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A B S T R A C T

This paper presents an efficient method to perform uncertainty and sensitivity analyses in a cesium adsorption
model upstream chained with a pore water composition model. As the number of uncertain input parameters
is about twenty for each of the two models, a dimension reduction technique is implemented to build a
polynomial approximation of the cesium distribution coefficient in a reduced subspace. Two approaches are
tested depending on the water composition and adsorption models are treated as a single block or two separate
blocks. In view of assessing the robustness of the approaches, three initial cesium concentrations are considered
to explore different regimes of the adsorption model. The interpretation of the linear transformations projecting
the original inputs to the reduced coordinates is broadly consistent with the geochemical features of the model.
Validation results show that the relative error levels of the surrogate models are around a few percent for both
approaches with only one thousand realizations of the chained model. Global sensitivity analysis highlights
that the variance of the cesium distribution coefficient is overwhelmingly governed by the adsorption model.
Still, this conclusion is nuanced when considering the whole cumulative distribution function for which the
interaction effects between the two models account for a fifth.
1. Introduction

Adsorption processes play a major role in the prediction of aqueous
species migration in the geosphere. The safety arguments in support of
many radioactive waste repository concepts are heavily relying on the
existence of adsorption reactions in the geological formation and the
multi-barriers systems [1–3]. Cation exchange and surface complexa-
tion models can be used to quantify the adsorption of radionuclides
as a function of specific geochemical conditions that are considered to
be representative of in situ conditions [4–6]. However, uncertainties in
these model predictions must also be evaluated to inform performance
assessment calculations. Uncertainty and sensitivity analyses make it
also possible to identify the most important model parameters affecting
uncertainty in radionuclide adsorption and help design new laboratory
experiments [7]. In the present study, the emphasis is put on the use
of surrogate model to underpin the influences of pore water chemistry
on a cesium adsorption model outcome. Two difficulties must be ad-
dressed to estimate uncertainties of cesium adsorption models, namely
the upstream chaining with a pore water composition model and the
plentiful number of input parameters (≃40).

∗ Corresponding author.
E-mail address: pierre.sochala@cea.fr (P. Sochala).

The use of surrogate models has developed significantly in the
uncertainty quantification community and is now widely disseminated
in many disciplines. In particular, some works have been devoted to
the design of surrogate models for coupled problems described by
systems of solvers (or codes). These works may be based on Gaussian
processes [8,9] or polynomial approximations [10,11]. However, con-
structing and validating a surrogate model become intractable when the
dimensionality increases because the computational complexity grows
exponentially with the number of inputs as stated by the curse of
dimensionality [12]. This issue has motivated the development of di-
mensionality reduction approaches with a mapping of the original high
dimensional input parameters space to a suitable lower-dimensional
subspace. A dimension reduction-based surrogate model construction
relies on two key ingredients, which are an identification of the reduced
subspace and an approximation in this subspace. The reduction step can
be supervised or unsupervised whether the output is used to estimate
the reduced space or not. The most widespread linear unsupervised
technique is the principal component analysis but other possibly nonlin-
ear methods have been developed using machine learning approaches
vailable online 6 December 2023
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(see [13] for a review). Among the supervised techniques, the active
subspace method [14,15] has received much attention to identify the
reduced space using eigenpairs of a matrix derived from the output
gradient with respect to the input parameters. In this study, we im-
plemented a dimension reduction technique that linearly combines the
input parameters to get a few reduced coordinates able to describe the
main variations of the quantity of interest. We opted for the Partial
Least Squares (PLS) method that determines the reduced variables with-
out resorting to the model output gradient. Two strategies of surrogate
model construction were tested, with the two chained models treated
as a single block or two separate blocks. Then, we conducted a global
sensitivity analysis to identify the respective contributions of each of
the two models. This sensitivity study for groups of parameters was
drawn on the variance-based indices as well as on indices defined with
the conditional cumulative distribution function.

The paper is structured as follows. In Section 2, we present the
general modeling framework including the geochemical model, the set
of uncertain input parameters, and the different approaches imple-
mented to build surrogate models. In Section 3, we detail the dimension
reduction method combined with the polynomial expansion used to
approximate the cesium distribution coefficient. Validation results are
discussed in Section 4, and global sensitivity indices are analyzed in
Section 5.

2. Framework

This section provides an overview of the present study with its issues
related to the uncertainty propagation exercise. First, the geochemical
system is introduced, it is a cesium adsorption model upstream chained
with a pore water composition model. Second, the uncertain input pa-
rameters of each model and the linking parameters are listed with their
ranges of variation. Third, the two approaches for building surrogate
model are presented; one approach treats the different models as a
single one whereas the other approach considers each model separately.

2.1. Cesium distribution estimation

We are interested in the cesium (Cs+) distribution coefficient
D [L kg−1] which is representative of the cesium adsorbed on the

olid normalized to the cesium remaining at equilibrium in solution.
he cesium KD is calculated with an adsorption model of which a part
f the input parameters originates from an independent pore water
hemical composition model. A complete description of the model used
o calculate the pore water chemical composition in the Callovian-
xfordian claystone can be found in [16], and for which we conducted
n uncertainty propagation study in [17]. The input parameters of this
odel are the Cl− and SO2−

4 total concentration obtained from core
ample leaching measurements, the measured sodium Na+, potassium
+, calcium Ca2+, magnesium Mg2+, and strontium Sr2+ exchangeable

oncentrations, the related Na+∕K+, Na+∕Ca2+, Na+∕Mg2+, Na+∕Sr2+

ation exchange selectivity coefficients, and the solubilities of Celestite,
alcite, Dolomite, Goethite, Quartz, Pyrite, Ripidolite, and Illite. The
eference values of these 𝑁1 = 19 parameters are reported in Table 1.
he cesium adsorption model is based on a cation exchange model
aking into account only two clay mineral phases illite and smectite
montmorillonite) [18], see [4] for a complete description. The model
s briefly presented and made available in the form of a PHREEQC
3.5.0 [19] input file and its associated database (THERMOCHIMIE
9b [20]). The input parameters of the adsorption model contain the
roperties of the montmorillonite and illite planar sites, and the illite
ype II sites and Frayed Edge Sites (FES), which are relevant for the
dsorption of Cs+ present at trace concentration in the aqueous phase.
he reference values of these 𝑁2 = 18 parameters are reported in
able 2.

The computational software chain of the two previous models forms
directed system of solvers, meaning that the solvers can be ordered
2

Fig. 1. Computational chain of the cesium distribution coefficient estimation.

