameters it is allowed to use.
Although this is typically not an issue for SR problems that tend
to fall on the more theoretical side as constants that can appear in
expressions if any are usually well known, in scenarios of novel
empirical scientific exploration, the appropriate selection and
units of free parameters may not be immediately evident. In such

scenarios, we suggest the inclusion of one free parameter for
each variable, matching their units. This approach grants Φ-SO
the flexibility to combine these parameters, or a subset thereof, to
derive the most coherent combination that seamlessly integrates
into the expression from a units perspective. As detailed in
Appendix B, utilizing this protocol enables Φ-SO to accurately
deduce formulae and the physical constants appearing in those.
Examples include the recovery of expression for the terminal
velocity during freefall, and its proportionality with the square
root of an acceleration, by adeptly combining a velocity with an
area to derive the acceleration parameter. In other examples, we
show that Φ-SO is able to effectively rediscover the universal
gravitational constant or the ideal gas constant along with their
units in addition to the expressions they intervene in.
Arguably, permitting a multitude of free parameters of

various physical units could inadvertently expand the search
space. While this is a valid observation, it is worth noting that
the algorithm remains significantly constrained, both by the
limited assortment of these parameters and by the inherent units
constraints between input variables, especially when consider-
ing dimensionless operations like cos,exp, and so forth.
Moreover, given that the algorithm combines parameters based
on the units of the variables and prioritizes solutions of lower
complexity, the units of new physical constants typically align
closely with the family of units of the problem, rather than
assuming arbitrary values. Finally, it is worth noting that in
addition to dimensional analysis constraints, another key
finding of our study is that making the neural network able
to observe units of symbols and currently required units in
partially written expressions while they are being generated
typically improves the recovery rate even without enforcing
constraints directly. However, resolving SR problems without
knowing a priori the units of the free parameters that can appear
in the expressions is typically more difficult. We acknowledge
this limitation and are actively considering future enhance-
ments to Φ-SO that would enable it to intelligently and
autonomously ascertain the units of its free parameters.
Our approach is based on a deep reinforcement learning

methodology, where the neural network is reinitialized at the
start of each SR task. It is therefore trained independently for
each specific problem, and so does not benefit from past
experience nor is it pretrained on a data set of well-known
physical functional forms. One could argue that this makes our
approach in principle unbiased akin to unsupervised learning
setups and therefore well suited for discovering new physics
(Karagiorgi et al. 2022). However, this also intrinsically limits
SR capabilities as exploiting such prior knowledge is of great
value for resolving the curse of accuracy-guided SR described
above. One can exploit such prior knowledge by formulating it
as an in situ prior (Guimerà et al. 2020; Kim et al. 2021) or by
learning on it in a supervised manner using transformer
learning techniques (Biggio et al. 2021; Kamienny et al. 2022;
Vastl et al. 2022; Bendinelli et al. 2023; Kamienny et al. 2023).
However, although state-of-the-art supervised SR methods, as
of now, shine in providing accurate approximations, they show
poorer exact symbolic expression recovery rates than other
methods (see, e.g., the performances of NeSymReS in Figure 4
or the ablation study conducted in Landajuela et al. 2022).
While the combination of supervised and reinforcement

learning may seem promising, Landajuela et al. (2022)
demonstrated that such a combination offers only marginal
enhancements in exact symbolic recovery. Nonetheless, in the

Figure 9. Example of the generalization capability of SR. Here we show
randomly drawn data points (black dots) from the damped harmonic oscillator
model given in Equation (12) (black line). The data are well fitted by an MLP
(green line), which however fails in regions beyond the range of the training
data (vertical-dotted lines). In contrast, our SR algorithm Φ-SO (red-dashed
line) manages to provide much more reliable extrapolation.
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age of large language models, there is potential to harness vast
internet-scale knowledge (see, e.g., Valipour et al. 2021). By
learning the association between data points and mathematical
expressions in realistic scenarios, and aligning with domain-
specific assumptions using supervised learning techniques, it is
conceivable to integrate this knowledge into a reinforcement
learning framework, as exemplified by Fan et al. (2022). This
approach might allow the recovery of expressions of
substantially greater complexity than those we have explored in
Section 5. In addition, while our approach generates a Pareto
front that gives accuracy complexity trade-offs, future
enhancements that integrate both complexity and accuracy
into a singular metric (as in Bartlett et al. 2023) could
potentially enhance SR performances and address model
selection challenges.

