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ABSTRACT

Diffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are
probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Galactic distribution
and properties of two DIBs identified in almost six million stellar spectra collected by the Gaia Radial Velocity Spectrometer. These
measurements constitute a part of the Gaia Focused Product Release to be made public between the Gaia DR3 and DR4 data releases.
In order to isolate the DIB signal from the stellar features in each individual spectrum, we identified a set of 160 000 spectra at high
Galactic latitudes (|b|⩾ 65◦) covering a range of stellar parameters which we consider to be the DIB-free reference sample. Matching
each target spectrum to its closest reference spectra in stellar parameter space allowed us to remove the stellar spectrum empirically,
without reference to stellar models, leaving a set of six million ISM spectra. Using the star’s parallax and sky coordinates, we then
allocated each ISM spectrum to a voxel (VOlume piXEL) on a contiguous three-dimensional grid with an angular size of 1.8◦ (level
5 HEALPix) and 29 unequally sized distance bins. Identifying the two DIBs at 862.1 nm (λ862.1) and 864.8 nm (λ864.8) in the
stacked spectra, we modelled their shapes and report the depth, central wavelength, width, and equivalent width (EW) for each, along
with confidence bounds on these measurements. We then explored the properties and distributions of these quantities and compared
them with similar measurements from other surveys. Our main results are as follows: (1) the strength and spatial distribution of the
DIB λ862.1 are very consistent with what was found in Gaia DR3, but for this work we attained a higher signal-to-noise ratio in the
stacked spectra to larger distances, which allowed us to trace DIBs in the outer spiral arm and beyond the Scutum–Centaurus spiral
arm; (2) we produced an all-sky map below ±65◦ of Galactic latitude to ∼4000 pc of both DIB features and their correlations; (3) we
detected the signals of DIB λ862.1 inside the Local Bubble (≲200 pc); and (4) there is a reasonable correlation with the dust reddening
found from stellar absorption and EWs of both DIBs with a correlation coefficient of 0.90 for λ862.1 and 0.77 for λ864.8.
Key words. ISM: lines and bands – dust, extinction

1. Introduction

Diffuse interstellar bands (DIBs) are a set of ubiquitous inter-
stellar absorption features that primarily exist in the optical and
near-infrared wavelength range (about 0.4–2.4µm) of the spec-
tra of stars (Fan et al. 2019; Hamano et al. 2022; Ebenbichler
et al. 2022), galaxies (e.g. Monreal-Ibero et al. 2018), and
distant quasars (e.g. Monreal-Ibero et al. 2015). DIBs presum-
ably originate from the electronic transitions of carbon-bearing
molecules and are now well recognized as the signatures of
complex molecules (Tielens 2014), although the exact species
of their carriers remain largely unidentified. Based on high-
resolution spectrometry, DIBs can be used to probe the variation
of the interstellar environments in clouds (Cordiner et al. 2013),
and reveal the physical and chemical process of the interstellar
medium (ISM; Welty 2014) and the formation and development
of chemical complexity in space (Tielens 2014).

While in the past DIB studies were mainly concentrated
on small dedicated sample sizes, large Galactic spectroscopic

surveys during the last decade such as Gaia–ESO, APOGEE,
SDSS, RAVE, and GALAH have given rise to numerous DIB
detections in our Milky Way (e.g. Puspitarini et al. 2015;
Zasowski et al. 2015; Elyajouri & Lallement 2019; Lan et al.
2015; Baron et al. 2015b; Kos et al. 2013; Vogrinčič et al.
2023), which has enabled the investigation of the kinematics
(Zasowski et al. 2015; Zhao et al. 2021b) and three-dimensional
(3D) distribution (Kos et al. 2014) of DIB carriers that trace the
large-scale structures of our Milky Way. The latest Gaia data
release 3 (DR3) contains the largest catalogue so far for the
DIB at 862.1 nm in air (λ862.1). DIB λ862.1 was detected and
measured in Gaia Radial Velocity Spectrometer (RVS; Seabroke
et al. 2021) spectra of individual stars, by the General Stellar
Parametrizer from spectroscopy (GSP-Spec) module (Recio-
Blanco et al. 2023) of the Astrophysical parameters inference
system (Apsis; Bailer-Jones et al. 2013; Creevey et al. 2023).
Productive analysis and results of the DR3 DIB catalogue were
performed and presented in Gaia Collaboration (2023, here-
after S23) in which we built a map of the median DIB λ862.1
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strength, covering all the longitudinal directions, mainly within
3 kpc from the Sun and 1 kpc above and below the Galactic
plane. The rest-frame wavelength of λ862.1 was determined as
λ0 = 8623.23 ± 0.019 Å in vacuum. An average scale height for
the carrier of λ862.1 was estimated as 98.60+11.10

−8.46 pc assuming
a simple exponential distribution of the carrier perpendicular
to the Galactic plane. The longitudinal variations of the radial
velocity of the λ862.1 carrier were clearly shown as well.

Nevertheless, due to the limitation of the signal-to-noise
ratio (S/N) of the individual RVS spectra, DIB λ862.1 could be
successfully measured in only ∼10% of RVS objects. Restrict-
ing the DIB sample further to reliable high-quality measurement
reduced the sample to only ∼140 000 (see S23 Sect. 3 for the
definition of the high-quality sample). Another major limitation
is the usage of synthetic spectra in the process of measuring
the DIB (Recio-Blanco et al. 2023), assuming that they repre-
sent the stellar components in the observed spectra perfectly.
The complexity of the description of the full stellar physics in
stellar atmosphere models as well as uncertainties in the atomic
line list could easily lead to inappropriate modelling of stel-
lar lines around the DIB signal, which would introduce further
uncertainties in the fitting of the DIB profile.

To overcome the disadvantage of using synthetic spectra
and the constraint of the S/N of individual RVS spectra for
DIB measurement, we developed an Apsis module of the Gaia
Data Processing and Analysis Consortium (DPAC), called Gaia
DPAC/DIB-Spec, which processed 6.8 million RVS spectra and
conducted new DIB measurements. To avoid using synthetic
spectra, Kos et al. (2013) developed a data-driven method, called
the BNM, to detect DIB signals in the spectra of late-type stars
using artificial stellar templates constructed from real spectra
observed at high latitudes that have a similar morphology to
the spectrum of the target star but are likely to be free of the
signature of ISM, in analogy to the distribution of interstellar
extinction. Zhao et al. (2022, hereafter Z22) applied BNM to
the publicly available RVS spectra within Gaia DR3 where they
confirmed the presence of the weak DIB at 864.8 nm1 in RVS
spectra. On the other hand, stacking spectra in a given spatial
volume would significantly increase the S/N of spectra and thus
allows the detection of much weaker DIB signals (e.g. Kos et al.
2013; Baron et al. 2015b; Lan et al. 2015; Zhao et al. 2022, 2023).
With these two techniques, DIB-Spec could detect and measure
DIB signals in more distant zones compared to the results in DR3
and reveal the large-scale spatial distribution of the DIB car-
riers (stacking reduces the spatial resolution). Furthermore, an
increased S/N of stacked spectra enables DIB-Spec to measure
DIB λ864.8 as well. The Gaia Focused Product Release (FPR)
contains the parameters of two DIBs, λ862.1 and λ864.8, fitted
by DIB-Spec and the stacked ISM spectra (spectra only contain-
ing interstellar features) in each defined VOlume piXEL (voxel,
or 3D display element). The aim of this paper is to introduce the
DIB-Spec module and present a preliminary analysis of the DIB
measurements.

The paper is outlined as follows: A brief description of the
input Gaia RVS spectra is provided in Sect. 2. Section 3 explains
the pipeline of the DIB-Spec module, including the construc-
tion of target and reference samples, deriving ISM spectra, the
stacking of ISM spectra, and the DIB measurement. Section 4
describes and discusses in detail the outputs of DIB-Spec, the
fitted DIB parameters, and their stacked ISM spectra. The per-
formed validation of DIB-Spec outputs are presented in Sect. 5.

1 The accurate rest-frame wavelength of the DIB λ864.8 has not
been determined, and we therefore name it λ864.8 following previous
suggestions.

Fig. 1. Schematic workflow of the DIB-Spec module.

We discuss in Sect. 6 detections of DIB λ862.1 inside the Local
Bubble. We finish with some caveats about the usage of the
DIB-Spec outputs in Sect. 7 and our main conclusions in Sect. 8.

2. Input Gaia RVS data

The input data for DIB-Spec are based on the Gaia RVS spec-
tra that were processed by the Gaia DPAC Coordination Unit
6 (CU6). The processing includes removal of cosmic rays,
wavelength calibration, normalization to the continuum, and
resampling from 846 to 870 nm with a spacing of 0.01 nm
(2400 wavelength bins, Sartoretti et al. 2018, 2023). The resolv-
ing power is R= λ/∆λ∼ 11500 (Cropper et al. 2018). The RVS
spectra were then processed by GSP-Spec to estimate their stel-
lar atmospheric parameters (effective temperature Teff , surface
gravity log g, metallicity [M/H], and [α/Fe]) without taking
into account any post-processing steps. The RVS spectra were
renormalized and rebinned by GSP-Spec, from 2400 to 800
wavelength bins, sampled every 0.03 nm to increase their S/N.
In total, there are 6 862 982 RVS spectra with S/N ⩾ 20 (S/N is
provided by the CU6 analysis Seabroke et al. 2021). These RVS
spectra, normalized by GSP-Spec, and their stellar atmospheric
parameters, as well as three other parameters (parallax ϖ, stel-
lar radial velocity Vrad, and the velocity uncertainty σVrad ), are
used as the basic input for DIB-Spec. We want to stress that the
stellar atmospheric parameters are only needed to speed up the
procedure of deriving ISM spectra (see Sect. 3.2) but are not
indispensable in the data-driven method. We also note that not all
the 6.8 million spectra have published stellar parameters in Gaia
DR3 (about 1.2 million were filtered out), but their parameter
distributions are shown in this paper, like Fig. 5.

3. The pipeline of the DIB-Spec module

Figure 1 shows the general overview of the pipeline of DIB-
Spec module, which was operated by CU8 at the Data Processing
Center CNES (DPCC) in Toulouse, France.

DIB-Spec contains three main steps, which are explained in
detail below. First, based on the quality of the RVS spectra and
the results of GSP-Spec, DIB-Spec builds two samples: a sam-
ple of ‘target’ stars whose spectra are expected to contain DIB
signals, and a sample of ‘reference’ stars at high latitudes whose
spectra have presumably no DIB features. Second, the reference
spectra are used to derive the ISM spectra for each target star.
Finally, DIB-Spec stacks the ISM spectra of individual target
stars in each voxel and fits the two DIBs in the stacked ISM
spectra.
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Fig. 2. Galactic spatial density distribution of the 6 143 681 RVS spectra
used in DIB-Spec. This HEALPix (Górski et al. 2005) map has a level
of 7, corresponding to a spatial resolution of 0.46◦.

Fig. 3. Gaia G–band magnitude distribution of the 6 143 681 RVS
objects used in DIB-Spec.

3.1. Target and reference samples

The RVS objects must fulfil a set of requirements in order to
be retained in the DIB-Spec analysis. First, the RVS objects
must have a measurement of Vrad derived from CU6 with
σVrad ⩽ 5 km s−1, because their ISM spectra have to be shifted
from the stellar frame (as provided by CU6) back into the helio-
centric frame before stacking. Then, the parallax must be above
0.1 mas, which corresponds to objects within 10 kpc if they have
small parallax uncertainties. We expect to detect the DIB sig-
nals in very distant zones, but it should be noted that most of the
RVS objects (91.5%) are within 4 kpc (see Fig. 5). These crite-
ria result in a set of 6 143 681 objects to be used. Their number
density distribution in Galactic coordinates and G–band magni-
tude distribution are shown in Figs. 2 and 3, respectively. Most
of these RVS objects are located close to the Galactic plane and
their G–band magnitudes are mainly within 8–14 mag.

The selected stars are separated into two sets according to
their Galactic latitudes: 5 983 289 target stars with |b|< 65◦ and,
160 392 reference stars with |b|⩾ 65◦. The DIB strength has a
strong dependence on the Galactic latitude since the stars at high
latitudes usually contain very weak DIB signals in their spec-
tra (see the maps of DIB strength in Lan et al. 2015, Baron
et al. 2015a, and S23 for example). In Gaia DR3, we detected
λ862.1 in 247 sightlines with |b|⩾ 65◦ in the high-quality sam-
ple (∼140 000 in total) of the DIB catalogue (see Sect. 3 in
S23). Their mean depth is only 1.5% of the continuum with
a very small mean A0 (monochromatic extinction at 541.4 nm
Fitzpatrick 1999) of 0.104 mag estimated by the Total Galactic

Fig. 4. Distribution of A0 from Gaia TGE map (Delchambre et al. 2023)
for 160 392 reference stars.

extinction (TGE) map of Gaia DR3 (Delchambre et al. 2023).
The mean A0, on the other hand, for the reference stars is
0.103 mag (see Fig. 4). Therefore, 1.5% would be the maximum
error we expect in the derived ISM spectra within the DIB region
of target spectra introduced by the possible DIB signals at high
latitudes when using the reference spectra. It should be noted that
the real errors could be much lower because the TGE map would
overestimate A0 for nearby stars. Furthermore, as discussed in
Kos et al. (2013), any stars with unusually high extinctions or
strong DIBs will be averaged out because the stellar template
is produced by averaging several reference spectra. In summary,
the reference spectra could be treated as DIB-free spectra and
used to model stellar components in the DIB region of the target
spectra.

The target and reference stars have a similar distribution
in Teff , log g, and [M/H] (Fig. 5). Therefore, most of the tar-
get spectra should have enough neighbour candidates selected
by comparing their atmospheric parameters (see Sect. 3.2 for
more details) to model their stellar components. The target and
reference samples also have a similar distribution of spectral
S/N, although the reference sample has a higher proportion
of nearby stars (87.5% within 1 kpc) compared to the target
sample (47.1%).