Table 1
List of the 𝑁1 uncertain input parameters of the pore water composition model with
their mean, minimal and maximal values.
# Type Species Unit Mean Min Max

1 Leached parameter Cl− mmol L−1 41 37.4 44.6
2 SO2−

4 mmol L−1 66 60.3 71.7

3

Exchanged cation

Na+ mol L−1 1.0824 0.99 1.17
4 K+ mol L−1 0.417 0.38 0.45
5 Ca2+ mol L−1 1.549 1.41 1.69
6 Mg2+ mol L−1 0.602 0.55 0.65
7 Sr2+ mol L−1 0.0737 0.067 0.081

8
Selectivity coefficients
(log𝐾ex value)

Na+∕K+ – 1.2 1.03 1.37
9 Na+∕Ca2+ – 0.7 0.53 0.87
10 Na+∕Mg2+ – 0.7 0.53 0.87
11 Na+∕Sr2+ – 0.6 0.43 0.77

12 Celestite – −6.62 −6.71 −6.53
13 Calcite – −8.48 −8.57 −8.39
14 Dolomite – −17.12 −17.5 −16.8
15 Solubility Goethite – 0.39 0.044 0.74
16 (log𝐾 value) Quartz – −3.74 −3.83 −3.65
17 Pyrithe – −58.78 −59.1 −58.4
18 Ripidolite – 61.35 60.5 62.2
19 Illite – 11.54 10.7 12.4

and the information can only be transferred forward in the system. This
aspect is schematically illustrated in Fig. 1 where the outputs of the
water composition model are a part of the inputs of the adsorption
model. In the following, the global input parameters of the water
composition model and the adsorption model are collected into 𝑁1-
imensional and𝑁2-dimensional vectors denoted 𝝃1 and 𝝃2 respectively
hile the linking parameters are regrouped into a 𝑁1,2-dimensional

vector 𝝃1,2. Formally speaking, the global inputs are defined as the
inputs of the models that are not an output of another model.

2.2. Input parameters perturbation

The 𝑁1 inputs of the water composition model and the 𝑁2 +𝑁1,2 =
18 + 5 inputs of the adsorption model are listed in Tables 1 and 2
with their mean and extreme values. The ranges of variation have been
chosen as a proportion of the mean values with the aim of generating
plausible perturbations. In addition, the parameters are assumed to be
uniformly distributed except the components of 𝝃1,2 whose probability
istributions are unknown a priori since they are outputs of the pore
ater composition model. Under the assumption of independence, the
arametric domain X𝝃 ⊆ R𝑁 and the probability distribution 𝑝𝝃 ∶ X𝝃 →

R+ of the random vector 𝝃 = (𝜉1,… , 𝜉𝑁 ) have a product form,

X𝝃 =
𝑁
⨉

𝑖=1
𝐼(𝜉𝑖), and 𝑝𝝃 (𝝃) =

𝑁
∏

𝑖=1
𝑝𝑖(𝜉𝑖),

here 𝑝𝑖(⋅) is the marginal distribution of the variable 𝜉𝑖 with support
(𝜉𝑖) ⊆ R.

.3. Surrogate modeling

Two approaches exist to build surrogate models of a system of
olvers, namely the monolithic and the fragmented approaches [8].
n the one hand, the monolithic (or black-box) approach handles the
omputational software chain as a single block. The advantage of this
pproach is to rely on the global inputs, whose probability distributions
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Table 2
List of the 𝑁2 uncertain input parameters of the adsorption model with their mean,
minimal and maximal values as well as their global numbering #gl. The 𝑁1,2 input
arameters stemming from the water composition model are also reported but their
ean and extreme values are not available a priori.
# #gl Type\Clay Species Unit Mean Min Max

1 20 [ ⋅ ] mol kg−1 1.3 10−1 9.9 10−2 1.6 10−1

2 21 K+ – 1.1 0.8 1.4
3 22 Planar Ca2+ – 0.6 0.3 0.9
4 23 montmorillonite Mg2+ – 0.6 0.3 0.9
5 24 Sr2+ – 0.3 0.0 0.6
6 25 Cs+ – 1.7 1.4 2.0

7 26 [ ⋅ ] mol kg−1 5.0 10−2 3.0 10−2 6.9 10−2

8 27 K+ – 1.2 0.9 1.5
9 28 Planar Ca2+ – 0.7 0.4 1.0
10 29 illite Mg2+ – 0.7 0.4 1.0
11 30 Sr2+ – 0.7 0.4 1.0
12 31 Cs+ – 1.6 1.3 1.9

13 32
Type II illite

[ ⋅ ] mol kg−1 8.0 10−3 4.0 10−3 1.2 10−2

14 33 K+ – 2.1 1.8 2.4
15 34 Cs+ – 3.6 3.3 3.9

16 35
‘‘FES’’ illite

[ ⋅ ] mol kg−1 1.0 10−4 5.0 10−5 1.5 10−4

17 36 K+ – 2.4 2.1 2.7
18 37 Cs+ – 7.0 6.7 7.3

# Type Species Unit Mean Min Max

1

Exchanged cations

Na+ mol L−1 N/A N/A N/A
2 K+ mol L−1 N/A N/A N/A
3 Ca2+ mol L−1 N/A N/A N/A
4 Mg2+ mol L−1 N/A N/A N/A
5 Sr2+ mol L−1 N/A N/A N/A

can be chosen a priori. This approach, however, can be difficult to
implement when the solvers are created and maintained by distinct
teams. On the other hand, the fragmented approach deals with each
solver of the computational chain separetely. This splitting is more at-
tractive than the monolithic approach when the dimensionality of each
solver is lower than the dimensionality of the global inputs because
it moderates the curse of dimensionality. Nevertheless, this approach
uses the linking parameters between the solvers, whose probability
distributions are unknown a priori.

Both approaches are tested in this paper in order to evaluate the
robustness of the dimension reduction method for approximating the
model output 𝑐 = KD. The monolithic approach provides an approx-
imation ∼𝑐 of 𝑐 by solving a single problem in dimension 𝑁1 + 𝑁2 =
37,

𝑐(𝝃1, 𝝃2) ≃
∼𝑐(𝝃1, 𝝃2),

∼𝑐 ∶ X𝝃1 × X𝝃2 → R.