As we have shown in Section 5.3, it is straightforward to
improve our method by combining it with the powerful
problem simplification schemes devised in Udrescu & Tegmark
(2020), Udrescu et al. (2020), Luo et al. (2022), Tohme et al.
(2023), and Cranmer et al. (2020). The results of the
separability procedures implemented in the Udrescu et al.
(2020) algorithm are conveniently recorded in separate data
files, which makes it completely straightforward to use their
approach as a preprocessing step for Φ-SO. We anticipate that
integrating their method within our algorithm, following the
approach of Landajuela et al. (2022), should enhance the
performance of Φ-SO.

7. Conclusions

We have presented a new SR algorithm, built from the
ground up to make use of the highly restrictive constraint that
we have in the physical sciences that our equations must have
balanced units. The heart of the algorithm is an embedding that
generates a sequence of mathematical symbols, while cumula-
tively keeping track of their physical units. We adopt the very
successful deep reinforcement learning strategy of Petersen
et al. (2021a), which we use to train our RNN to not only
produce accurate expressions but physically sound ones by
making it learn local units constraints.

The algorithm was benchmarked and compared to 17 other
baseline SR approaches on 120 cases from the Feynman
Lectures on Physics (Feynman et al. 1971) and other textbooks.
The results demonstrated the usefulness of constraints arising
from dimensional analysis compared to Petersen et al. (2021a),
a purely reinforcement learning-based baseline approach. In
addition, our approach achieved state-of-the-art leading
performances in the presence of even minimal levels of noise
(exceeding 0.1%) and showing consistent performances up to
10% noise levels.

The algorithm was applied to several test cases from
astrophysics. The first was a simple search for the energy of
a particle in special relativity (Section 5.1), which our
algorithm was able to find, yet is a problem that the standard
Petersen et al. (2021a) code fails on. The second test case
applied the algorithm to the famous Hubble diagram of SNe of
type Ia. While the form of the Hubble parameter H(z) in

standard ΛCDM cosmology was indeed recovered, the
algorithm finds that other simpler solutions fit the SN data
(in isolation) better. This result is consistent with the findings
of Bartlett et al. (2023). Another test examined a relatively
complicated function in galactic dynamics, where we searched
for the functional form of the radial action coordinate in an
isochrone stellar potential model. This is an equation that
neither the Petersen et al. (2021a) nor the Udrescu et al. (2020)
methods are able to find. Although our algorithm initially failed
in this test, we managed to recover the correct equation by first
splitting the data set using the additive separability criterion as
implemented by Udrescu & Tegmark (2020).
These tests have demonstrated the applicability of the

algorithm to model data of the real world as well as to derive
nonobvious analytic expressions for properties of perfect
mathematical models of physical systems. Although we realize
that the physical laws potentially discovered by our method
will depend on data range, choice of priors, etc., this is a step
toward a fully agnostic method for connecting observational
data to theory. Future contributions in this research program
will extend the algorithm to allow for differential and integral
operators, potentially permitting the solution of ordinary and
partial differential equations with physical units constraints.
However, our primary goal will be to use the new machinery to
discover as yet unknown physical relationships from the state-
of-the-art large surveys that the astrophysical community has at
its disposal.

Code Availability

The documented code for the Φ-SO algorithm along with
demonstration notebooks are available on GitHub github.com/
WassimTenachi/PhySO with a frozen version related to this
work deposited on Zenodo (Tenachi et al. 2023).
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Appendix A
Data Sets for the Astrophysical Examples

This appendix gives details regarding the synthetic data sets
for the astrophysical examples. For each case, we generate
1000 noiseless data points following a random uniform law
using arbitrary scales for the mock data. Table 6 gives the
target expressions and Tables 7 and 8 give details regarding the
variables and constants appearing in those expressions.
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Appendix B
Discovering Both Analytical Laws and Constants of Nature

We note that for new scientific discovery, there are instances
where the appropriate free parameters and their corresponding
units are not immediately evident. In such situations, we
propose a protocol wherein Φ-SO is allowed one free parameter
for each input variable, sharing the same units, and another free
parameter reflecting the units of the output variable. Specifi-
cally, for an SR problem consisting of the deduction of y from
{x1,...xn}, we would permit the inclusion of q q q{ }, ,...y x xn1 as
free constants. This grants Φ-SO the flexibility to selectively
combine or omit these free parameters to construct new
parameters that align with dimensional analysis constraints. In
light of these combinations, we adjust the center of the soft
length prior to a length of 12, facilitating longer expressions.