3.2. Derivation of ISM spectra for individual targets
with the BNM

To detect and measure the two DIBs, λ862.1 and λ864.8, in
target spectra, the stellar components need to be subtracted by
the BNM. We follow here the main principles in Kos et al.
(2013). For each target, BNM selects a set of reference spectra
with similar spectral morphology to that of the target spectrum
and combines them by averaging their normalized flux weighted
by the spectral S/N to build the stellar template for the target
spectrum. In practice, BNM first constrains the stellar atmo-
spheric parameters (from GSP-Spec) of the reference stars, to
be around the values of the target, in the ranges Teff ± 20%,
log g± 0.6 dex, and [M/H]± 0.4 dex. The ranges follow those in
Kos et al. (2013). This step reduces the number of considered
reference stars and consequently speeds up the procedure.

To compare the spectral morphology between the target and
reference spectra, we first calculate the absolute difference and
their normalized fluxes at each wavelength bin. Then we take
the weighted mean of these flux differences, where the inverse
of the weighted mean can be seen as the similarity of the
spectral morphology. The weights are set to 0.0 in the range 860–
868 nm where the two DIBs are located, and to 1.0 elsewhere. An
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Fig. 5. Distribution of Teff , log g, [M/H], the distance of stars, and spectral S/N for both reference stars (in red) and target stars (in blue). These
parameters have not been filtered out in the post-processing.

exception to this is the central regions of the Ca II lines (849.43–
851.03 nm and 853.73–855.73 nm) where the weights are set to
0.7 because the Ca II lines are dominating the RVS spectra of
cool stars but do not affect the DIB measurements which rely
more heavily on the modelling of the Fe I lines (Kos et al. 2013;
Z22). Reference spectra with similarity values smaller than three
times the S/N of the target spectrum are discarded. The remain-
ing spectra are sorted by decreasing similarity, and the first 200
at most are selected as the best neighbours for the given target
spectrum, as best neighbours do not significantly increase the
accuracy of the stellar template (Z22). We note that the neigh-
bourhood used in BNM refers to the parameter space rather
than the physical space, that is the best neighbours and target
should have similar stellar parameters and spectral morphology,
but not necessarily similar sky positions. The best neighbours
are averaged with their spectral S/N as weights in order to build a
stellar template. The ISM spectrum is defined as the target spec-
trum divided by the stellar template. If the number of the best
neighbours is less than 10, no stellar template or ISM spectrum
is generated. DIB-Spec successfully generated stellar templates
for 4 595 489 target spectra (76.8% of the target sample) and
consequently derived their ISM spectra.

An illustration of BNM is shown in Fig. 6: the main steps
are summarized on the left side and an example is presented
on the right side. We made a test of BNM with the reference
sample (see Appendix A for details) and found that the per-
formance depends strongly on the spectral S/N. For S/N > 50,
the average flux residuals between the RVS spectra and the
derived stellar templates are mainly within 0.02 in the DIB win-
dow (861.2–866.0 nm). While the residuals also vary with the
stellar atmospheric parameters, which is caused by the change
in the number density of stars and the accuracy of GSP-Spec

light for different types of stars. As BNM constrains the SED
similarity by S/N and requires at least ten best neighbours
for a given target spectrum, a target star that has an incor-
rect spectral type (e.g. an early-type star gains a very low Teff)
or rare reference stars in its vicinity will not get a generated
stellar template.

3.3. Stacking and fitting in each voxel

The ISM spectra of individual targets are stacked in each voxel
according to their equatorial coordinates (α, δ) and the distances
(1/ϖ) to the target stars to get a much higher spectral S/N than
individuals’ for a reliable measurement of the two DIBs. As the
DIB carriers should be located between the observer and the
background star, we measure in each voxel the sum of the DIB
materials from the observer up to the voxel. Considering the
size of each voxel, the measured DIB feature would be averaged
according to the spatial and distance resolution of the voxels. The
pixelation in (α, δ) is done at level 5 in the HEALPix2 scheme
(Górski et al. 2005), corresponding to 12 288 pixels with an
equivalent spatial resolution of 1.8◦. For the binning in distance,
we selected some adaptive steps instead of a uniform bin size
because the distribution of the target stars is inhomogeneous in
space. Furthermore, as the resolution of the sky (α, δ) is fixed
as 1.8◦, we would like to get as high a resolution in distance as
possible, especially for nearby regions.

The S/N of the stacked spectra is a good criterion for deter-
mining the size of the distance bins, but the main restriction
is that DIB-Spec runs with defined distance bins as input.
Therefore, we cannot use the derived ISM spectra of individ-
ual stars, which were intermediate products of DIB-Spec, to

2 https://healpix.sourceforge.io
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Fig. 6. Illustration of deriving ISM spectra for individual targets. Left: Schematic view of each main step. Detailed explanations are in Sect. 3.2.
Right: Example for a target (Gaia ID: 4169294186397475072) having Teff = 4445+15

−11 K, log g= 1.86± 0.03 dex, [M/H]= 0.12+0.02
−0.01 dex, and spectral

S/N of 110.3. From top to bottom panels: 1) Observed RVS spectrum of this target; 2) First 24 best neighbours for this target; 3) The black line
is the target spectrum and the blue line is its stellar template built by averaging 200 best neighbours; 4) Derived ISM spectrum for this target.
The positions of the two DIBs are also indicated. The orange shades indicate the regions of two Ca II lines where the weights are set to 0.7 when
comparing the target spectrum and reference spectra. The cyan region (860–868 nm) indicates the spectral window used for fitting the two DIBs,
with a masked region (green, 866.0–866.8 nm) during the fitting because of the residuals of the Ca II line.

find the best solution for the adaptive distance bins. Instead,

S/N′ =
√∑

S/N2
i , where S/Ni is the S/N of the ith individ-

ual RVS spectra in a voxel, is used to characterize the stacked
ISM spectra in each voxel. The size of the distance bins was
determined by the requirement that in each bin the number of
HEALPixels having S/N′ ⩾ 200 is larger than 85% of the total
when distance is smaller than 4.5 kpc. And a constant size of
0.5 kpc was applied for bins between 4.5 and 10 kpc. In this
way, there are finally 29 distance bins whose ranges are listed
in Table 1, together with the number of HEALPixels in each
bin with at least one target star. Certainly, S/N′ would be much
higher than the true S/N of the stacked ISM spectra, as it does
not account for the uncertainty caused by the subtraction of stel-
lar components. In fact, only ∼50% voxels within 4.5 kpc have
S/N ⩾ 200 (here is the truly calculated S/N of the stacked ISM
spectra, see its definition below). Table 1 lists the fraction of
S/N ⩾ 200 in each distance bin. The fraction could exceed 85%
when we consider S/N⩾ 150, but it will also significantly reduce
beyond 1.67 kpc.

The ISM spectra are stacked in each voxel by taking, in
each wavelength bin, the median value of the fluxes in order to
reduce the influence of the outliers. The flux uncertainty at each
wavelength bin is taken as the mean of the individual flux uncer-
tainties divided by

√
Ntar. The S/N of the stacked ISM spectra is

calculated between 860.2 and 861.2 nm as mean(flux)/std(flux).
For the profiles of the two DIBs, λ862.1 was usu-

ally assumed to have a Gaussian profile in previous studies

(e.g. Kos et al. 2013; Zhao et al. 2021a). Although some depar-
tures from a Gaussian profile were reported (e.g. Krełowski
et al. 2019), the origin is more like the superposition of multi-
ple DIB clouds, as no evidence supports an intrinsic asymmetry
of the λ862.1 profile. Thus, we still assume a Gaussian pro-
file for λ862.1 in this work and treat the possible departures
as a source of uncertainty. Rare studies of λ864.8 make it
harder to determine the shape of its profile. Zhao et al. (2022)
chose a Lorentzian profile as it showed smaller residuals on the
ISM spectra compared to a Gaussian profile. Additionally, the
Lorentzian profile has been proved to be appropriate for the very
broad DIB λ442.8 (Snow 2002) while λ864.8 has a broad pro-
file as well. Therefore, DIB-Spec models the profiles of the two
DIBs in stacked ISM spectra by a Gaussian function (Eq. (1)) for
λ862.1, a Lorentzian function (Eq. (2)) for λ864.8, and a linear
function for continuum (Eq. (3)):

G(λ;D, λDIB, σDIB) = −D × exp
− (λ − λDIB)2

2σ2
DIB

 , (1)

L(λ;D, λDIB, σDIB) =
−(Dσ2

DIB)

(λ − λDIB)2 + σ2
DIB

, (2)

C(λ; a0, a1) = a0 × λ + a1, (3)

where D and σDIB are the depth and width of the DIB profile,
λDIB is the measured central wavelength, a0 and a1 describe the
linear continuum, and λ is the wavelength. Subscripts ‘862.1’
and ‘864.8’ are used to distinguish the profile parameters of the
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Table 1. Distance bins defined for the stacking of ISM spectra.

Distance bin (pc) Pixel number(a) S/N ⩾ 200 (%)

0–130 11 179 48.7%
130–200 11 202 67.3%
200–270 11 204 68.0%
270–350 11 207 66.6%
350–430 11 203 52.9%
430–530 11 204 50.2%
530–650 11 200 48.4%
650–780 11 189 51.3%
780–950 11 167 64.8%

950–1150 11 146 66.1%
1150–1400 11 135 63.4%
1400–1670 11 093 53.0%
1670–2000 11 008 46.3%
2000–2250 10 656 30.9%
2250–2550 10 416 27.3%
2550–2950 10 050 27.3%
2950–3500 9464 26.1%
3500–4500 9060 25.0%
4500–5000 6659 7.9%
5000–5500 5943 5.2%
5500–6000 5164 3.0%
6000–6500 4528 1.2%
6500–7000 3876 0.5%
7000–7500 3392 0.3%
7500–8000 2959 0.1%
8000–8500 2541 0.0%
8500–9000 2147 0.1%
9000–9500 1838 0.0%

9500–10000 1598 0.1%

Notes. (a)Number of HEALPixels with Ntar ⩾ 1 in each distance bin.

two DIBs. The full DIB model, MΘ, is the sum of Eqs. (1)–(3),
where Θ = {D862.1, λ862.1, σ862.1,D864.8, λ864.8, σ864.8, a0, a1} are
the adjusted model parameters. Given the stacked ISM spec-
trum {λ, y, σy}, where y is the normalized flux and σy is the
flux uncertainty, and the unnormalized posterior probability
density function (PDF) is P(Θ|y) ∝ P(y|Θ)P(Θ). P(y|Θ) is the
likelihood:

P(y|Θ) =
1

√
2πσy

exp
− 1

2σ2
y

(y − MΘ)2
 , (4)

and P(Θ) represents the prior distributions of the parameters.
Flat and independent priors were applied for the DIB param-
eters, that is 0–0.2 for D862.1 and D864.8, 861.2–863.0 nm for
λ862.1, 863.0–866.0 nm for λ864.8, 0.01–0.5 nm for σ862.1, and
0.1–1.5 nm for σ864.8. No priors were used for a0 and a1.

The optimization of the eight parameters – three for each
DIB plus two for the continuum – was done by sampling their
full posterior distributions. We note that during the optimization,
a masked region was applied between 866.0 and 866.8 nm for the
residuals Ca II that were caused by downweighting the central
regions of Ca II lines in the BNM (see Sect. 3.2). A Markov chain
Monte Carlo (MCMC) procedure (Foreman-Mackey et al. 2013)
was performed to implement the parameter estimates. The ini-
tial guess ofD and λDIB were determined by averaging flux near
the lowest point (5 pixels) within 861.2–863.0 nm and 863.5–
866.0 nm for λ862.1 and λ864.8, respectively. And initial σDIB

Fig. 7. Examples of the fits to DIBs λ862.1 and λ864.8 in stacked ISM
spectra in five voxels in the same direction, whose HEALPix number
(Ipix = 10 450) and GC (ℓc, bc)= (322.43◦,−0.44◦) are marked in the top
panel. The black and red lines are the ISM spectra and fitted DIB pro-
files, respectively, normalized by the fitted linear continuum. The error
bars indicate the flux uncertainties at each pixel. Orange indicates the
region that was masked during the fittings. The central heliocentric dis-
tance (dc), the number of target spectra (Ntar), mean E(BP−RP), EWs
of two DIBs, and the S/N of the stacked ISM spectrum in each voxel are
indicated as well.

was fixed as 0.12 nm for λ862.1 and 0.4 nm for λ864.8. a0 and a1
were initially set as 0 and 1 as well. One hundred walkers were
progressed for 250 steps to complete the burn-in stage. The best
fits derived by the last 200 steps were then used as the initial
conditions to sample the posterior with 100 walkers and 2000
steps. The best estimates and their statistical uncertainties were
taken in terms of the 50th, 16th, and 84th percentiles of the pos-
terior PDF drawn from the last 1500 steps. According to Eqs. (1)
and (2), the equivalent width (EW) for λ862.1 is calculated as

EW862.1 =
√

2π ×D862.1 × σ862.1, (5)

and for λ864.8 as

EW864.8 = π ×D864.8 × σ864.8. (6)

The lower (16%) and upper (84%) confidence levels of EW
were estimated byD and σDIB drawn from the MCMC posterior
samplings. Specifically, each {D, σDIB} pair sampled during the
MCMC fitting was used to calculate one value of EW, and finally
we had an EW distribution from which the 16th, 50th, and 84th
percentile values were calculated.
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Table 2. Column names and their descriptions of the parameter table of DIB-Spec (interstellar_medium_params).