The fragmented approach produces an approximation ≈𝑐 of 𝑐 by solving
𝑁1,2 = 5 problems in dimension 𝑁1 = 19,

𝝃1,2(𝝃1) ≃
∼
𝝃1,2(𝝃1),

∼
𝝃1,2 ∶ X𝝃1 → 𝛯𝝃1,2 ,

and one problem in dimension 𝑁2 +𝑁1,2 = 23,

𝑐(𝝃2, 𝝃1,2) ≃
≈𝑐(𝝃2,

∼
𝝃1,2),

≈𝑐 ∶ X𝝃2 × 𝛯𝝃1,2 → R,

where the parametric domain 𝛯𝝃1,2 ⊂ R5 of 𝝃1,2 is unknown a priori
and does not necessarily have a product form. The advantage regarding
the dimensionality decrease offered by the fragmented approach is
seen in Table 3 where the number of terms in Polynomial Chaos
(PC) expansions using a basis of total degree 𝑑◦ is reported for both
approaches. This table shows that it would require (104) to (106)

odel evaluations to fit the PC coefficients with the standard least
quares method. Of course, there is extensive literature on sparse
egression where most of the PC coefficients are equal to zero [21]
ut we decide to follow an alternative route using a dimensionality
eduction approach.
3

Table 3
Number of terms 𝑁b = (𝑁 + 𝑑◦)!∕(𝑁!𝑑◦!) in the PC basis of total degree 𝑑◦ defined by
the set of multi-indices (𝑑◦) =

{

𝒌 ∈ N𝑁 , ‖𝒌‖1 ≤ 𝑑◦
}

.

𝑑◦ Monolithic Fragmented

𝑁 = 37 𝑁 = 19 𝑁 = 23

1 38 20 24
2 741 210 300
3 9880 1540 2600
4 101 270 8855 17 550

3. Methodology

This section details the approach used to build a surrogate model
of the cesium KD in order to perform cheaply the uncertainty prop-
agation in the cesium adsorption model upstream chained with a
pore water composition model. The surrogate construction relies on a
dimension reduction by means of partial least squares and a functional
approximation in the reduced space with polynomial chaos expansion.

3.1. Partial least squares

PLS regression was developed by Wold and coworkers [22–24] to
counteract the ill-posedness of the ordinary least squares solution when
the predictors are highly collinear [25] and/or when the number of pre-
dictors exceeds the number of observations [26]. Initially introduced
in econometrics and chemometrics, PLS has become popular in many
scientific areas as a statistical tool of choice in multivariate analysis.
The concept of PLS is to reduce the 𝑁 original predictors to a smaller
set of 𝑛 uncorrelated latent components and to perform least squares
regression on these components. The latent components express as
linear combinations of the 𝑁 original predictors and have been used
recently in high-dimensional surrogate modeling for estimating the
effective dimension of a problem [27]. Moreover, PLS can be applied
to scalar (PLS1 version) or vectorial (PLS2 version) outputs [28].

3.1.1. Notation
Let us consider a system (or model) with 𝑁 uncertain input param-

eters collected into a random vector 𝝃 = (𝜉1,… , 𝜉𝑁 ) ∈ X ⊂ R𝑁 and a
single output quantity 𝑦. In PLS setting, the inputs are not necessarily
independent and the output is assumed to be a function of 𝑛 ≪ 𝑁
underlying latent components. By sampling the parametric domain X
with 𝑀 realizations  = {𝝃(𝑚)}𝑀𝑚=1 and computing the ensuing outputs

= {𝑦(𝑚) = 𝑦(𝝃(𝑚))}𝑀𝑚=1, we can assemble the matrix of inputs 𝑋 =
𝝃(𝑚)

]

∈ R𝑀,𝑁 and the vector of output y =
[

𝑦(𝑚)
]

∈ R𝑀 . Without loss
f generality, the data 𝑋 and y are centered.

.1.2. Description
The principle of the PLS method is to identify a set of weight vectors

𝝎𝑘 ∈ R𝑁
}

that maximize the covariance between the inputs and the
utput. The weights are calculated in a sequential manner by solving
he following optimization problem at the current iteration 𝑘,

𝑘 = arg max
𝝎, ‖𝝎‖2=1

(

Cov
(

𝐸𝑘𝝎, 𝑓𝑘
))

,

= arg max
𝝎, ‖𝝎‖2=1

(

𝝎⊤𝐸⊤𝑘 𝑓𝑘
)

,

= 𝐸⊤𝑘 𝑓𝑘∕‖𝐸
⊤
𝑘 𝑓𝑘‖2,

where 𝐸𝑘 ∈ R𝑀,𝑁 and 𝑓𝑘 ∈ R𝑀 denote the current residual of 𝑋 and
y, respectively (see Algorithm 1 for the definitions). The residual of
𝑋 is first projected onto the weight vector to get the associated latent
component (or score) 𝜏𝑘 ∈ R𝑀 ,

𝜏 = 𝐸 𝝎 ∕‖𝐸 𝝎 ‖ ,
𝑘 𝑘 𝑘 𝑘 𝑘 2



Journal of Computational Science 75 (2024) 102197P. Sochala et al.

m
u

𝑅

3

m
o
P
J
T
i
o
w
c
s
c
s

3

t
3
p
m
i
a
a
s
i
P
d

3

a
{
n

𝜙

w
b
a
T

⟨

w
i

i

(

c
m

𝜓

f

w
r
i
n

and then projected onto the latent component to obtain the 𝑋-loading
vector 𝑝𝑘 ∈ R𝑁 ,

𝑝𝑘 = 𝐸⊤𝑘 𝜏𝑘.

Both matrices of latent components 𝑇 =
[

𝜏𝑘
]

∈ R𝑀,𝑛 and weights 𝑊 =
[

𝝎𝑘
]

∈ R𝑁,𝑛 are orthonormal, that is 𝑇 ⊤𝑇 = 𝑊 ⊤𝑊 = 𝐼𝑛 (the identity
atrix). When performing PLS regression, the latent components are
sed as regressors instead of the original ones (𝑋 is replaced by 𝑇 in

the normal equations). From a dimension reduction perspective, the
latent components appear as a compressed version of the original inputs
through the relation

𝑇 = 𝑋𝑅,

where the reduction matrix 𝑅 ∈ R𝑁,𝑛 is written as [28]

= 𝑊
(

𝑃⊤𝑊
)−1 , (1)

with 𝑃 =
[

𝑝𝑘
]

∈ R𝑁,𝑛 the 𝑋-loadings matrix.