In this more demanding setup, we demonstrate that Φ-SO
can adeptly resolve the SR challenges outlined in Table 9 (with
data set details given in Tables 10 and 11), yielding both the
precise symbolic expressions and their corresponding physical
constants with accurate units. The scripts employed for these
experiments are accessible in our repository.

For illustration, Φ-SO successfully derives the equation
describing the equation of state of an ideal gas =P C nT

V
with

= q q
q q

C P V

n T
having units M.L2.T−2.K−1.N−1 effectively redisco-

vering the ideal gas constant usually denoted by R. Similarly,
Φ-SO is able to recover the expression for the terminal velocity
of a freefalling object as a function of its mass m, its surface
area A and the density of the medium it traverses ρ as
=

r
v Ct

m

A
by unveiling its proportionality to the square root

of an acceleration C , formulated by Φ-SO as q qv At ,
corresponding to Earth's surface gravity g and other scale
factors. Furthermore, Φ-SO identifies the gravitational force in

Table 7
Data Range and Units of the Output and Input Variables Appearing in the Astrophysical Examples

Output Variable 1 Variable 2 Variable 3

Name Units Name Range Units Name Range Units Name Range Units

E M.L2.T−2 m [−10, 10] M v [−9, 9] L.T−1 K K K
Jr L2.T−1 L [2.3, 3] L2.T−1 E [−4, −6] M.L2.T−2 K K K
ρ M.L−3 r [0.2, 3] L K K K K K K
y 1 t [1.5π, 7π] T K K K K K K
F M.L.T−2 m1 [0, 1] M m2 [0, 1] M r [1, 4] L
H2 T−2 z [0.01, 2.5] 1 K K K K K K

Table 6
Astrophysical Examples of Target Expressions

Case Expression

Relativistic energy =
-

E mc

v c1

2

2 2

Isochrone action = - + -
- ( )J L L GMb4r
GM

E2

1

2

1

2
2

NFW profile r r= +( )1r

R

r

R0

2

s s
⎛
⎝

⎞
⎠

Damped harmonic oscillator w= + Fa- ( )y e tcost

Classical gravity =F Gm m

r
1 2
2

Expansion law º + = W + - W( ) ( ( ))H x z H x1 1m m
2

0
2 3

Table 8
Target Value and Units of Constants Appearing in the Astrophysical Examples

Constant 1 Constant 2 Constant 3

Name Value Units Name Value Units Name Value Units

c 10 L.T−1 K K K K K K
GM 0.467 L3.T−2 b 1.234 L K K K
rs 1.391 L ρ0 0.984 M.L−3 K K K
ω 0.784 T−1 α 0.101 1 f 0.997 1
G 1.184 L3.M−1.T−2 K K K K K K
H0 1.072 T−1 Ω 1.315 1 K K K

Table 9
Target Expressions

Case Expression

Ideal gas law =P
nRT

V
Freefall terminal velocity

r
=v

mg

AC

2
t

d

Classical gravity =F
Gm m

r
1 2
2

Blackbody photon count = -
n

( )n e1 1
h

k Tb

Wave interference = + + + DFE E E E E2 cos1 2 1 2
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relation to the involved masses m1, m2 and distance r as
F=Cm1m2/r

2 discovering the need for a constant C having
units L3.T−2.M formulated by Φ-SO as q q q=C F r m

2 2
1 ,

effectively rediscovering the gravitational constant G in the
process. In another scenario, deriving the number density of
photons recovered from a blackbody at any given temperature
T and frequency ν, Φ-SO is able to recover n= 1/(e νC/ T− 1),
where C represents the quotient C= h/kb, h, and kb, denoting
the Planck and Boltzmann constants, respectively. In most of
the aforementioned cases, Φ-SO judiciously combined a subset
of the available free parameters to pinpoint the precise
constants needed to resolve the SR problems through a
physically consistent physical law. In this last example, we
show that Φ-SO recognizes scenarios where free parameters are
largely redundant as it is able to derive the energy E resultant
from the interference of two waves, given their energies E1, E2,
and their phase shift ΔΦ without the need for any
of q q q{ }, ,E E E1 2

.
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