Column Name Unit Description

1 solution_id – Solution identifier
2 healpix – HEALPix identification
3 lc deg Central Galactic longitude of each voxel
4 bc deg Central Galactic latitude of each voxel
5 dc kpc Central heliocentric distance of each voxel
6 n_targets – Number of target stars in each voxel
7 snr – S/N of the stacked ISM spectrum
8 ew8620 nm Equivalent width of DIB at 862.1 nm (EW862.1)
9 ew8620_lower nm Lower confidence level (16%) of equivalent width of DIB λ862.1
10 ew8620_upper nm Upper confidence level (84%) of equivalent width of DIB λ862.1
11 flags8620 – Quality flag of the parameters of DIB at 862.1 nm
12 p08620 – Depth of DIB at 862.1 nm (D862.1)
13 p08620_lower – Lower confidence level (16%) of depth of DIB λ862.1
14 p08620_upper – Upper confidence level (84%) of depth of DIB λ862.1
15 p18620 nm Central wavelength of DIB at 862.1 nm (λ862.1)
16 p18620_lower nm Lower confidence level (16%) of central wavelength of DIB λ862.1
17 p18620_upper nm Upper confidence level (84%) of central wavelength of DIB λ862.1
18 p28620 nm Gaussian width of DIB at 862.1 nm (σ862.1)
19 p28620_lower nm Lower confidence level (16%) of Gaussian width of DIB λ862.1
20 p28620_upper nm Upper confidence level (84%) of Gaussian width of DIB λ862.1
21 ew8648 nm Equivalent width of DIB at 864.8 nm (EW864.8)
22 ew8648_lower nm Lower confidence level (16%) of equivalent width of DIB λ864.8
23 ew8648_upper nm Upper confidence level (84%) of equivalent width of DIB λ864.8
24 flags8648 – Quality flag of the parameters of DIB at 864.8 nm
25 p08648 – Depth of DIB at 864.8 nm (D864.8)
26 p08648_lower – Lower confidence level (16%) of depth of DIB λ864.8
27 p08648_upper – Upper confidence level (84%) of depth of DIB λ864.8
28 p18648 nm Central wavelength of DIB at 864.8 nm (λ864.8)
29 p18648_lower nm Lower confidence level (16%) of central wavelength of DIB λ864.8
30 p18648_upper nm Upper confidence level (84%) of central wavelength of DIB λ864.8
31 p28648 nm Lorentzian width of DIB at 864.8 nm (σ864.8)
32 p28648_lower nm Lower confidence level (16%) of Lorentzian width of DIB λ864.8
33 p28648_upper nm Upper confidence level (84%) of Lorentzian width of DIB λ864.8
34 dibcont_a0 – Slope of the linear continuum fitted to the stacked ISM spectrum (a0)
35 dibcont_a0_lower – Lower confidence level (16%) of the slope of continuum
36 dibcont_a0_upper – Upper confidence level (84%) of the slope of continuum
37 dibcont_a1 – Intercept of the linear continuum fitted to the stacked ISM spectrum (a1)

Figure 7 shows examples of the fits for five stacked ISM
spectra in voxels towards the same direction, that is HEALPixel
number of 10 450, corresponding to Galactic coordinates of the
voxel of (ℓc, bc)= (322.43◦,−0.44◦). With increasing voxel cen-
tral heliocentric distance (dc) from top to bottom, EW862.1 and
mean E(BP−RP) measured by GSP-Phot (Andrae et al. 2023)
both increase and show a good correlation with each other (these
values are indicated in Fig. 7). The profiles of λ862.1 are strong
and prominent in all these voxels. On the other hand, the S/N
of the stacked ISM spectra and the number of target spectra
(Ntar) decrease with distance. Consequently, the fit to the profile
of λ864.8 becomes worse in voxels with dc = 2.40 and 3.23 kpc
(bottom panels in Fig. 7) as the very broad and shallow profile of
λ864.8 is more affected by the stellar residuals and uncertainties
introduced by BNM and stacking than λ862.1.

The corner plots of these examples, presenting the one- and
two-dimensional projections of the posterior distributions of the
fitted parameters, are shown in Figs. B.1–B.5, respectively. The
corner plots clearly show that the MCMC fitting is converged and
the posterior PDF of all the parameters is Gaussian.D and σDIB
are correlated with each other during the fitting for both λ862.1

and λ864.8. The depth and central position of λ862.1 (D862.1
and λ862.1) are not sensitive to the continuum placement (a0 and
a1), while σ862.1 presents a weak correlation with a0 and a1. The
continuum placement has a heavier effect on the broad and
shallow profile of λ864.8.

4. DIB-Spec outputs

DIB-Specsuccessfully fitted the two DIBs in 235 428 voxels.
This is less than the total number (356 352) of a level 5 HEALPix
binning × 29 distance bins, which is due to discarding voxels
with no target stars (targets with failed generated stellar tem-
plates were not included as well). Each voxel on average contains
20 target stars, with a maximum number of 386. There are
23 875 voxels (10.1%) that only contain one target spectrum.
The outputs of DIB-Spec are arranged into two tables in the
Gaia Archive3: (1) ‘interstellar_medium_params’: the param-
eter table listing the fitted DIB parameters in each voxel; (2)
‘interstellar_medium_spectra’: the spectra table containing the

3 https://gea.esac.esa.int/archive/
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Table 3. Column names and their descriptions of the spectra table of DIB-Spec (interstellar_medium_spectra).

Column Name Unit Description

1 solution_id – Solution identifier
2 healpix – HEALPix identification
3 lc deg Central Galactic longitude of each voxel
4 bc deg Central Galactic latitude of each voxel
5 dc kpc Central heliocentric distance of each voxel
6 lambda Å Wavelength in vacuum
7 flux – Normalized flux
8 flux_uncertainty – Uncertainty of the normalized flux

stacked ISM spectra in each voxel. The column names, units,
and descriptions of the two tables are given in Tables 2 and 3
respectively. In Table 2, the symbols of the full DIB parameters
(Eqs. (1)–(3)) and EWs are indicated in the description of the
corresponding columns.

There are some notes for the DIB-Spec outputs:
1. As the column names were pre-defined, the DIB at

862.1 nm was cited as ‘8620’ in related names, but we prefer
to use ‘862.1’ in the descriptions and in the context of this Gaia
product.

2. Second, the lower and upper confidence levels of the inter-
cept of the linear continuum (‘dibcont_a1’) are not included in
the parameter table because they were not defined at the time of
the processing and archive table definition.

3. As in DIB-Spec the HEALPix binning was done in the
equatorial system, following the Gaia convention4, the Galactic
coordinates of the voxel centre (‘lc’ and ‘bc’ in the table) were
converted from the equatorial coordinates of the centre of each
HEALPixel.

4. The fitted DIB parameters result from the integration of
their carriers from the voxels to the observer, like dust extinction,
rather than from one voxel to the next.

5. About 5.4% (12 692) of stacked spectra have null flux
uncertainties. This is due to the fact that the first pixels of the
individual RVS spectra for stacking do have zero values. Their
flux uncertainties are fixed as 0.01 for the MCMC fittings.

6. The spectra table contains 62 859 276 rows which equal
235 428 voxels × 267 wavelength bins of the stacked spectra,
that is each row in the spectra table contains information of one
wavelength bin. A simple Python script shown in Appendix C
can be used to convert the spectra table to a fits file, in which
each row stands for one stacked ISM spectra.

Below, we describe and discuss the fitted DIB parameters
and their uncertainties.

4.1. S/N and DIB quality flag (QF)

The S/N of the stacked ISM spectra strongly affects the quality of
the DIB fit. S/N is determined by the quality of individual RVS
spectra, the number of target stars in each voxel, and the perfor-
mance of the BNM on target spectra. For DIB-Spec results, 42%
of the voxels have a stacked spectrum S/N > 200, but 59% of
these voxels are within 1 kpc. The DIB signal will be more eas-
ily detected in spectra with higher S/N, while the DIB depth and
strength are generally smaller in the solar neighbourhood than
in distant zones. Thus, the goodness-of-fit for DIBs cannot be

4 See Bastian & Portell (2020): Source Identifiers – Assignment and
Usage throughout DPAC (GAIA-C3-TN-ARI-BAS-020), which can
be accessed through https://www.cosmos.esa.int/web/gaia/
public-dpac-documents

Fig. 8. Distribution of the S/N of the stacked ISM spectra in the DIB
depth–width plane (D vs. σDIB) for DIBs λ862.1 and λ864.8, respec-
tively. The colour represents the mean S/N in each 0.001 × 0.003 nm
bin for λ862.1 and 0.001 × 0.01 nm bin for λ864.8.

determined simply by S/N. On one hand, the distribution of S/N
shown in Fig. 8 presents a dependence on both D and σDIB. A
main part of high S/N (≳200) is found with very small D, cor-
responding to nearby voxels containing weak or no DIB signals.
On the other hand, large D found in noisy spectra (low S/N)
would indicate a needle-like spurious DIB signal caused by the
random noise or the stellar residuals, especially in the regions
with relatively small σDIB. Nevertheless, one can also find some
regions with both high S/N and largeD, indicating a pronounced
DIB signal. Such regions are evident near σDIB ∼ 0.22 nm for
DIB λ862.1, and between 0.8 and 1.0 nm for DIB λ864.8, but not
particularly obvious due to the fact that λ864.8 is much broader
and shallower than λ862.1.

Considering both S/N and the shape of the fitted DIB pro-
file ({D, σDIB}), we generated quality flags (QF) to describe the
quality of the fits. This idea comes from Elyajouri et al. (2016)
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Fig. 9. Flowchart of the criteria to generate quality flags (QFs) for DIBs λ862.1 (upper panel) and λ864.8 (lower panel), respectively. The flag
numbers and the corresponding arrow paths for classification are listed in the bottom box in each panel.

and was applied to DIB λ862.1 in Gaia DR3 (Recio-Blanco et al.
2023; Gaia Collaboration 2023) as well. In the present work, we
follow the same scheme for λ862.1 as in DR3, but some borders
of the DIB parameters are redefined according to the DIB-Spec
results. The scheme for λ864.8 contains newly defined borders,
as it has been little investigated to date.

Figure 9 shows the flowchart for the generation of the quality
flag for the two DIBs, respectively, with QF= 0 indicating the
best fit and QF= 5 the worst fit. First, we require the measured

λDIB to be consistent with a Doppler wavelength shift within
about ±200 km s−1 for the radial velocity of the two DIBs, which
should be a reasonable velocity range for the ISM within 3 kpc
from the Sun where most of the DIBs were detected. The DIB
radial velocity is calculated from the estimated λDIB and the rest-
frame wavelength λ0 of the two DIBs reported in S23 and Z22.
We note that the upper limit of λDIB for λ864.8 is a bit larger
than a wavelength corresponding to 200 km s−1 because in the
literature this DIB was suggested to be located around 8648 Å
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Fig. 10. Distribution of DIB quality flags (QFs) at each level (0–5, 0 is
the best and 5 is the worst) for DIBs λ862.1 (upper panel) and λ864.8
(lower panel). The number of DIB detections and the fraction are indi-
cated at the top of each bar.

in air. Secondly, based on S23 and Z22, D is required to be
smaller than 0.15 for λ862.1 and 0.10 for λ864.8, respectively.D
is then compared to RC , which is defined as the standard devia-
tion of the difference between observed and modelled flux of the
ISM spectra, std(data − model), in a range from λDIB − 3σDIB
to λDIB + 3σDIB to represent the noise level around the posi-
tion of the DIB feature. We note that RC is not published in
the DIB-Spec tables, but one can recalculate RC from the DIB
parameters and the stacked ISM spectra. Last, we need to define
some acceptable values of σDIB in order to evaluate the QFs,
that is a “best range” of σDIB for QF= 0, 1 and a “secondary
range” for QF= 2, 3, 4. DIBs with σDIB out of these two ranges
will be marked as QF= 5. The best range of σ862.1 is set as 0.18–
0.26 nm, a width of 0.04 nm to the median σ862.1 (0.22 nm) that
is about 2.5 times the average error of σ862.1 for detections with
QF= 0. The secondary range of σ862.1 is 0.1–0.34 nm, threefold
the span of the best range. Determining the ranges for σ864.8 is
much harder, as very few previous studies can serve as a refer-
ence. We determined a median σ864.8 = 0.81 nm in Z22, but the
median σ864.8 in DIB-Spec is close to 1.0 nm when we impose
S/N > 200. Thus, we select a loose range, 0.8–1.2 nm, for the
best range of σ864.8, and 0.6–1.4 nm as the secondary range.
The distribution of σDIB is discussed in detail in Sect. 4.2. This
suggests that careful analysis of the DIB-Spec results is needed
to refresh our knowledge about λ864.8. It should be noted that
when D<RC (case (g), Fig. 9), σDIB is only compared with the
range of 0.1–0.18 nm for λ862.1 and 0.6–0.8 nm for λ864.8 (case
(k), Fig. 9). This choice follows the idea that when D is smaller
than the noise level, a large σDIB is more likely a spurious feature
caused by the fit to the successive correlated noise. Figure 10
shows the distribution of the QF for DIBs λ862.1 and λ864.8.
Nearly half of λ862.1 have QF= 5, and this fraction reaches over
66% for DIB λ864.8, which dramatically reduces the DIB sam-
ple size for further analysis, especially for λ864.8. The much
lower proportion of QF= 0, 2 for λ864.8 than QF= 1, 3 is due
to its very smallD, since only 4.3% ofD864.8 is larger than 3RC .
Thus, only 16.1% of DIB λ864.8 have QF⩽ 2, the recommended

high quality in Gaia DR3 (S23). DIB λ862.1 has a larger propor-
tion (26.6%) because λ864.8 is much broader than λ862.1 and
therefore under a heavier effect of the noise. The QF provides
us with an evaluation of the fitted profile of the DIB feature and
consequently the goodness-of-fit for the ISM spectra. But the
present QF still contains some shortcomings, for example, the
QF has discrete values and has hard and artificial borders for
σDIB. Therefore, the QF should be used with caution for DIB
λ864.8, which is not well-studied.

Figure 11 presents the distribution on the sky of QFs for the
two DIBs in Galactic coordinates. Each level of QF is shown
in one HEALPix map with level 5. The colour scale represents
the count of DIB detections in each HEALPixel at different dis-
tances. Because QFs 0–5 are classified by {D, σDIB,RC}, the QF
sky distribution would be related to DIB properties. At high lat-
itudes, the stacked ISM spectra generally have small S/N due
to the decreasing density of RVS objects (S/N is also affected
by distance), which results in a large RC . Moreover, D is also
expected to decrease with |b|. Thus, we can find numerous detec-
tions with QF= 1 and 3 at |b|≳ 20◦ but rare with QF= 0 and
2. The detections with QF= 0 and 2 mainly occupy the Galac-
tic middle plane where one expects more abundant ISM and
stronger DIB signals (more RVS objects as well) and only extend
to higher latitudes (|b| ∼ 30◦) towards the inner disc (|ℓ|< 30◦)
and the Galactic anti-centre (ℓ∼ 180◦) where numerous molecu-
lar clouds exist. The two DIBs show similar QF distribution, but
λ862.1 has a wider latitude distribution than λ864.8 for QF= 0
and 2 becauseD864.8 is only ∼35% ofD862.1 (see Sect. 5.4).