.1.3. Implementation
A detailed description of the PLS algorithm that we have imple-

ented to compute the reduction matrix is given in Appendix A. The
ptimal number of latent components to retain in a PLS model or in a
LS-based surrogate can be selected by many techniques including the
ackknife method, cross-validation technique, or information criterion.
he numerical experiments presented in Section 4 use the surrogate val-

dation error and show that only two latent components are sufficient in
ur case. As a closing remark, a sparsity constraint can be added to the
eight vectors in order to eliminate the input parameters with small

ontributions, thus improving the reduction dimension procedure. The
parse PLS [29] is not necessary in this study since it increases the
omputational cost (for tuning the penalty parameters controlling the
parsity) but without significant influence on the surrogate accuracy.

.2. Polynomial chaos expansion

PC methods have been broadly used for uncertainty quantifica-
ion [30,31] in many application domains including geosciences [32–
4]. Given a model subject to uncertain input parameters, the princi-
le of a PC expansion is to approximate the model output by using
ultivariate polynomial basis functions orthogonal with respect to the

nputs’ probability distributions. The main advantages of PC methods
re the exponential convergence rate for smooth quantities of interest
nd the direct exact derivation of the moments and variance-based
ensitivity indices. Although the standard framework assumes that the
nputs are independent and have exact (or analytical) distributions,
C can be extended to arbitrary dependent distributions [35–37] only
efined by their moments.

.2.1. Generalized polynomial chaos
In classical generalized Polynomial Chaos (gPC), the inputs are

ssumed to be independent and the multivariate gPC basis functions
𝜙𝒌} are explicitly defined as product of univariate orthonormal poly-
omials,

𝒌(𝝃) =
𝑁
∏

𝑖=1
𝜑𝑖𝑘𝑖 (𝜉𝑖),

here 𝒌 = (𝑘1,… , 𝑘𝑁 ) ∈ N𝑁 is a multi-index and {𝜑𝑖𝑘𝑖} are univariate
asis functions orthogonal with respect to the variable 𝜉𝑖. As an ex-
mple, Legendre polynomials are orthogonal for uniform distributions.
he orthogonality condition satisfied by the gPC reads

𝜙𝒌, 𝜙𝒍⟩ = ∫X𝝃

𝜙𝒌(𝝃)𝜙𝒍(𝝃)𝑝𝝃 (𝝃)𝑑𝝃 = ‖𝜙𝒌‖
2𝛿𝒌,𝒍,

here ⟨⋅, ⋅⟩ is the inner product in 𝐿2
𝑝𝝃
(X𝝃 ) and ‖𝜙𝒌‖ = ⟨𝜙𝒌, 𝜙𝒌⟩

1∕2 its
nduced norm.
4

a

3.2.2. Arbitrary polynomial chaos
When the inputs are dependent, arbitrary Polynomial Chaos (aPC)

basis functions {𝜓𝒍} can be constructed to satisfy a discrete orthogonal-
ty condition,

𝜓𝒍, 𝜓𝒎) =
1
| |

∑

𝝉∈
𝜓𝒍(𝝉)𝜓𝒎(𝝉) = |||𝜓𝒍|||

2𝛿𝒍,𝒎, (2)

where (⋅, ⋅) is the discrete weighted inner product and |||𝜓𝒍||| =
(𝜓𝒍, 𝜓𝒍)1∕2 its induced norm. The random vector 𝝉 = (𝜏1,… , 𝜏𝑛) ⊂ R𝑛

orresponds here to 𝑛 reduced coordinates defined by the PLS reduction
atrix 𝑅. A sampling  of 𝝉 is obtained from a sampling  of 𝝃 as

follows

 = {𝝉 = 𝝃𝑅, 𝝃 ∈ }.

The aPCs are built empirically with the Gram–Schmidt orthogonal-
ization procedure briefly summarized hereafter. Let {𝑃𝒍(𝝉)} be a set of
𝑁b linearly independent polynomials of total degree 𝑑◦ defined by the
set of multi-indices (𝑑◦) =

{

𝒍 ∈ N𝑛, ‖𝒍‖1 ≤ 𝑑◦
}

. The orthonormal basis
functions {𝜓𝒍(𝝉)} are constructed recursively from {𝑃𝒍(𝝉)}. For all 𝒍 ∈ ,
we have

̃𝒍(𝝉) = 𝑃𝒍(𝝉) −
∑

𝒎∈(𝒍)
𝑟𝒍,𝒎𝜓𝒎(𝝉),

𝜓𝒍(𝝉) = �̃�𝒍(𝝉)∕|||�̃�𝒍(𝝉)|||, (3)

where the set (𝒍) starts with (𝟎) = ∅ and then collects the multi-
indices of the polynomials orthonormalized in the previous iterations.
Normalization step (3) is optional but simplifies condition (2) into
(𝜓𝒍, 𝜓𝒎) = 𝛿𝒍,𝒎. A first way for computing the set of coefficients {𝑟𝒍,𝒎} is
rom a recursive algorithm [36] based on the definition 𝑟𝒍,𝒎 = (𝑃𝒍, 𝜓𝒎)

and using multivariate monomials 𝑃𝒍(𝝉) = 𝝉 𝒍 =
∏𝑛

𝑗=1 𝜏
𝑙𝑗
𝑗 to simplify

the inner products calculations. A more direct way followed here and
described in Appendix B is through a QR factorization  =  of the
matrix  =

[

𝑇 𝒍] ∈ R𝑀,𝑁b , 𝑇 ∈ R𝑀,𝑛 being the PLS latent components
matrix. Finally, the aPC basis functions appear as linear combinations
of the 𝝉 𝒍,

∀𝒍 ∈ , 𝜓𝒍(𝝉) =
∑

𝒎∈
𝛼𝒎,𝒍𝝉𝒎, (4)

where {𝛼𝒎,𝒍} are the coefficients of the inverse −1 of the matrix .