On the other hand, the QF sky distribution is similar between
QF= 0 and QF= 2, although they contain different ranges of
σDIB (the same for QF= 1 and QF= 3). Moreover, we can find
more detections of λ862.1 with QF= 0 than QF= 2 and less with
QF= 1 than QF= 3, which indicates that the fit of σDIB is heav-
ily affected by D/RC which can be treated as a measure of the
S/N of DIB signal.

The detected DIB signals with QF= 4 are weak and noisy
with a main distribution out of the middle plane. DIB detections
with QF= 5 are complicated, containing the cases with λDIB out
of the reasonable range, too small or too big σDIB, and too low
D. QF= 5 is distributed in almost the full sky with |b|< 65◦ as it
takes half of the DIB sample. It is interesting that the empty or
low-density regions in QF= 4 and 5 are complementary to those
in QF= 0.

QFs of 0 and 2 are recommended as the best level, and 1 and
3 are the secondary level. While 4 and 5 are the worst and are
suggested to be better used in a statistical way.

4.2. DIB width

The width of the DIB profile contains vast information about
the properties of the intervening ISM clouds and the DIB car-
riers, such as the profile broadening that is related to the gas
kinetic and rotational temperature in different physical environ-
ments (e.g. Lai et al. 2020; Krełowski et al. 2021). The fittedσDIB
in DIB-Spec is a measure of the average width under different
ISM environments and may be affected by Doppler splitting or
broadening, especially for distant voxels. An investigation of the
Doppler effect and the decomposition of multiple velocity com-
ponents with the DIB-Spec results will be done in a forthcoming
work.

The distribution of σDIB of the two DIBs with the full
DIB-Spec results (235 428 voxels) is shown in the left pan-
els in Fig. 12 (entire sample). The histogram of the width
of λ862.1 contains three peaks (upper left panel). The first
peak at σ862.1 = 0.02 nm indicates ISM spectra with low
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Fig. 11. Galactic spatial distribution of each level of DIB QF (0–5) for λ862.1 (left panels) and λ864.8 (right panels). The colour represents the
counts of DIB detections in each HEALPixel at various selected distances. This HEALPix map has a level of 5, according to a spatial resolution
of 1.8◦.
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Fig. 12. Distribution of σDIB for DIBs λ862.1 and λ864.8 (top and bot-
tom, respectively). The dashed red and green lines correspond to the
“best range” and the “secondary range” of σDIB defined in Sect. 4.1 for
the DIB QF, respectively. The distribution of the full DIB-Spec results
(235 428 voxels) is shown in the left panels, while the right panels show
a quality-controlled sample with S/N > 100 andD> 3RC (see Sect. 4.2).
The latter criterion implies QF values of 0 or 2. The number of detected
DIBs and the percentage after the quality control is indicated as well.

S/N or extremely weak DIB signals. The second peak at
σ862.1 = 0.12 nm, the initial guess of σ862.1, is also caused by
the fit to low-S/N spectra, where the fitted parameters are just
around their initial values. The third peak at σ862.1 = 0.22 nm, as
we have seen in Fig. 8, marks the best fits of DIB λ862.1. For
λ864.8 (lower left panel), the first (σ864.8 = 0.1 nm) and second
(σ864.8 = 0.4 nm) peaks can also be found. But the width distri-
bution is then very flat for larger σ864.8, and the peak of σ864.8
that indicates the best λ864.8 profiles is smoothed by the noisy
detections, which could only be seen in the control sample (see
below).

To determine the “best” and “secondary” ranges of σDIB
for QF evaluation (Sect. 4.1), we apply a quality control of
S/N > 100 and D> 3RC , and get 56 816 fit results for λ862.1
and 9927 for λ864.8, whose width distributions are shown in
the right panels in Fig. 12. The peaks at the initial guess of σDIB
disappear, and a quasi-Gaussian distribution of σDIB can now be
found for both DIBs with a lower cut that excludes very narrow
spurious features. The selected ranges of σDIB for QF determi-
nation are marked in Fig. 12 and discussed in Sect. 4.1. We note
that the upper limit of the acceptable range for σ864.8 in QF eval-
uation is enlarged because of the long tail of the distribution of
σ864.8 showing more detections with σ864.8 ≳ 1.1 nm than with
σ864.8 ≲ 0.8 nm. The cause is unknown and DIB λ864.8 with a
very broad profile needs further exploration.

The full width at half maximum (FWHM) of the two DIBs
is calculated as FWHM862.1 =

√
8ln(2) × σ862.1 for the Gaus-

sian profile (Eq. (1)) of λ862.1 and FWHM864.8 = 2 × σ864.8
for the Lorentzian profile (Eq. (2)) of λ864.8. The joint distri-
bution of FWHM862.1 and FWHM864.8 for 9778 detections with
S/N > 100 and D> 3RC (for the two DIBs) is shown in Fig. 13.
The distribution is Gaussian with a long tail for FWHM864.8. The
median FWHM of DIB λ862.1 is 0.52± 0.05 nm, which is con-
sistent with Zhao et al. (2022, 0.55± 0.06 nm) but larger than
previous results based on early-type stars, that is 4.3 Å of Herbig
& Leka (1991), 4.38 Å of Jenniskens & Desert (1994), and 4.69 Å
of Maíz Apellániz (2015). As discussed in Z22, the increase in
FWHM862.1 of our result could be explained by a Doppler broad-
ening caused by our stacking strategy. Other effects, such as the
observational instrument and the stellar residuals, may be pro-
posed as well. With a machine-learning approach on published

Fig. 13. Joint distribution of the FWHM of DIBs λ862.1 and λ864.8,
measured in 9778 stacked ISM spectra, with S/N > 100 and D> 3RC
(see Sect. 4.2), generated by a Gaussian kernel density estimation
(KDE). The white star indicates the peak density, and the red line in
the central panel indicates the contour of the 2σ level. The orange lines
indicate the median FWHM of the two DIBs.

RVS spectra, Saydjari et al. (2023) got a σ862.1 = 1.9 Å, cor-
responding to a FWHM of 4.47 Å. This consistency indicates
that Gaia has no significant instrumental effects on the DIB
measurement. Furthermore, a data-driven method could signif-
icantly reduce the influence of the residuals of specific stellar
lines (e.g., Fe I for λ862.1) on the DIB width. On the other hand,
Hobbs et al. (2009) and Fan et al. (2019) reported a FWHM of
3.56 Å and 3.98 Å for λ862.1, respectively, which are smaller
than mentioned results above. Puspitarini et al. (2015) mentioned
that many Gaia–ESO spectra of the λ862.1 region are contami-
nated by sky emission residuals which fall within the red wing
of λ862.1. In principle, any emission residuals could make the
DIB appear narrower than it actually is, even in the case of hot
stars. Therefore, we propose that FWHM∼ 4.7 Å (σ862.1 around
2 Å) could be proper for DIB λ862.1. But we should keep in mind
that the DIB width could vary under different ISM environments.
We note that DIB λ862.1 could contain multiple components
(Jenniskens & Desert 1994) and present an asymmetric pro-
file (e.g. Krełowski et al. 2019). But considering the resolution
of RVS spectra, our study cannot reveal an accurate shape of
λ862.1. Nevertheless, the high S/N of the stacked spectra would
allow us to resolve different DIB velocity components in further
analysis.

The median FWHM of DIB λ864.8 is 1.91± 0.44 nm, larger
than 1.62± 0.33 nm in Z22, 1.4 nm in Herbig & Leka (1991)
and 0.42 nm in Jenniskens & Desert (1994). Doppler broaden-
ing should have much less effect on the FWHM of λ864.8 due
to its very large breadth. Z22 also measured the median σ864.8
by stacking RVS spectra but in a much smaller sample (1103
detections) with weaker quality control. Figure 12 shows that
involving noisy detections would reduce and smooth the peak of
σ864.8. The measurements in early studies could be questionable
due to the broad span of λ864.8 and its superposition with some
blended stellar lines. The median σDIB reported in this work is
from a quasi-Gaussian distribution.

4.3. Scaling factor for the lower and upper limits of DIB EW

The EW of the DIBs λ862.1 and λ864.8 (‘ew8620’ and ‘ew8648’
in Table 2) was calculated by Eqs. (5) and (6), respectively.
Nevertheless, when estimating the lower and upper confidence
levels of EW by the {D, σDIB} pairs from MCMC samplings (see
Sect. 3.3), the EW values of each pair were calculated by numer-
ical integration of Eqs. (1) and (2) fromD− 3σDIB toD+ 3σDIB
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Fig. 14. Number density of DIB detections in DIB-Spec as a function
of λDIB and σDIB, without any cuts, for λ862.1 (upper panel) and λ864.8
(lower panel). The dashed blue lines indicate the range of permitted
λDIB in the QF evaluation (see Sect. 4.1), and the dashed red and green
lines correspond to the “best range” and the “secondary range” of σDIB,
respectively.

for the two DIBs, respectively, instead of using Eqs. (5) and (6).
This approximation is suitable for a Gaussian function, as
the integration equals to erf(3/

√
2) ×

√
2π × D862.1 × σ862.1 ≈

0.997 EW862.1. But it is problematic for the Lorentzian profile of
λ864.8 for the integration equals to 2arctan(3)×D864.8×σ864.8 ≈

0.795 EW864.8. Therefore, we propose a scaling factor of 1.258
for ‘ew8648_lower’ and ‘ew8648_upper’ in Table 2, that is the
table values times 1.258 are the correct lower and upper lev-
els for EW864.8. A scaling factor of 1.003 can also be used for
‘ew8620_lower’ and ‘ew8620_upper’.

4.4. Effect of stellar residuals

Because most of the target stars processed by DIB-Spec are late-
type stars whose spectra contain abundant stellar components,
the stellar residuals from the unresolved stellar features or the
not well-modelled stellar lines would affect the DIB detection
and measurement, such as the shift of λDIB or the broadening
of σDIB. In extreme cases, the detected signal is an artefact that
comes from the stellar residuals. As pointed out by Saydjari et al.
(2023), for example, the DIB detections in the Gaia DR3 cata-
logue would be contaminated by not perfectly modelled lines,
such as Fe I, when σDIB is very small.

Figure 14 shows the distribution of DIB detections as a
function of λDIB (in stellar frame) and σDIB, which can straight-
forwardly identify the effect of stellar residuals. A vertical stripe
at the initial guess of σDIB can be seen for both the two DIBs
that corresponds to the noisy cases, mostly with D<RC . λ862.1
is uniform and widespread when σ862.1 < 0.04 nm, where DIB
detection is noise dominated. For larger σ862.1, especially 0.16–
0.28 nm, λ862.1 is concentrated between 862.2 and 862.5 nm,
representing the reliable measurements. Our detection of λ862.1
is not or at most very weakly affected by the stellar residuals, as
no clustering near the stellar lines is found in the σ862.1 − λ862.1

plane. This is because the stacking increases the S/N of the ISM
spectra and averages out the large residuals in individual spectra.

The very broad profile of λ864.8 makes it difficult for
accurate measurements of λ864.8 and σ864.8, resulting in a very
scattered λ864.8 versus σ864.8 distribution. However, the large
σ864.8 can hardly be affected by the stellar residuals.

4.5. Uncertainties of DIB parameters

Since D and σDIB are correlated with each other during
the MCMC fitting, the distribution of the uncertainty of the
DIB parameters presents a dependency on both D and σDIB.
Figure 15 shows the distribution of the fractional uncertainties of
D, σDIB, and EW in the D − σDIB plane for λ862.1 (left panels)
and λ864.8 (right panels). The uncertainty of D, σDIB, and EW
are taken as the mean difference between their lower, median,
and upper values.

Large uncertainties can generally be found in regions with
smallD or σDIB. DIB detections with very smallDwill get large
QF (low reliability) by comparing with RC , and those with small
σDIB are ruled out by the width border defined in the QF eval-
uation. It is noted that detections with small uncertainties can
be found very close to the upper limit of σDIB in priors, 0.5 nm
for λ862.1 and 1.5 nm for λ864.8. These small uncertainties are
because of the narrow sampling range in the MCMC fitting and
do not represent good measurements. Figure 12 also shows that
the number of detections with extremely large σDIB will signif-
icantly decrease when applying strict constraints. For λ862.1,
detections with low uncertainty (<10%) are located in similar
fields forD862.1, σ862.1, and EW862.1 and correspond to the “best
range” of σ862.1 defined in Sect. 4.1. On the other hand, low-
uncertainty regions for λ864.8 do not present a well-constrained
range for σ864.8.

The uncertainty of EW in some regions, mainly the bot-
tom in each panel with small σDIB and large D, is much
smaller than that of σDIB, although EW was calculated by D
and σDIB. The reason is that in each MCMC chain, in spite
of the width with large uncertainty, the depth could be stable
with small uncertainty. Consequently, the calculated EW also
concentrates and has smaller relative uncertainty. Besides the
method used in DIB-Spec, the EW uncertainty is also proposed
to be calculated by the span of the profile (3×FWHM), the pixel
resolution (δλ= 0.03 nm/pixel), and the noise level of the line
centre (RC = std(data −model)), as σEW =

√
6 FWHM δλ × RC

(Z22). Similar formulas were also given by Vos et al. (2011)
and Vollmann & Eversberg (2006). Figure 16 shows the differ-
ence between these two kinds of EW uncertainty. The difference,
in general, is small (over 90% within 0.02 Å for λ862.1 and
within 0.07 Å for λ864.8), but our method systematically gives
out smaller σEW for λ862.1 and larger σEW for λ864.8.

5. Validation tests

We present in this section a number of validation tests for the
DIB results from DIB-Spec, including the comparison with Gaia
DR3 DIB catalogue for the measurements of EW862.1, the EW
maps of the two DIBs in a Galactic view at different distances,
and the correlation between two DIBs and dust reddening.

5.1. Comparison between fitted and integrated DIB EW

Differing from the direct measurement of DIB EW by inte-
grating the ISM spectrum (e.g. Hobbs et al. 2008; Fan et al.
2019), the DIB EW in this work was calculated by the analytic
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Fig. 15. Distributions of the fractional uncertainties ofD, σDIB, and DIB EW as a function ofD and σDIB for λ862.1 (left panels) and λ864.8 (right
panels). Colour represents the mean fractional errors in each 0.001 × 0.003 nm bin for λ862.1 and 0.001 × 0.01 nm bin for λ864.8.

Fig. 16. Histogram of the difference between the EW uncertainty esti-
mated in this work (σEW1 ) and the one calculated by the formula
σEW2 =

√
6 FWHM δλ×RC (see Sect. 4.5) for λ862.1 (upper panel) and

λ864.8 (lower panel), respectively. The mean (∆) and standard devia-
tion (σ) of the differences are also indicated.

function. The integrated EW is not affected by the asymme-
try of the DIB profile, while the fitted EW is less affected by
the noise and the overlapping of different DIB profiles. Specif-
ically, the EW of λ862.1 cannot be directed integrated because
the profiles of λ862.1 and λ864.8 could be overlapped. There-
fore, we first subtracted the fitted profile of λ864.8 from the
ISM spectrum and then integrated the rest part of the ISM

Fig. 17. Upper panel: comparison between the fitted and integrated
EW862.1. The colour represents the number density (estimated by a
Gaussian KDE) of the data points in a linear scale. The grey colour
bars show the uncertainty of fitted EW862.1. The dashed red line traces
the one-to-one correspondence. A zoom-in panel shows the distribution
of the EW difference (∆EW = EWfit − EWint). The mean (∆) and stan-
dard deviation (σ) of the EW difference are indicated. Lower panel: the
distribution EW difference as a function of fitted EW862.1.

spectrum within λ862.1 ± 3σ862.1 to calculate the integrated EW
of λ862.1. Figure 17 shows the comparison between fitted and
integrated EW862.1 for 6240 cases with S/N ⩾ 100, QF862.1 = 0,
and QF864.8 = 0. We did not do such a comparison for λ864.8 as
the spectra suffer there the residuals of the CaII line. The fit-
ted and integrated EW862.1 are highly consistent with each other
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Fig. 18. Upper panel: comparison between the EW862.1 measured by
DIB-Spec and the mean EW862.1 in each voxel taken from the DIB cata-
logue in DR3 for 8963 voxels. The colour represents the number density
(estimated by a Gaussian KDE) of the data points in a linear scale.
The grey colour bars show the EW uncertainty in DIB-Spec and the
standard deviation of EW in DR3. The dashed red line traces the one-
to-one correspondence. A zoom-in panel shows the distribution of the
EW difference (∆EW = EWFPR − EWDR3). The mean (∆) and standard
deviation (σ) of the EW difference are indicated. Lower panel: the vari-
ation of the mean EW difference in each EW bin with a step of 0.01 Å
with EW862.1 in FPR. The orange shades the range of 1σ.

with a mean difference of only 0.001 Å and a standard deviation
of 0.020 Å. This proves that the possible asymmetry of the DIB
profile has little effect on EW862.1. After the check of the ISM
spectra, we find that the outliers with much larger fitted EW862.1
than integrated EW862.1 are caused by the wrongly fitted cen-
tral position of DIB λ862.1. The λ862.1 of these cases are close
to 863 nm which is the upper limit of λ862.1 during the MCMC
fitting. A larger upper limit could improve the results of these
fittings.

5.2. Comparison with DIB measurements in Gaia DR3

To make a direct comparison of the measurements of EW862.1
between FPR and DR3, the mean EW862.1 of the full DIB cata-
logue in DR3 is calculated in each voxel defined in DIB-Spec.
Figure 18 presents the comparison between EW862.1 from FPR
and mean EW862.1 from DR3 for 8963 voxels (3.81% of the
amount in FPR) that contain at least ten DIB detections in DR3.
The difference of EW862.1 (FPR–DR3) presents a quasi-Gaussian
distribution with an extremely small mean value of 0.002 Å and
a standard deviation of 0.025 Å. The EW difference is very close
to zero between 0.06 and 0.2 Å of EW862.1 from FPR. For smaller
realms, the DIB results in DR3 present larger values of EW
than those in FPR, and their mean difference increases with the
decreasing EW. This is because in DR3, we only successfully
detected relatively strong DIB signals limited by the S/N of indi-
vidual RVS spectra, whereas the EW measured in FPR represents
an average DIB strength in each voxel by stacking a set of ISM
spectra. This difference, between the strong signals captured in
DR3 and the mean strength measured in FPR, also implies a
variation in DIB strength in the solar neighbourhoods. On the
contrary, FPR gets a systematically larger EW862.1 than DR3
when EW862.1 ≳ 0.2 Å, because large EW generally comes from

distant voxels (or dense clouds) where detections in FPR and
DR3 may trace different ISM environments. The DIB detections
made in individual RVS spectra are mainly located in diffuse and
intermediate regions, while DIB signals in denser regions can be
measured in stacked spectra with higher S/N. Moreover, λ864.8
may also contribute to the difference as in DR3 λ864.8 was not
considered for fittings. Thus, if the profile of λ864.8 is treated
as the continuum placement for normalization (the two DIBs
are close to each other, see Fig. 7 for example), EW862.1 would
be underestimated. This effect will be investigated in detail in
follow-up work.

To compare the spatial distribution of EW862.1 between FPR
and DR3, Fig. 19 shows the EW maps in the Galactic (XY),
meridian (XZ), and rotational (YZ) planes where the Sun is
located at the origin with the GC as the primary direction.
The two EW maps (FPR on the left and DR3 on the right)
were constructed in different ways. For DR3, we make use
of the high-quality sample (see its definition in S23) with an
additional constraint of 0.18⩽σDIB ⩽0.26 nm (the best range of
σ862.1 determined in DIB-Spec), resulting in 52 180 DIB detec-
tions. Then the median EW862.1 was taken in 0.1 × 0.1 kpc bins
for the Galactic, meridian, and rotational planes, respectively, in
the Cartesian system using detections within ±50 pc above and
below each corresponding plane. For FPR, EW862.1 in Galac-
tic, meridian, and rotational planes were taken from the voxels
that are crossed with each corresponding plane, and the crossed
sections were painted by the EW862.1 in that voxel. To have a
clean map with reliable detections, we require S/N ⩾ 100 and
QF862.1 ⩽ 2.

Similar large-scale structures can be found in each plane
between FPR and DR3 results, while λ862.1 in FPR can be
detected in more distant regions, such as between the Perseus
Arm and the Outer Arm and beyond the Scutum–Centaurus
Arm. Two sightlines, ℓ∼−70◦ and ℓ∼−117◦, have significant
low EW862.1 reaching over 4 kpc, indicating two void regions
with less abundant ISM between the Galactic main arms. On
the other hand, much fewer DIB signals can be detected towards
∼80◦ − ∼90◦ and ∼ − 100◦ − ∼ − 90◦ for both FPR and DR3
because in these two ranges, we are looking to directions that are
parallel to the Local Arm with less intervening DIB clouds.

5.3. Equivalent width (EW) map: In a Galactic view

Figure 20 shows the Galactic distribution of EW862.1 (left pan-
els) and EW864.8 (right panels) at four distances, dc = 1.05, 1.53,
2.12, and 3.23 kpc from the DIB results in FPR. As DIB-Spec
stacked spectra in (α, δ, d) voxels, the distances indicated in the
figure are the centre of the voxels from the Sun. S/N ⩾ 100 and
QF⩽ 3 (for λ862.1 and λ864.8, respectively) are used to control
the quality of the DIB detections. The number of selected DIB
detection decreases with distance for both λ862.1 and λ864.8
(from dc = 1.05 kpc to dc = 1.53 kpc for λ864.8 is an exception).
And at 2.12 kpc, there are 4316 detections of λ862.1 that cover
35% of the full sky. The amount of λ864.8 is around 70% of
λ862.1 at each dc.

The sky coverage of λ862.1 with reliable detections in FPR is
similar to that in DR3 (see Fig. 6 in S23 for a median EW map at
HEALPix level 5), but the distance-sliced maps in Fig. 20 con-
tain more details. At dc = 1.05 kpc and 1.53 kpc, some clumpy
regions with large EW are consistent with nearby molecular
clouds, such as Phoenix (ℓ∼ 30◦−40◦) and Cygnus complex
(ℓ∼ 80◦) in the middle plane and Ophiuchus (ℓ∼ 0◦ and b∼ 15◦)
at high latitude, although the resolution of the present DIB EW
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Fig. 19. Distribution of EW862.1 in the Galactic plane (XY), meridian plane (XZ), and rotational plane (YZ) for the FPR results (left panel) and the
DR3 results (right panel), respectively, plotted over the Milky Way sketch created by Robert Hurt and Robert Benjamin (Churchwell et al. 2009).
Some log-periodic spiral arms described in Reid et al. (2019) are also presented by coloured lines: Scutum–Centaurus Arm in orange; Sagittarius–
Carina Arm in purple; Local Arm in black; Perseus Arm in green; Outer Arm in cyan; and the spur between the Local and Sagittarius–Carina arms
in blue. The Galactic centre is located at (X,Y,Z) = (8.15, 0, 0).

Fig. 20. Galactic distributions of EW862.1 (left panels) and EW864.8 (right panels) from DIB results in FPR in Mollweide projection at HEALPix
level 5, at four distances. The distance (dc) and the number of voxels (N) are indicated in each subpanel.
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map is pretty low (1.8◦). Nevertheless, some clouds seem to dis-
appear in the DIB EW map, like the Cepheus and Polaris Flare
(ℓ∼ 110◦−120◦), which can be clearly seen in the Gaia Total
Galactic Extinction map (see Fig. 24 in Delchambre et al. 2023)
and the Planck dust map (see Fig. 3 in Planck Collaboration
Int. XLVIII 2016). Cepheus and Polaris Flare are nearby clouds
(<400 pc) with strong CO emission, but no strong DIB signals
were detected in this region in either this FPR or DR3, in spite
of many RVS observations there. With the increase of distance,
at 3.23 kpc, the high-EW regions are linked up into a bright stripe
along the galactic plane.

At low galactic latitudes, λ862.1 was detected in most longi-
tudinal directions, but a gap can be found at ℓ= − 120◦, where
the CO emission is also weak (see Dame et al. 2001). It seems
that λ864.8 is more concentrated around the regions with larger
EW, which should be a bias due to the difficulty in measuring
weak λ864.8 with the present spectral S/N level. On the other
hand, λ862.1 and λ864.8 seem to occupy similar latitude ranges,
that they are mainly distributed within ±30◦ and this range
decreases with distance. In principle, the DIB signals detected
in nearby voxels should also be seen in distant voxels along the
same direction as EW is an integrated variable of the abundance
of DIB carriers. But in fact, the number of DIB detections about
±30◦ of latitude decreases with the distance for the control sam-
ple shown in Fig. 20. The reason could be that some of the DIB
fittings in distant voxels were filtered out by the criteria of the
control sample due to the low quality of their ISM spectra. Fur-
thermore, the measured DIB strength in distant voxels would be
a biased mean, as faint stars among or behind dense clouds are
hard to be observed by Gaia. Therefore, it is possible to see the
decrease of DIB EW with distance even if the voxels all con-
tain reliable DIB detections. This observational bias could also
happen in nearby regions behind dense clouds.

5.4. Correlations between DIBs and dust reddening

The linear correlation between DIB strength and dust redden-
ing is a general property for many strong DIBs (e.g. Friedman
et al. 2011; Lan et al. 2015) and could be treated as a valida-
tion test of the DIB measurement. For this comparison, we only
select DIB detections with QF862.1 = 0 and QF864.8 = 0, result-
ing in 6278 cases (2.67% of total) to increase the reliability and
to focus on the Galactic middle plane (see QF distribution in
Fig. 10) where the interstellar materials are generally well mixed
with each other, so a tight linear correlation can be expected
between λ862.1, λ864.8, and dust. There are 3 677 773 (60%)
RVS objects that have E(BP−RP) from GSP-Phot (Andrae et al.
2023). The mean E(BP−RP) in a voxel was calculated with all
the stars with E(BP−RP) in that voxel. Thus, the number of
used stars in a voxel for mean E(BP−RP) and DIB fitting could
be different. There are 6038 (2.56%) voxels containing at least
ten stars having E(BP−RP) and QF= 0 for the fittings of both
λ862.1 and λ864.8, which were used to compare DIB EW and
E(BP−RP) (see the third and fourth panels from top to bottom
in Fig. 21). On the other hand, for the comparison of EW and
depth between λ862.1 and λ864.8 (see the first and second panels
from top to bottom in Fig. 21), we only required QF= 0 and got
6278 (2.67%) voxels. The requirement of the highest level of QF
is the main constraint to the sample size. The comparison includ-
ing other QFs and discussions will be made in a follow-up work.
The linear fit to each correlation was achieved by an ordinary
least squares regression using the Python package statsmodels,
with some upper limits on the variables (indicated in Fig. 21) to
exclude the nonlinear realms. The fitted slope (α), intercept (t),

Fig. 21. Diverse correlations between λ862.1, λ864.8, and mean E(BP−
RP) from GSP-Phot (Andrae et al. 2023) in each voxel. The data points
are coloured by their number densities estimated by a Gaussian KDE.
The red lines are the linear fit to the data points. The dashed green lines
indicate the upper limits on the variables for the linear fits. And the fitted
slope (α) and intercept (t) are marked in each panel, together with the
Pearson correlation coefficient (rp) and the number of DIB detections
(N). Dashed black lines are previous results from Z22, and the dashed
blue line is from S23.

and Pearson coefficient (rp) are marked in each panel in Fig. 21
as well.