3.2.3. Spectral coefficients computation
Once the aPC basis functions have been built, the second step is to

estimate the set of spectral coefficients of the model output approxi-
mation. By exploiting the matrix  of sampled aPC basis functions, we
calculate the least squares solution,

⊤𝒄 = ⊤c, (5)

where 𝒄 ∈ R𝑁b collects the spectral coefficients 𝑐𝒍 and c ∈ R𝑀 is the
vector of model output 𝑐(𝝉 (𝑚)). Finally, the PLS-aPC approximation ∼𝑐(𝝃)
of the model output KD is expressed as
∼𝑐(𝝃) =

∑

𝒍∈
𝑐𝒍𝜓𝒍(𝝃𝑅), (6)

where 𝑅, {𝜓𝝉 (⋅)} and {𝑐𝒍} are defined by Eqs. (1), (4) and (5), re-
spectively. The number of coefficients 𝑁c in the PLS-aPC surrogate
model (6) is

𝑁c(𝑛, 𝑑◦) = 𝑛 ×𝑁 +𝑁b(𝑛, 𝑑◦),

here the first term corresponds to the number of coefficients of the
eduction matrix 𝑅 and the second term is the number of PC basis
n the reduced subspace given a total degree 𝑑◦. The impact of the
umber of reduced coordinates and polynomial basis functions on the

pproximation accuracy is investigated in the next section.
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Table 4
Monolithic approach - RMSRE obtained using 𝑀∗ = 103 realizations of the chained
geochemical model for the three initial concentrations [Cs]0 (mol L−1).
[Cs]0 𝑑◦ 𝑛 = 1 𝑛 = 2 𝑛 = 3

2 1.46 ⋅ 10−1 1.18 ⋅ 10−1 1.16 ⋅ 10−1

10−5 3 1.16 ⋅ 10−1 6.59 ⋅ 10−2 6.41 ⋅ 10−2

4 1.16 ⋅ 10−1 6.67 ⋅ 10−2 6.50 ⋅ 10−2

2 7.92 ⋅ 10−2 5.31 ⋅ 10−2 5.22 ⋅ 10−2

10−3 3 7.91 ⋅ 10−2 5.31 ⋅ 10−2 5.20 ⋅ 10−2

4 7.87 ⋅ 10−2 5.32 ⋅ 10−2 5.23 ⋅ 10−2

2 9.80 ⋅ 10−2 5.59 ⋅ 10−2 5.43 ⋅ 10−2

10−1 3 9.77 ⋅ 10−2 5.49 ⋅ 10−2 5.24 ⋅ 10−2

4 9.78 ⋅ 10−2 5.55 ⋅ 10−2 5.30 ⋅ 10−2

Table 5
Monolithic approach - Number of coefficients 𝑁c(𝑛, 𝑑◦) in the PLS-aPC surrogate
model.
𝑑◦ 𝑛 = 1 𝑛 = 2 𝑛 = 3

2 40 80 121
3 41 84 131
4 42 89 146

4. Surrogate model validation and comparison

The adsorption model presented in Section 2.1 must be completed
with an initial cesium concentration [Cs]0. In what follows, we choose
the three contrasting values 10−5, 10−3, and 10−1 mol L−1 to explore
different regimes of the model. The influence of the sample size 𝑀
on the cesium adsorption is shown on Fig. 2 where the empirical
statistical moments are plotted for 𝑀 = 102, 103, and 104 Monte-Carlo
realizations. We observe on Fig. 3 that the probability density functions
estimated for 𝑀 = 103 are close to those obtained for 𝑀 = 104. This
aspect is consistent with the low bootstrap errors calculated for these
values of 𝑀 . On the basis of these observations, we use a training set 
of 𝑀 = 103 realizations to build the surrogate models in the monolithic
and fragmented approaches.

4.1. Monolithic approach

A linear transformation is applied to each component 𝜉𝑖 of the global
inputs vector 𝝃 = (𝝃1, 𝝃2) in order to manipulate, in the dimension
reduction step, a set of random variables uniformly distributed over
[−1, 1]. The surrogate model accuracy is measured with the root mean
squared relative error (RMSRE) defined as

RMSRE =

√

√

√

√

√

1
𝑀∗

∑

𝝃∈∗

(

𝑐(𝝃) − ∼𝑐(𝝃)
𝑐
(

𝝃
)

)2

,

where ∗ is a validation set of 𝑀∗ = 103 realizations independent
from the training set  . The empirical errors of the surrogate models
are reported in Table 4 where the number of reduced coordinates
varies from one to three and the total polynomial degree varies from
two to four. The corresponding number of coefficients are indicated
in Table 5, they are much lower than the number of terms in high
dimensional cases (see Table 3). The representation of cesium KD
by PLS-aPC surrogate models is very effective and robust since the
error level is small for few reduced coordinates and low polynomial
degree, whatever the initial condition. Indeed, a sampling of size 103 in
dimension 37 yields a RMSRE around 5–6% when 𝑛 ≥ 2 and 𝑑◦ ≥ 3, for
the three initial concentrations. Such a level of error can be appreciated
from Fig. 4 where the surrogate model values and absolute errors are
plotted versus the true values for 𝑛 = 2 and 𝑑◦ = 3.

Let us now take a close look into the principle and effect of the
dimension reduction. Fig. 5 depicts the first column coefficients of the
reduction matrix for the three initial conditions. The first comment
5

Fig. 2. Cesium KD means and standard deviations as functions of the sample size
𝑀 with the bootstrap errors [38] computed with 20 replicants from resampling with
replacement.

is that the Na+∕K+ selectivity coefficient is the only input of the
water composition model that stands out. This coefficient is indeed
the main factor controlling the K+ concentration in solution and K+

is the main competitor for Cs+ adsorption on the Type II sites and
FES. The second comment is that the main contributors of the Cesium
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Fig. 3. Probability density functions of cesium KD estimated using standard kernel
density estimation for three sample sizes 𝑀 .

adsorption model depend on [Cs]0. For [Cs]0 = 10−5 mol L−1, the main
contributors are the Na+∕Cs+ and Na+∕K+ selectivity coefficients for
the exchange reactions on the illite FES and the FES site density on
the illite surfaces. For [Cs]0 = 10−3 mol L−1, the main contributors are
the Na+∕Cs+ and Na+∕K+ selectivity coefficients and the site densities
for the exchange reactions on both FES and Type II sites on illite.
6

Fig. 4. Monolithic approach - Surrogate model values ∼𝑐(𝝃) and absolute errors
|𝑐(𝝃) − ∼𝑐(𝝃)| versus true values 𝑐(𝝃) for the validation set ∗ plotted in logarithmic
scales. Results for 𝑛 = 2 reduced coordinates and a total degree 𝑑◦ = 3.

For [Cs]0 = 10−1 mol L−1, the FES site parameters do not contribute
significantly. This result can be understood with the gradual saturation
by Cs+ of the most reactive sites (FES, then Type II, then planar) with
increasing Cs+ aqueous concentration. Fig. 6 plots the cesium KD with
respect to the most important inputs of the adsorption model (in terms
of amplitude in the first reduction vector) and the reduced coordinates.
It is clear that the advantage conferred by the dimension reduction is to
deliver a structuring of the data, which can be efficiently approximated
with low-order polynomials.
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Fig. 5. Monolithic approach - Reduction matrix first column coefficients.

4.2. Fragmented approach

Contrary to the monolithic approach, the fragmented approach
treats each solver separately by relying on the parameters connecting
the different solvers. One complication encountered in this approach
is that the linking parameters’ probability distributions are unknown a
7

Table 6
Fragmented approach - RMSRE of the linking parameters obtained using 𝑀∗ = 103

realizations of the pore water composition model.
𝝃1,2 𝑑◦ 𝑛 = 1 𝑛 = 2 𝑛 = 3

Na+
2 1.52 ⋅ 10−2 1.18 ⋅ 10−2 1.18 ⋅ 10−2

3 1.52 ⋅ 10−2 1.18 ⋅ 10−2 1.19 ⋅ 10−2

K+ 2 4.20 ⋅ 10−2 1.68 ⋅ 10−2 1.56 ⋅ 10−2

3 4.20 ⋅ 10−2 1.65 ⋅ 10−2 1.52 ⋅ 10−2

Ca2+
2 6.11 ⋅ 10−2 4.29 ⋅ 10−2 4.28 ⋅ 10−2

3 6.10 ⋅ 10−2 4.30 ⋅ 10−2 4.28 ⋅ 10−2

Mg2+
2 6.24 ⋅ 10−2 4.45 ⋅ 10−2 4.49 ⋅ 10−2

3 6.25 ⋅ 10−2 4.50 ⋅ 10−2 4.52 ⋅ 10−2

Sr2+
2 2.60 ⋅ 10−2 1.87 ⋅ 10−2 1.84 ⋅ 10−2

3 2.60 ⋅ 10−2 1.87 ⋅ 10−2 1.84 ⋅ 10−2

Table 7
Fragmented approach - Fitted shape parameters of the beta distributions as well as
Kolmogorov–Smirnov distance 𝑑KS.
𝝃1,2 𝛼 𝛽 𝑑KS

Na+ 7.61 10.03 6.0 ⋅ 10−3

K+ 2.19 4.06 2.9 ⋅ 10−2

Ca2+ 4.36 9.05 6.8 ⋅ 10−3

Mg2+ 2.50 6.12 8.9 ⋅ 10−3

Sr2+ 4.14 7.57 1.0 ⋅ 10−2

priori since these parameters are outputs of solvers. In this section, we
explain the procedure to deal with this aspect and present the analysis
of cesium KD in this context.

4.2.1. Linking parameters
Our procedure to estimate the joint probability distribution of the

linking parameters is to build surrogate models for these parameters
and then to fit analytical probability distributions thanks to large sam-
ples of surrogate models. We build PLS-aPC surrogate models whose
errors are reported in Table 6 for the five linking parameters. We see
that the errors are a few percent and are converged when 𝑛 ≥ 2 and
𝑑◦ ≥ 2. The uncertainty propagation into the pore water composition
model is out of the scope of the present paper but can be found in [17].

For the probability distributions fitting, we begin by measuring
the dependence between the linking parameters with the Chatterjee
coefficient [39] computed from a massive sampling † of 𝑀† = 106

surrogate models realizations. The assumption of independence is valid
here since this coefficient, not shown for brevity, is close to zero for all
the pairs of distinct parameters. In case of dependency, a copula-based
model [40] could be used to describe the relations between the linking
parameters. For each of the five linking parameters, we then adjust beta
distributions with the method of moments. The two shape parameters 𝛼
and 𝛽 of a beta distribution are directly obtained through the relations

𝛼 =
Ê
(

Ê
(

1 − Ê
)

− V̂
)

V̂
and 𝛽 =

(

Ê − 1
)(

Ê
(

Ê − 1
)

+ V̂
)

V̂
,

where Ê and V̂ denote the empirical mean and variance computed from
†. The adjusted shape parameters are indicated in Table 7, together
with the Kolmogorov–Smirnov (KS) distance between the beta cumula-
tive distributions and the empirical ones. The KS distances are relatively
small, thereby validating the choice and fitting of beta distributions.
For illustrative purposes, the adjusted and empirical distributions of the
two linking parameters having the minimal and maximal KS distances
are plotted in Fig. 7.

4.2.2. Global output
Linear transformations of the components of 𝝃2 and inverse transfor-

mations of the linking parameters 𝝃1,2, through their inverse cumulative
distribution functions, are enforced to handle random variables uni-
formly distributed over [−1, 1]. The RMSRE listed in Table 8 and the
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Fig. 6. Monolithic approach - Cesium KD scatter plot, top: as a function of the global inputs 𝜉36 and 𝜉37, bottom: as a function of the reduced coordinates 𝜏1 and 𝜏2. Initial
concentration [Cs]0 = 10−5 mol L−1.
Table 8
Fragmented approach - RMSRE obtained using 𝑀∗ = 103 realizations of the cesium
adsorption model for the three initial concentrations [Cs]0 (mol L−1).
[Cs]0 𝑑◦ 𝑛 = 1 𝑛 = 2 𝑛 = 3

2 1.47 ⋅ 10−1 1.19 ⋅ 10−1 1.17 ⋅ 10−1

10−5 3 1.08 ⋅ 10−1 6.22 ⋅ 10−2 6.20 ⋅ 10−2

4 1.07 ⋅ 10−1 6.25 ⋅ 10−2 6.31 ⋅ 10−2

2 6.68 ⋅ 10−2 5.23 ⋅ 10−2 5.20 ⋅ 10−2

10−3 3 6.67 ⋅ 10−2 5.24 ⋅ 10−2 5.21 ⋅ 10−2

4 6.65 ⋅ 10−2 5.23 ⋅ 10−2 5.22 ⋅ 10−2

2 8.38 ⋅ 10−2 5.64 ⋅ 10−2 5.51 ⋅ 10−2

10−1 3 8.31 ⋅ 10−2 5.40 ⋅ 10−2 5.20 ⋅ 10−2

4 8.32 ⋅ 10−2 5.39 ⋅ 10−2 5.22 ⋅ 10−2

first column coefficients of the reduction matrix represented in Fig. 8
are strongly consistent with those obtained in the monolithic approach.
One advantage offered by the fragmented approach is that the number
of coefficients 𝑁c in Table 9 is lower than in the monolithic approach.
However, considering the similarity of the reduction matrix first col-
umn coefficients between the monolithic and fragmented approaches
(see Figs. 5 and 8), more than likely that sparse PLS would have
produced denoised reduction matrix with roughly the same number of
non-zero coefficients.
8