Tight linearity can be found between EW862.1 and
EW864.8, between D862.1 and D864.8, and between EW862.1 and
E(BP−RP), and a weaker one for EW864.8 and E(BP−RP). In
the correlation of EW for the two DIBs, some cases present
greater EW864.8 than expected when EW862.1 ≳ 0.5 Å. Similar
deviation from the linearity could also be found for their depth.
This deviation could indicate the departure of the carriers of the
two DIBs (if we assume they have different origins) as the trend
is gradual and continuous with EW and the ISM spectra of these
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Table 4. DIB parameters of λ862.1 and filed information of 12 voxels within the Local Bubble (see Sect. 6).

Number(a) healpix lc bc dc p08620 p18620 p28620 ew8620 flags8620
(deg) (deg) (kpc) (nm) (nm) (nm)

1 6212 304.28 36.91 0.165 0.0082 862.20 0.19 0.0038 1
2 6348 284.14 47.74 0.165 0.0075 862.28 0.25 0.0047 1
3 7685 4.39 19.37 0.065 0.0087 862.33 0.22 0.0049 1
4 4793 59.97 –33.73 0.165 0.0081 862.25 0.34 0.0068 2
5 2312 40.31 43.28 0.165 0.0055 862.24 0.24 0.0033 1
6 8047 51.13 16.46 0.165 0.0112 862.35 0.13 0.0036 2
7 9695 272.04 29.70 0.235 0.0086 862.28 0.18 0.0039 1
8 10 008 257.39 11.41 0.235 0.0069 862.27 0.25 0.0043 1
9 5853 188.17 –18.54 0.165 0.0087 862.35 0.24 0.0052 1
10 5235 226.30 –8.49 0.235 0.0099 862.37 0.24 0.0059 1
11 10 041 249.64 12.91 0.235 0.0115 862.32 0.23 0.0067 0
12 7347 7.37 13.09 0.165 0.0151 862.25 0.22 0.0082 0

Notes. (a)The number of voxels matches those marked in Fig. 22. The rest column names correspond to those in Table 2.

cases show prominent DIB features. No apparent deviation is
seen between EW and E(BP−RP), but the linear fit needs to be
limited to EW864.8 < 1 Å to get a small intercept between EW864.8
and E(BP−RP).

Linear fits done in S23 and Z22 are also shown for com-
parison. We note that Z22 fixed the intercept as zero (except
D862.1 and D864.8) and applied 2σ-clipping for the linear
fits due to its small sample size (1103 DIB detections). The
E(BP−RP)/EW862.1 ratios from FPR and S23 are consistent
with each other with a difference of 9.20%, but the degree of dis-
persion is much lower in FPR because of stronger quality control
and the higher S/N in general after stacking RVS spectra. As a
reference, the difference of E(B−V)/EW862.1 between literature
studies varies from 4% to 41% with a mean of 20%5 The compar-
ison between the DIB results in FPR and Z22 is more meaningful
because they both use BNM to build the stellar templates and fit
DIB profiles in stacked RVS spectra with the same model, only
with differences in the sample size and stacking strategy. By an
internal comparison, a consistent tendency can be found for each
correlation between this FPR and Z22, with a similar degree of
dispersion of the scatter plots, but the DIB results in FPR con-
tain much stronger DIB signals. For example, EW862.1 is mainly
within 0.15 Å in Z22 and 0.4 Å in this FPR. Both the slope and
intercept are highly consistent with each other for D862.1 and
D864.8 in this FPR and Z22, with a difference of only 6.50%.
The difference in the correlation between EW862.1 and EW864.8
is slightly larger (∼ 10%), and the fit in FPR has a positive and
non-negligible intercept. The cause is unclear. Strict QF control
in FPR, which leads to the lack of λ864.8 with EW864.8 < 0.1 Å,
could have an impact but cannot fully explain the offset as
the tight linear correlation keeps until EW862.1 ∼ 0.5 Å. Includ-
ing all the other QFs (1–5) could reduce the intercept from
0.084 to 0.076, but the degree of dispersion will significantly
increase. The biggest difference between FPR and Z22 occurs for
E(BP−RP)/EW862.1 (26.93%), which is caused by the sigma-
clipping in Z22. We refit E(BP−RP)/EW862.1 using the data in
Z22 without sigma-clipping and get a ratio of 4.468 ± 0.081.
The difference then becomes much smaller (9.50%). Addition-
ally, the 2σ-clipping caused the linear fit in Z22 to be dominated
by DIBs with EW862.1 between 0.04 and 0.1 Å, where much
fewer cases were seen in this FPR after QF control. Thus, the

5 The differences between seven studies are listed in Table 3 in Gaia
Collaboration (2023) except Wallerstein et al. (2007).

E(BP−RP)/EW862.1 ratio would also vary in different EW862.1
ranges. The sigma-clipping, on the other hand, has a very light
effect on the correlation between E(BP−RP) and EW864.8. The
difference is only 3.77%, although in Z22 the intercept was fixed
as zero and in FPR we got a positive one of 0.014. Besides the
sample size and sigma-clipping, many other factors can affect the
fitting results as well, such as the QF control and the source of
dust reddening. More detailed discussions are beyond the scope
of this work. And the deviation and variation in the correlation
between different ISM, like DIB and dust, need to be understood
by considering the interstellar environment as well.

6. The Local Bubble

It is widely known that the Local Bubble has a much lower den-
sity than the average of the ISM in the solar neighbourhood
because of its harsh environment (high temperature and low den-
sity; Welsh et al. 2010; Lallement et al. 2014), but Farhang et al.
(2019) reported the detections of DIBs λ578.0 and λ579.7 in the
Local Bubble in the spectra of 359 early-type stars and mapped
the 3D density distribution of their carriers. S23 also found some
relatively strong signals of λ862.1 that are very close to the Sun
and generally suggested that λ862.1 could also be detected in the
Local Bubble. However, by reanalysing the public RVS spectra
(about one million) in DR3, Saydjari et al. (2023) claimed no
detection of λ862.1 with high confidence levels in their analy-
sis within the Local Bubble. As S23 only presented the median
EW862.1 distribution in the Galactic plane and Saydjari et al.
(2023) only analysed a small part of the RVS spectra, we plan
to make a thorough investigation to see if we can reliably find
λ862.1 in the Local Bubble.

As a preliminary investigation, we focus in this work only
on 145 DIB detections with a high level of S/N and QF, that is
S/N⩾ 300, QF862.1 ⩽ 2, QF864.8 ⩽ 2, and dc < 300 pc. Then their
ISM spectra were further visually inspected. As DIB signals
within the Local Bubble would be very weak, a highly reliable
DIB detection needs to satisfy that the flux uncertainty of its
ISM spectrum within the DIB profile is smaller than the depth
of each wavelength bin. Finally, we found four DIB detections
whose voxels are mostly inside the Local Bubble and 12 detec-
tions whose voxels are crossed with the surface of the Local
Bubble determined by Pelgrims et al. (2020) using the 3D dust
map of Lallement et al. (2019). The DIB parameters of λ862.1
and field information of these 12 voxels are listed in Table 4.
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Fig. 22. Upper panels: spatial distribution of 12 reliable DIB detections by visual inspection. Their voxels are projected into the Galactic (XY),
meridian (XZ), and rotational (YZ) planes. The reds are inside the Local Bubble and the blues are crossed with the surface of the Local Bubble.
The grey marks the surface of the Local Bubble determined by Pelgrims et al. (2020). Lower panel: black lines are stacked ISM spectra, and the
red/blue lines are the DIB fitting results of the corresponding DIB profiles. The orange indicates the masked spectral region between 866 and
866.8 nm in the fitting. The vertical dashed magenta line indicates the rest-frame wavelength of DIB λ862.1 of 862.323 nm determined in Gaia
Collaboration (2023).

And the projection of these 12 voxels and the surface of the
Local Bubble in the Galactic (XY), meridian (XZ), and rota-
tional (YZ) planes are shown in the upper panels in Fig. 22, and
their ISM spectra and DIB fittings are presented in the lower
panel. The profile of the DIB λ862.1 is conspicuous in the noisy
spectra, with all QF862.1 ⩽ 2, although the DIB fitting is not good,
especially for λ864.8 (whose profile is too shallow for the S/N
of the spectra). The Local Bubble is known to contain assem-
bling molecular clouds on its wall so that the dust abundance
is significantly different inside and on the surface of the Local
Bubble. Besides the selection bias (weaker signals cannot be
detected by present data), the DIB profile would be broadened
by the heavy noise, or the continuum placement was affected by
the poorly fitted λ864.8 profile, which leads to an overestimation
of EW. The four internal voxels mostly inside the Local Bubble,
containing apparent DIB profiles, seem to indicate the possible
detection of λ862.1 in the Local Bubble, but further investiga-
tion is necessary, especially taking into account all available ISM
spectra.

7. Caveats and known issues

We list the caveats and the known issues of the first results of
DIB-Spec as presented in this FPR. Future developments for
DR4 aim to tackle and possibly remove these issues.

1. The inverse of parallax (1/ϖ) of the background stars
was directly used in DIB-Spec for stacking spectra in different
voxels. But 1/ϖ would not be the true distance of the stars in
distant zones (several kpc, Bailer-Jones 2015). The detected DIB
signal accounts for an integration of the DIB carriers between
the background stars and us. If the distance between the DIB
carriers and the background stars is much larger than the dis-
tance uncertainty of 1/ϖ, the DIB measurement would be safe.
Otherwise, additional uncertainty of the DIB detection will be
introduced. Distant voxels or voxels with few targets will get
heavier influence.

2. About 5% (12 692) of stacked ISM spectra have zero flux
uncertainty at each wavelength bin. Some of them are due to the
zero flux error in observed RVS spectra used for stacking. But
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the cause for others is still unknown. The flux uncertainties of
these spectra were fixed as 0.01 during the DIB fitting.

3. The flux uncertainty at each wavelength bin was taken
as the standard error in the mean (SEM) from the individual
RVS spectra (see Sect. 3.3). Nevertheless, as the median of
individual fluxes was taken for stacking, the flux uncertainty
should be 1.253×SEM. Presently used values in the spectra table
underestimate the uncertainties of the stacked ISM spectra.

4. Negative D (‘p08620’ and ‘p08648’ in Table 2) can be
found for λ862.1 (166) and λ864.8 (198), although the prior of
D is always positive. These cases are all badly fitted due to the
low-S/N spectra and/or the weak DIB signals.

5. A scaling factor is suggested to be used to correct
the lower and upper confidence levels of EW for λ862.1
and λ864.8 (‘ew8620_lower’, ‘ew8620_upper’, ‘ew8648_lower’,
‘ew8648_upper’ in Table 2), respectively (see Sect. 4.3 for
details).

6. There are a set of detections reported in the output table
‘interstellar_medium_params’ with inconsistencies in their EW
and the lower or upper confidence levels of EW, even after the
correction by the scaling factors (see Sect. 4.3). Specifically,
there are 421 cases with EW862.1 <EW862.1,lower, 351 cases with
EW862.1 <EW862.1,upper, 2791 cases with EW864.8 < EW864.8,lower,
and 440 cases with EW864.8 < EW864.8,upper. The cause of this
inconsistency could be some problems in recording the lower
and upper confidence levels when producing the DIB results. We
note that this inconsistency does not mean a bad DIB fitting, but
the EW confidence levels would be problematic for such cases.

7. When we compare the target and reference spectra to build
the stellar template, we have to reduce the weights of the Ca II
lines to have a better model of weaker lines such as Fe I. Thus, we
cannot model Ca II lines very well and mask the specific region
(866.0–866.8 nm) during the fitting. Such a region falls within
the profile wing of DIB λ864.8, introducing an uncertainty on
the determination of the precise boundary of the DIB. We will
try other data-driven methods in the future to model all the stellar
lines without downweighting the Ca II lines.

8. Summary and conclusions

We summarize here the processing and validation of two
published tables produced by the DIB-Spec module in the
Gaia FPR, one for fitted DIB parameters (Table 2, ‘interstel-
lar_medium_params’) and the other for stacked ISM spectra
(Table 3, ‘interstellar_medium_spectra’). DIB-Spec derived ISM
spectra for 5 983 289 RVS objects with |b|< 65◦ as targets using
the other 160 392 RVS spectra (|b|⩾ 65◦) as references and the
BNM. The individual ISM spectra were stacked to increase the
spectral S/N in defined 3D voxels with a resolution of 1.8◦
(level 5 HEALPix binning) on the celestial sphere and 0.07–
1 kpc in distance, and on average 20 spectra in each voxel.
DIB-Spec fitted and measured the two DIBs in 235 428 voxels,
with a DIB model applying a Gaussian profile for λ862.1 and a
Lorentzian profile for λ864.8. A median FWHM was determined
as 0.52 ± 0.05 nm for λ862.1 and 1.91 ± 0.44 nm for λ864.8,
which can be referred to as a typical value considering a large
space coverage. Users are encouraged to use QF to control the
quality of the DIB fittings for specific investigations and the
related discussions in Sect. 4 are also useful.

Taking advantage of the stacking procedure, DIB-Spec
extends the DIB detection in distance compared to the DIB
catalogue in Gaia DR3 (Gaia Collaboration 2023). The DIB
strength of λ862.1 is highly consistent between DR3 and this

FPR (a mean difference of 0.002 Å with a standard deviation of
0.025 Å), and some systematic differences along with EW862.1
would be caused by the selection bias between the two samples.
We provide several other validation tests as well: The DIB EW
map in a Galactic view at different distances shows the integra-
tion of DIB carriers along the sightlines, revealing some clumpy
dense regions corresponding to notable molecular clouds, such
as Phoenix, Cygnus, and Ophiuchus, while Cepheus and Polaris
Flare were not seen in either of the DIB EW maps. Based on a
high-quality subsample with QF= 0 for both λ862.1 and λ864.8
(6278 detections, 2.67% of total), linear correlations between
λ862.1, λ864.8, and dust reddening (E(BP−RP)) were found to
be consistent with those in Gaia Collaboration (2023) and Zhao
et al. (2022), with the smallest difference of 3.77% and biggest
one of 26.93%. We also found some detections of λ862.1 inside
and around the surface of the Local Bubble with prominent
profiles in the derived ISM spectra.