Table 9
Fragmented approach - Number of coefficients 𝑁c(𝑛, 𝑑◦) in the PLS-aPC surrogate
model.
𝑑◦ 𝑛 = 1 𝑛 = 2 𝑛 = 3

2 26 52 79
3 27 56 89
4 28 61 104

5. Global sensitivity analyses

A very useful information when examining a physical model with
multiple inputs is the relative impact of each input and set of inputs on
the model output. Of particular interest is the global sensitivity anal-
ysis which measures the contribution of inputs and their interactions
over the whole parametric domain. Different measure criteria have
been proposed in global sensitivity analysis such as the variance [41],
higher-order moments [42] as well as probabilistic divergences and
distances [43]. The most popular indices are the so-called Sobol in-
dices that decompose the output variance into normalized elementary
contributions. In this section, after recalling the definition of such
variance-based indices in the case of a group of inputs, we spec-
ify the Cramér–Von Mises indices that are formulated on the whole
distribution of the output.
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Fig. 7. Fragmented approach - Empirical and fitted beta distributions with the method
of moments using 𝑀† = 106 surrogate models evaluations.

5.1. Closed sensitivity indices

Variance-based global sensitivity analysis methods [41,44] deter-
mine the contribution of each input and set of inputs onto the variance
of the model output. This analysis can be applied for groups of in-
puts [45,46] to quantify the influence of subsets of inputs. Specifically,
when the vector of input parameters 𝝃 is divided into two groups 𝝃1 and
𝝃2, the variance decomposition of a quantity of interest 𝑌 is written as

V(𝑌 ) = V(E(𝑌 |𝝃1)) + V(E(𝑌 |𝝃2)) + V1,2(𝑌 ), (7)

where E(𝑌 |𝝃) denotes the conditional expectation of 𝑌 given 𝝃. The
term V(E(𝑌 |𝝃𝑖)) measures the part of the variance due to the group
of inputs 𝝃𝑖 while the term V1,2(𝑌 ) = V(𝑌 ) − V(E(𝑌 |𝝃1)) − V(E(𝑌 |𝝃2))
quantifies the interaction effects between the two groups 𝝃1 and 𝝃2.
The influence of a group of parameters, that regroups the own effect
of each parameter and all the interaction effects within the group, is
measured by the closed sensitivity index 𝑖 defined as

𝑖 =
V(E(𝑌 |𝝃𝑖))

V(𝑌 )
.

In other words, if the group contains 𝑛 parameters, the closed index
corresponds to the sum of the first-order, second-order, … , and 𝑛th-
order Sobol indices. The closed sensitivity indices of 𝑌 = K are plotted
9

D

Fig. 8. Fragmented approach - Reduction matrix first column coefficients.

in Fig. 9(a) and show that the cesium variance is overwhelmingly
governed by the adsorption model without interaction with the pore
water composition model, regardless of the initial concentration.

5.2. Cramér–Von Mises indices

The variance-based indices are well adapted to describe the mean
output behavior of a model [47] but, by nature, they do not quantify
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Fig. 9. Global sensitivity indices obtained from the pick-freeze method applied with
the monolithic surrogate model and samplings of 106 realizations.

the influence of an input over the whole distribution. For that purpose,
more general indices exist in the available literature [47] including
those based on the Cramér–Von Mises distance [48]. If 𝑌 (𝑥) = 1{𝑐≤𝑥},
the variance decomposition (7) becomes

𝐹𝑐 (𝑥)(1 − 𝐹𝑐 (𝑥)) = V(𝐹𝑐 (𝑥|𝝃1)) + V(𝐹𝑐 (𝑥|𝝃2)) + V1,2(1{𝑐≤𝑥}), (8)

where 𝐹𝑐 (𝑥) = P(𝑐 ≤ 𝑥) = E
(

1{𝑐≤𝑥}
)

is the cumulative distribution func-
tion of 𝑐 and 𝐹𝑐 (𝑥|𝝃) the conditional cumulative distribution function
given 𝝃. The left-hand side of Eq. (8) is obtained through the relation
V(1𝐴) = P(𝐴)(1−P(𝐴)) with 𝐴 = {𝑐 ≤ 𝑥}. The Cramér–Von Mises indices
𝑖 defined as

𝑖 =
∫R V(𝐹𝑐 (𝑥|𝝃𝑖))𝑑𝐹𝑐 (𝑥)

∫R 𝐹𝑐 (𝑥)(1 − 𝐹𝑐 (𝑥))𝑑𝐹𝑐 (𝑥)
, (9)

are obtained after integrating Eq. (8) in 𝑥 with respect to the dis-
tribution of 𝑐 and normalizing. The indices (9) have nice properties
and advantages: they are based on the Hoeffding decomposition and
sum to one (as Sobol indices), they always exist whatever the output
distribution, and they can be simply obtained with a pick-freeze method
(see Appendix C). The Cramer–Von Mises indices associated to cesium
KD are drawn on Fig. 9(b) and indicate that the interaction between
the adsorption model and the pore water composition model represents
about 20% of the uncertainty over the distribution of cesium KD. It is
interesting to note that these interaction indices strongly contrast with
10
the Sobol ones, illustrating that a negligible Sobol index does not imply
that the associated input (or group of inputs) has no effect over the
whole distribution.

6. Conclusion

This work focused on investigating the use of dimension-reduction
techniques to represent the output of a cesium adsorption model in vari-
ous regimes. The specificity of the adsorption model is its upstream link
with a pore water composition model as well as the plentiful number
of input parameters. A linear supervised dimension reduction approach
combined with a functional approximation has proved effective for
constructing a surrogate model of the cesium distribution coefficient.
Assessment of the surrogate models revealed that both monolithic and
fragmented approaches have comparable mean squared relative errors.
Direct exploitation of the surrogate models through global sensitivity
analysis emphasized that the upstream pore water composition model
has no effect on the cesium KD variance. Also, we evidenced the benefit
of going beyond the variance-based sensitivity analysis by estimat-
ing the impact of the inputs over the whole output distribution. The
uncertainty propagation methodology presented in this paper could
be repeated for other radionuclides and different models in order to
investigate further the role of the pore water composition model into
adsorption processes.
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Appendix A. NIPALS algorithm