The DIB work in this FPR is not only complementary to Gaia
DR3, but a pathfinder for future releases. The acquired experi-
ence and caveats will benefit the development of the DIB-Spec
module for future Gaia releases. DIB results in this FPR have
already shown the power of using numerous RVS spectra to map
both the intermediate and strong DIB λ862.1 and the broad and
shallow DIB λ864.8 in the solar neighbourhood and reaching
over 4 kpc. In particular, we note that broad DIBs such as λ864.8
were never measured in a sample of hundreds of thousands of
spectra before.
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Steinmetz, M., Matijevič, G., Enke, H., et al. 2020b, AJ, 160, 82
Tielens, A. G. G. M. 2014, in The Diffuse Interstellar Bands, 297, eds. J. Cami,

& N. L. J. Cox, 399
Taylor, M. B. 2005, in ASP Conf. Ser., 347, Astronomical Data Analysis Software

and Systems XIV, eds. P. Shopbell, M. Britton, & R. Ebert, 29
Taylor, M. B. 2006, in ASP Conf. Ser., 351, Astronomical Data Analysis Software

and Systems XV, eds. C. Gabriel, C. Arviset, D. Ponz, & S. Enrique, 666
van Leeuwen, F. 2007, A&A, 474, 653
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93 Rud̄er Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
94 Astrophysics Research Centre, School of Mathematics and Physics,

Queen’s University Belfast, Belfast BT7 1NN, UK
95 Data Science and Big Data Lab, Pablo de Olavide University, 41013,

Seville, Spain
96 Institute of Astrophysics, FORTH, Crete, Greece
97 Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell 1-3,

08034-Barcelona, Spain
98 ETSE Telecomunicación, Universidade de Vigo, Campus Lagoas-

Marcosende, 36310 Vigo, Galicia, Spain
99 F.R.S.-FNRS, Rue d’Egmont 5, 1000 Brussels, Belgium
100 Asteroid Engineering Laboratory, Luleå University of Technology,

Box 848, 981 28 Kiruna, Sweden
101 Kapteyn Astronomical Institute, University of Groningen,

Landleven 12, 9747 AD Groningen, The Netherlands
102 IAC – Instituto de Astrofisica de Canarias, Via Láctea s/n, 38200

La Laguna S.C., Tenerife, Spain
103 Department of Astrophysics, University of La Laguna, Via Láctea

s/n, 38200 La Laguna S.C., Tenerife, Spain
104 Astronomical Observatory, University of Warsaw, Al. Ujazdowskie

4, 00-478 Warszawa, Poland
105 Research School of Astronomy & Astrophysics, Australian National

University, Cotter Road, Weston, ACT 2611, Australia
106 European Space Agency (ESA, retired), European Space Research

and Technology Centre (ESTEC), Keplerlaan 1, 2201AZ,
Noordwijk, The Netherlands

107 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne
Université, Université de Paris, 5 Place Jules Janssen, 92190
Meudon, France

108 Université Rennes, CNRS, IPR (Institut de Physique de Rennes) –
UMR 6251, 35000 Rennes, France

109 INAF – Osservatorio Astronomico di Capodimonte, Via Moiariello
16, 80131, Napoli, Italy

110 Shanghai Astronomical Observatory, Chinese Academy of
Sciences, 80 Nandan Road, Shanghai 200030, PR China

111 University of Chinese Academy of Sciences, No.19(A) Yuquan
Road, Shijingshan District, Beijing 100049, PR China

112 São Paulo State University, Grupo de Dinâmica Orbital e Planetolo-
gia, CEP 12516-410, Guaratinguetá, SP, Brazil

113 Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej
30, 2100 Copenhagen Ø, Denmark

114 DXC Technology, Retortvej 8, 2500 Valby, Denmark
115 Las Cumbres Observatory, 6740 Cortona Drive Suite 102, Goleta,

CA 93117, USA
116 CIGUS CITIC, Department of Nautical Sciences and Marine Engi-

neering, University of A Coruña, Paseo de Ronda 51, 15071 A
Coruña, Spain

117 Astrophysics Research Institute, Liverpool John Moores University,
146 Brownlow Hill, Liverpool L3 5RF, UK

118 MTA CSFK Lendület Near-Field Cosmology Research Group,
Konkoly Observatory, MTA Research Centre for Astronomy and
Earth Sciences, Konkoly Thege Miklós út 15–17, 1121 Budapest,
Hungary

119 Pervasive Technologies s.l., c. Saragossa 118, 08006 Barcelona,
Spain

120 School of Physics and Astronomy, University of Leicester,
University Road, Leicester LE1 7RH, UK

121 Villanova University, Department of Astrophysics and Plane-
tary Science, 800 E Lancaster Avenue, Villanova PA 19085,
USA

122 Departmento de Física de la Tierra y Astrofísica, Universidad
Complutense de Madrid, 28040 Madrid, Spain

123 INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46,
23807 Merate (LC), Italy

124 National Astronomical Observatory of Japan, 2-21-1 Osawa,
Mitaka, Tokyo 181-8588, Japan

125 Department of Particle Physics and Astrophysics, Weizmann Insti-
tute of Science, Rehovot 7610001, Israel

126 Centre de Données Astronomique de Strasbourg, Strasbourg,
France

127 University of Exeter, School of Physics and Astronomy, Stocker
Road, Exeter, EX2 7SJ, UK

128 Departamento de Astrofísica, Centro de Astrobiología (CSIC-
INTA), ESA-ESAC, Camino Bajo del Castillo s/n, 28692
Villanueva de la Cañada, Madrid, Spain

129 naXys, Department of Mathematics, University of Namur, Rue de
Bruxelles 61, 5000 Namur, Belgium

130 INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11,
34131, Trieste, Italy

131 Harvard-Smithsonian Center for Astrophysics, 60 Garden St.,
MS 15, Cambridge, MA 02138, USA

132 H H Wills Physics Laboratory, University of Bristol, Tyndall
Avenue, Bristol BS8 1TL, UK

133 Escuela de Arquitectura y Politécnica – Universidad Europea de
Valencia, Spain

134 Escuela Superior de Ingeniería y Tecnología – Universidad Interna-
cional de la Rioja, Spain

135 Department of Physics and Astronomy G. Galilei, Univer-
sity of Padova, Vicolo dell’Osservatorio 3, 35122 Padova,
Italy

136 Applied Physics Department, Universidade de Vigo, 36310 Vigo,
Spain

137 Instituto de Física e Ciencias Aeroespaciais (IFCAE), Univer-
sidade de Vigo‚ Á Campus de As Lagoas, 32004 Ourense,
Spain

138 Sorbonne Université, CNRS, UMR7095, Institut d’Astrophysique
de Paris, 98bis bd. Arago, 75014 Paris, France

139 Institute of Mathematics, Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland

A38, page 24 of 33



Gaia Collaboration: A&A, 680, A38 (2023)

Appendix A: Error analysis of the BNM

In this section, we estimate the magnitudes of the errors intro-
duced by the BNM, which was used in DIB-Spec to build the
stellar templates for target spectra (Sect. 3.2). For each spectrum
in the reference sample (160 392, see Sect. 3.1), we apply the
BNM to generate its stellar template using all the other refer-
ence spectra. In total, 159 591 (99.5%) spectra have enough best
neighbours (>10) to build their stellar templates. The distribu-
tion of the flux residuals between the observed RVS spectra and
the generated stellar templates (observed − modelled) is shown
on the left-hand side in Fig. A.1, and four generated stellar tem-
plates are shown as examples in the right panels together with
the corresponding observed RVS spectra.

The flux residuals in the spectra present some patterns,
especially in low-S/N spectra, instead of being uniform or noise-
dominated. Positive residuals (red region) can be found near
the Ca II triplets because of their reduced weights and some
other stellar lines like Si I at 8658.4 Å, Fe I at 8623.97 Å and
8677.13 Å, indicating an overestimation of the depth of these
stellar lines. On the other hand, negative residuals (blue region)
mainly appear in spectra with S/N< 50, which could be due to
a failed modelling of the lines by BNM in low-S/N spectra or to
the improper normalization. The positions of some strong stel-
lar lines are indicated in Fig. A.1. These lines are determined by
Contursi et al. (2021) for the RVS spectra.

To quantitatively characterize the uncertainty introduced by
BNM into the ISM spectra and consequently to the DIB mea-
surement, we calculate the mean absolute residuals (MAR =
mean(|observed −modelled|)) of normalized flux between 861.2
and 866.0 nm (region of the two DIBs in priors). The relationship
between MAR and spectral S/N is shown in Fig. A.2. MAR has
a strong dependence on spectral S/N. We applied a linear fit to
them in logarithmic scale with 3σ clipping, and got a relation of
log10(MAR)=−0.16− 0.99× log10(S/N) (the dashed black line
in Fig. A.2) that can be used to describe the detections in the
main branch, that is MAR linearly increases with 1/(S/N) for
most of the stars, although MAR would be slightly larger than
expected for very large S/N. Other 11.1% of stars in a secondary
branch have larger MAR, which could be caused by the bad nor-
malization of RVS spectra (most with S/N< 50) and/or the low
number density in the vicinity of the queried stars. The reason
for the dependence of MAR on the spectral S/N could be that
high-S/N spectra are less affected by the random noise and have
best neighbours with higher S/N, as BNM rejects the reference
spectra with morphological differences larger than 3/(S/N) of
the queried spectrum.

From our test, we conclude that the uncertainty introduced by
BNM strongly depends on the S/N of the queried spectra. When
S/N> 50, MAR, the average magnitude of the flux residuals in
the DIB vicinity (861.2–866.0 nm), is smaller than 0.02 (2% of
the continuum) for 96.8% of spectra in the reference sample, and
smaller than 0.01 for 61.7% of spectra. We expect BNM to have a
similar performance on the RVS target sample because the target
and reference samples have similar S/N distribution (see the right
panel in Fig. 5).
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Fig. A.1. Left panel: Distribution of flux residuals (observed−modelled) with spectral wavelength for 159 591 reference spectra. Each row presents
one spectrum and the spectra are sorted by their S/N. The dashed blue and red lines indicate the position of S/N equalling 50 and 100, respectively.
Some typical stellar lines within the RVS spectral region determined by Contursi et al. (2021) are indicated as well. The lower panel is a zoom-in
plot of the upper one to show the distribution of the residuals in the DIB window (860–868 nm). Right panel: Four examples of the reference spectra
(black lines with observed flux errors) and their derived stellar templates (red lines). The orange lines are the flux residuals (observed −modelled)
with dashed black lines indicating ±5% of the continuum.

Fig. A.2. Variation of the mean absolute residual (MAR) between
observed and modelled RVS spectra, calculated within the DIB window
(861.2–866.0 nm), with the spectral S/N. The dashed green lines indi-
cate S/N = 50 and MAR = 0.02, respectively. The dashed black line is
fitted to MAR and S/N on a logarithmic scale.
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Appendix B: Corner plots of the DIB fittings

Figures B.1–B.5 show the corner plots of the DIB fitting in
the voxels according to the examples shown in Fig. 7. The his-
tograms and scatter plots show the one- and two-dimensional
projections of the posterior distributions of the fitted parameters,
with red squares and lines indicating the best estimates. Because
the intermediate quantities of DIB-Spec were dropped, the pos-
terior distributions of the parameters were drawn by refitting the
stacked ISM spectra in the same way as DIB-Spec, some tiny
differences can thus be found between the best estimates (red)
and the fitting results in the output table of DIB-Spec (blue).

Fig. B.1. Corner plot of the DIB fitting in the voxel with Ipix = 10450
and dc = 1.05 kpc (the first panel in Fig. 7 from top to bottom). The
histograms and scatter plots show the one- and two-dimensional pro-
jections of the posterior distributions of the fitted parameters. The red
squares and lines indicate the best-fit estimates for each parameter in the
reproduced fitting. And the dashed blue lines mark the fitted parameters
in the output table of DIB-Spec.

Fig. B.2. Same as Fig. B.1, but for the voxel with Ipix = 10450 and
dc = 1.27 kpc (the second panel in Fig. 7 from top to bottom)

Fig. B.3. Same as Fig. B.1, but for the voxel with Ipix = 10450 and
dc = 2.12 kpc (the third panel in Fig. 7 from top to bottom)
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Fig. B.4. Same as Fig. B.1, but for the voxel with Ipix = 10450 and
dc = 2.40 kpc (the forth panel in Fig. 7 from top to bottom)

Fig. B.5. Same as Fig. B.1, but for the voxel with Ipix = 10450 and
dc = 3.23 kpc (the fifth panel in Fig. 7 from top to bottom)
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Appendix C: Python script for converting the
spectra table

The python script below shows a simple method to convert the
spectra table to a fits file, in which each row stands for one
stacked ISM spectra.

import numpy as np
import pandas as pd
from tqdm import tqdm
from a s t r o p y . i o import f i t s

d i b s = pd . r e a d _ c s v ( somepath + ’ p a r a m e t e r _ t a b l e . csv ’ )
t a b e = pd . r e a d _ c s v ( somepath+ ’ s p e c t r a l _ t a b l e . c sv ’ )

s p e c _ l c = t a b e . l c . v a l u e s
spec_bc = t a b e . bc . v a l u e s
spec_dc = t a b e . dc . v a l u e s
c a t a _ l c = d i b s . l c . v a l u e s
c a t a _ b c = d i b s . bc . v a l u e s
c a t a _ d c = d i b s . dc . v a l u e s
wave = np . un i qu e ( t a b e [ ’ lambda ’ ] . v a l u e s )
f l u x = np . z e r o s ( ( d i b s . shape [ 0 ] , wave . shape [ 0 ] ) , d t y p e = ’ f l o a t ’ )
f e r r = np . z e r o s _ l i k e ( f l u x )
f o r i in tqdm ( range ( d i b s . shape [ 0 ] ) ) :

t = ( s p e c _ l c == c a t a _ l c [ i ] ) & ( spec_bc == c a t a _ b c [ i ] ) & ( spec_dc == c a t a _ d c [ i ] )
f l u x [ i ] = d a t a [ ’ f l u x ’ ] [ t ]
f e r r [ i ] = d a t a [ ’ f l u x _ u n c e r t a i n t y ’ ] [ t ]

hdr0 = f i t s . Header ( )
hdr0 [ ’COMMENT1’ ] = ’ s t a c k e d ISM s p e c t r a ’
hdr0 [ ’EXTNAME’ ] = ( ’ f l u x ’ , ’ n o r m a l i z e d f l u x ’ )
hdr1 = f i t s . Header ( )
hdr1 [ ’EXTNAME’ ] = ( ’ f e r r ’ , ’ f l u x u n c e r t a i n t y ’ )
hdr2 = f i t s . Header ( )
hdr2 [ ’EXTNAME’ ] = ( ’ wave ’ , ’ w a v e l e n g t h b i n s i n vacuum ’ )
hdu0 = f i t s . PrimaryHDU ( f l u x , h e a d e r = hdr0 )
hdu1 = f i t s . ImageHDU ( f e r r , h e a d e r = hdr1 )
hdu2 = f i t s . ImageHDU ( wave , h e a d e r = hdr2 )
hdu = f i t s . HDUList ( [ hdu0 , hdu1 , hdu2 ] )
hdu . w r i t e t o ( somepath+ ’ DIBSpec_ISM_spect ra . f i t s ’ , o v e r w r i t e =True )
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The Gaia project and data processing have made use of:

– the Set of Identifications, Measurements, and Bibliog-
raphy for Astronomical Data (SIMBAD, Wenger et al.
2000), the ‘Aladin sky atlas’ (Bonnarel et al. 2000; Boch
& Fernique 2014), and the VizieR catalogue access tool
(Ochsenbein et al. 2000), all operated at the Centre de
Données astronomiques de Strasbourg (CDS);

– the National Aeronautics and Space Administration (NASA)
Astrophysics Data System (ADS);

– the SPace ENVironment Information System (SPENVIS),
initiated by the Space Environment and Effects Section
(TEC-EES) of ESA and developed by the Belgian Insti-
tute for Space Aeronomy (BIRA-IASB) under ESA contract
through ESA’s General Support Technologies Programme
(GSTP), administered by the BELgian federal Science Pol-
icy Office (BELSPO);

– the software products TOPCAT, STIL, and STILTS (Taylor
2005, 2006);

– Matplotlib (Hunter 2007);
– IPython (Pérez & Granger 2007);
– Astropy, a community-developed core Python package for

Astronomy (Astropy Collaboration 2018);
– R (R Core Team 2013);
– the HEALPix package (Górski et al. 2005, http://
healpix.sourceforge.net/);

– Vaex (Breddels & Veljanoski 2018);
– the HIPPARCOS-2 catalogue (van Leeuwen 2007). The

HIPPARCOS and Tycho catalogues were constructed under
the responsibility of large scientific teams collaborating with
ESA. The Consortia Leaders were Lennart Lindegren (Lund,
Sweden: NDAC) and Jean Kovalevsky (Grasse, France:
FAST), together responsible for the HIPPARCOS Catalogue;
Erik Høg (Copenhagen, Denmark: TDAC) responsible for
the Tycho Catalogue; and Catherine Turon (Meudon, France:
INCA) responsible for the HIPPARCOS Input Catalogue
(HIC);

– the Tycho-2 catalogue (Høg et al. 2000), the construction of
which was supported by the Velux Foundation of 1981 and
the Danish Space Board;

– The Tycho double star catalogue (TDSC, Fabricius et al.
2002), based on observations made with the ESA HIPPAR-
COS astrometry satellite, as supported by the Danish Space
Board and the United States Naval Observatory through their
double-star programme;

– data products from the Two Micron All Sky Survey
(2MASS, Skrutskie et al. 2006), which is a joint project
of the University of Massachusetts and the Infrared Pro-
cessing and Analysis Center (IPAC) / California Institute
of Technology, funded by the National Aeronautics and
Space Administration (NASA) and the National Science
Foundation (NSF) of the USA;

– the ninth data release of the AAVSO Photometric All-Sky
Survey (APASS, Henden et al. 2016), funded by the Robert
Martin Ayers Sciences Fund;

– the first data release of the Pan-STARRS survey
(Chambers et al. 2016; Magnier et al. 2020a; Waters
et al. 2020; Magnier et al. 2020c,b; Flewelling et al. 2020).
The Pan-STARRS1 Surveys (PS1) and the PS1 public sci-
ence archive have been made possible through contributions
by the Institute for Astronomy, the University of Hawaii,
the Pan-STARRS Project Office, the Max-Planck Society
and its participating institutes, the Max Planck Institute
for Astronomy, Heidelberg and the Max Planck Institute
for Extraterrestrial Physics, Garching, The Johns Hopkins
University, Durham University, the University of Edinburgh,
the Queen’s University Belfast, the Harvard-Smithsonian
Center for Astrophysics, the Las Cumbres Observatory
Global Telescope Network Incorporated, the National
Central University of Taiwan, the Space Telescope Science
Institute, the National Aeronautics and Space Administration
(NASA) through grant NNX08AR22G issued through the
Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation through grant
AST-1238877, the University of Maryland, Eotvos Lorand
University (ELTE), the Los Alamos National Laboratory,
and the Gordon and Betty Moore Foundation;

– the second release of the Guide Star Catalogue (GSC2.3,
Lasker et al. 2008). The Guide Star Catalogue II is a joint
project of the Space Telescope Science Institute (STScI)
and the Osservatorio Astrofisico di Torino (OATo). STScI is
operated by the Association of Universities for Research in
Astronomy (AURA), for the National Aeronautics and Space
Administration (NASA) under contract NAS5-26555. OATo
is operated by the Italian National Institute for Astrophysics
(INAF). Additional support was provided by the European
Southern Observatory (ESO), the Space Telescope European
Coordinating Facility (STECF), the International GEMINI
project, and the European Space Agency (ESA) Astrophysics
Division (nowadays SCI-S);

– the eXtended, Large (XL) version of the catalogue of Posi-
tions and Proper Motions (PPM-XL, Roeser et al. 2010);

– data products from the Wide-field Infrared Survey Explorer
(WISE), which is a joint project of the University of Cal-
ifornia, Los Angeles, and the Jet Propulsion Laboratory/-
California Institute of Technology, and NEOWISE, which is
a project of the Jet Propulsion Laboratory/California Insti-
tute of Technology. WISE and NEOWISE are funded by the
National Aeronautics and Space Administration (NASA);

– the first data release of the United States Naval Obser-
vatory (USNO) Robotic Astrometric Telescope (URAT-1,
Zacharias et al. 2015);

– the fourth data release of the United States Naval Obser-
vatory (USNO) CCD Astrograph Catalogue (UCAC-4,
Zacharias et al. 2013);

– the sixth and final data release of the Radial Velocity Exper-
iment (RAVE DR6, Steinmetz et al. 2020a,b). Funding for
RAVE has been provided by the Leibniz Institute for Astro-
physics Potsdam (AIP), the Australian Astronomical Obser-
vatory, the Australian National University, the Australian
Research Council, the French National Research Agency,
the German Research Foundation (SPP 1177 and SFB 881),
the European Research Council (ERC-StG 240271 Galac-
tica), the Istituto Nazionale di Astrofisica at Padova, the
Johns Hopkins University, the National Science Foundation
of the USA (AST-0908326), the W.M. Keck foundation, the
Macquarie University, the Netherlands Research School for
Astronomy, the Natural Sciences and Engineering Research
Council of Canada, the Slovenian Research Agency, the
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Swiss National Science Foundation, the Science & Tech-
nology Facilities Council of the UK, Opticon, Strasbourg
Observatory, and the Universities of Basel, Groningen, Hei-
delberg, and Sydney. The RAVE website is at https://
www.rave-survey.org/;

– the first data release of the Large sky Area Multi-Object
Fibre Spectroscopic Telescope (LAMOST DR1, Luo et al.
2015);

– the K2 Ecliptic Plane Input Catalogue (EPIC, Huber et al.
2016);

– the ninth data release of the Sloan Digitial Sky Survey
(SDSS DR9, Ahn et al. 2012). Funding for SDSS-III has
been provided by the Alfred P. Sloan Foundation, the Par-
ticipating Institutions, the National Science Foundation, and
the United States Department of Energy Office of Science.
The SDSS-III website is http://www.sdss3.org/. SDSS-
III is managed by the Astrophysical Research Consortium for
the Participating Institutions of the SDSS-III Collaboration
including the University of Arizona, the Brazilian Participa-
tion Group, Brookhaven National Laboratory, Carnegie Mel-
lon University, University of Florida, the French Participa-
tion Group, the German Participation Group, Harvard Uni-
versity, the Instituto de Astrofísica de Canarias, the Michigan
State/Notre Dame/JINA Participation Group, Johns Hop-
kins University, Lawrence Berkeley National Laboratory,
Max Planck Institute for Astrophysics, Max Planck Institute
for Extraterrestrial Physics, New Mexico State University,
New York University, Ohio State University, Pennsylva-
nia State University, University of Portsmouth, Princeton
University, the Spanish Participation Group, University of
Tokyo, University of Utah, Vanderbilt University, University
of Virginia, University of Washington, and Yale University;

– the thirteenth release of the Sloan Digital Sky Survey (SDSS
DR13, Albareti et al. 2017). Funding for SDSS-IV has been
provided by the Alfred P. Sloan Foundation, the United
States Department of Energy Office of Science, and the Par-
ticipating Institutions. SDSS-IV acknowledges support and
resources from the Center for High-Performance Computing
at the University of Utah. The SDSS web site is https:
//www.sdss.org/. SDSS-IV is managed by the Astrophys-
ical Research Consortium for the Participating Institutions
of the SDSS Collaboration including the Brazilian Partici-
pation Group, the Carnegie Institution for Science, Carnegie
Mellon University, the Chilean Participation Group, the
French Participation Group, Harvard-Smithsonian Center
for Astrophysics, Instituto de Astrofísica de Canarias, The
Johns Hopkins University, Kavli Institute for the Physics
and Mathematics of the Universe (IPMU) / University of
Tokyo, the Korean Participation Group, Lawrence Berke-
ley National Laboratory, Leibniz Institut für Astrophysik
Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA
Heidelberg), Max-Planck-Institut für Astrophysik (MPA
Garching), Max-Planck-Institut für Extraterrestrische Physik
(MPE), National Astronomical Observatories of China, New
Mexico State University, New York University, University
of Notre Dame, Observatário Nacional / MCTI, The Ohio
State University, Pennsylvania State University, Shanghai
Astronomical Observatory, United Kingdom Participation
Group, Universidad Nacional Autónoma de México, Univer-
sity of Arizona, University of Colorado Boulder, University
of Oxford, University of Portsmouth, University of Utah,
University of Virginia, University of Washington, University
of Wisconsin, Vanderbilt University, and Yale University;

– the second release of the SkyMapper catalogue (SkyMap-
per DR2, Onken et al. 2019, Digital Object Identifier

10.25914/5ce60d31ce759). The national facility capability
for SkyMapper has been funded through grant LE130100104
from the Australian Research Council (ARC) Linkage
Infrastructure, Equipment, and Facilities (LIEF) programme,
awarded to the University of Sydney, the Australian National
University, Swinburne University of Technology, the Uni-
versity of Queensland, the University of Western Australia,
the University of Melbourne, Curtin University of Technol-
ogy, Monash University, and the Australian Astronomical
Observatory. SkyMapper is owned and operated by The
Australian National University’s Research School of Astron-
omy and Astrophysics. The survey data were processed
and provided by the SkyMapper Team at the Australian
National University. The SkyMapper node of the All-Sky
Virtual Observatory (ASVO) is hosted at the National
Computational Infrastructure (NCI). Development and
support the SkyMapper node of the ASVO has been funded
in part by Astronomy Australia Limited (AAL) and the Aus-
tralian Government through the Commonwealth’s Education
Investment Fund (EIF) and National Collaborative Research
Infrastructure Strategy (NCRIS), particularly the National
eResearch Collaboration Tools and Resources (NeCTAR)
and the Australian National Data Service Projects (ANDS);

– the Gaia-ESO Public Spectroscopic Survey (GES, Gilmore
et al. 2023; Randich et al. 2023). The Gaia-ESO Survey
is based on data products from observations made with
ESO Telescopes at the La Silla Paranal Observatory
under programme ID 188.B-3002. Public data releases are
available through the ESO Science Portal. The project
has received funding from the Leverhulme Trust (project
RPG-2012-541), the European Research Council (project
ERC-2012-AdG 320360-Gaia-ESO-MW), and the Istituto
Nazionale di Astrofisica, INAF (2012: CRA 1.05.01.09.16;
2013: CRA 1.05.06.02.07).
The GBOT programme (GBOT) uses observations col-

lected at (i) the European Organisation for Astronomical
Research in the Southern Hemisphere (ESO) with the VLT
Survey Telescope (VST), under ESO programmes 092.B-0165,
093.B-0236, 094.B-0181, 095.B-0046, 096.B-0162, 097.B-0304,
098.B-0030, 099.B-0034, 0100.B-0131, 0101.B-0156, 0102.B-
0174, 0103.B-0165, 0104.B-0081, 0106.20ZA.001 (OmegaCam),
0106.20ZA.002 (FORS2), 0108.21YF; and under INAF pro-
grams 110.256C, 112.266Q; and (ii) the Liverpool Telescope,
which is operated on the island of La Palma by Liver-
pool John Moores University in the Spanish Observatorio
del Roque de los Muchachos of the Instituto de Astrofísica
de Canarias with financial support from the United King-
dom Science and Technology Facilities Council, and (iii) tele-
scopes of the Las Cumbres Observatory Global Telescope
Network.

In addition to the currently active DPAC (and ESA sci-
ence) authors of the peer-reviewed papers accompanying the
data release, there are large numbers of former DPAC mem-
bers who made significant contributions to the (preparations of
the) data processing. In addition to the DPAC consortium, past
and present, there are numerous people, mostly in ESA and in
industry, who have made or continue to make essential contribu-
tions to Gaia, for instance those employed in science and mission
operations or in the design, manufacturing, integration, and test-
ing of the spacecraft and its modules, subsystems, and units.
Many of those will remain unnamed yet spent countless hours,
occasionally during nights, weekends, and public holidays, in
cold offices and dark clean rooms. They are acknowledged in
the Gaia Documentation
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