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm
with orthonormal latent components is detailed in Algorithm 1 for a
single output (PLS1 model). Recall that the goal of the PLS method is
to extract from the matrix of input data 𝑋, a set of 𝑛 latent components
that are more suitable to describe the output quantity y than the 𝑁 ≫ 𝑛
original predictors. Algorithm 1 starts with the initialization of the
inputs and output residuals 𝐸1 and 𝑓1 to 𝑋 and y, respectively. The
first step of the iterative loop is to compute the current weight vector
by maximizing the covariance between the 𝑋 and y residuals. The
second step is to calculate the current latent component (or score) by
projecting the 𝑋 residual onto the weight vector. The current 𝑋 and
y-loadings are then estimated by a projection of the residuals onto
the current latent component. Finally, the residuals are updated by
deflation and the procedure is started again. Once the loop is over,
the different matrices are stored and the regression coefficients 𝜷 as
well as the PLS approximation ŷ are computed. A number of variants of
PLS exist for estimating the different matrices. For instance, the latent
component matrix can be orthogonal or not, normalized or not, and we
refer to [49,50] for a comparison of the different PLS variants.
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Algorithm 1 NIPALS algorithm

Input: 𝑋, y, 𝑛
𝐸1 = 𝑋 and 𝑓1 = y, ⊳ Residuals
for 𝑘 = 1,… , 𝑛 do

𝝎𝑘 = 𝐸⊤𝑘 𝑓𝑘∕‖𝐸
⊤
𝑘 𝑓𝑘‖2, ⊳ Weights

𝜏𝑘 = 𝐸𝑘𝝎𝑘∕‖𝐸𝑘𝝎𝑘‖2, ⊳ Scores
𝑝𝑘 = 𝐸⊤𝑘 𝜏𝑘, ⊳ 𝑋-loadings
𝑞𝑘 = 𝑓⊤𝑘 𝜏𝑘, ⊳ y-loading
𝐸𝑘+1 = 𝐸𝑘 − 𝜏𝑘𝑝⊤𝑘 , ⊳ 𝑋 deflation
𝑓𝑘+1 = 𝑓𝑘 − 𝜏𝑘𝑞𝑘, ⊳ y deflation

end for
𝑊 =

[

𝝎𝑘
]

, 𝑇 =
[

𝜏𝑘
]

, 𝑃 =
[

𝑝𝑘
]

, q =
[

𝑞𝑘
]

,

𝑅 = 𝑊
(

𝑃⊤𝑊
)−1, ⊳ Reduction Matrix

𝜷 = 𝑅𝑇 ⊤y, ⊳ Regression coefficients
ŷ = 𝑋𝜷, ⊳ PLS1 Model
utput: ŷ, 𝜷,𝑊 , 𝑇 , 𝑃 , 𝑞, 𝑅

Appendix B. Weighted-QR factorization algorithm

The Gram–Schmidt (GS) procedure is a well-known method for or-
thogonalizing a set of vectors with respect to a given discrete (possibly
weighted) inner product (⋅, ⋅). Starting from a finite set of 𝑚 linearly
independent vectors {𝒑1,… ,𝒑𝑚} of R𝑀≥𝑚, the GS procedure generates
an orthogonal set of vectors {𝒒1,… , 𝒒𝑚} that spans the same subspace
of R𝑀 . The orthogonality condition of the 𝒒𝑘 reads

(𝒒𝑘, 𝒒𝑙) =
𝑀
∑

𝑖=1
𝑤𝑖𝑞𝑘,𝑖𝑞𝑙,𝑖 = |||𝒒𝑘|||2𝛿𝑘,𝑙 ,

where |||𝒒𝑘||| = (𝒒𝑘, 𝒒𝑘)1∕2 and the weights 𝑤𝑖 are here equal to 1∕𝑀 .
The 𝑚 vectors 𝒒𝑘 express as

𝒒𝑘 = 𝒑𝑘 −
𝑘−1
∑

𝑗=1

(𝒑𝑘, 𝒒𝑗 )
(𝒒𝑗 , 𝒒𝑗 )

𝒒𝑗 , (B.1)

and can be normalized. In that case, the relations (B.1) can be rewritten
as

𝒑𝑘 =
𝑘
∑

𝑗=1
𝑟𝑗,𝑘𝒒𝑗 , |||𝒒𝑘||| = 1, (B.2)

where the coefficients 𝑟𝑗,𝑘 can be obtained from a weighted-QR factor-
ization of the matrix  = [𝒑𝑘] ∈ R𝑀,𝑚,

 = , with
(

√


)⊤√ = 𝐼𝑚,

where  =
[

𝒒𝑖
]

∈ R𝑀,𝑚,  =
[

𝑟𝑖,𝑗
]

∈ R𝑚,𝑚 is an upper triangular matrix
and  = diag(1∕𝑀) ∈ R𝑀,𝑀 is the diagonal weight matrix coming from
the definition of the inner product. Algorithm 2 details the two steps to
get the factorization of  , namely (i) the QR factorization of the matrix
√

 to calculate the matrix , and (ii) the computation of the matrix
=
(
√


)−1 that ensures the normalization with respect to the inner

product. Note that the 𝑚 relations (B.2) must be inverted to calculate
the 𝒒𝑘 from the 𝒑𝑘 which is tantamount to inverse the matrix .

Algorithm 2 Weighted-QR factorization

Input:  and 
√

 = , ⊳  computation

 =
(
√


)−1 , ⊳  computation

utput: −1 and 
11
Appendix C. Pick-Freeze method

The Pick-Freeze (PF) procedure allows to compute several types
of sensitivity indices by reformulating the variances of conditional
expectations in terms of covariances which are estimated by empirical
estimators. In this section, the model output 𝑌 (𝝃) is assumed to be a
unction of 𝑁 independent input parameters 𝜉𝑖 collected into the vector
= (𝜉1,… , 𝜉𝑁 ). Let 𝒊 denote a non-empty subset of indices such that
⊆  = {1,… , 𝑁} and let 𝒊c =  ⧵ 𝒊 be the complementary set of 𝒊 in .

.1. Closed indices

The numerator of the closed index with respect to 𝝃𝒊 = (𝜉𝑖, 𝑖 ∈ 𝒊)
an be viewed as the covariance between the model output and its PF
eplication (see, e.g., [51]),

(E(𝑌 (𝝃)|𝝃𝒊)) = Cov
(

𝑌 (𝝃), 𝑌 (𝝃𝒊, 𝝃∗𝒊c )
)

.

sing two independent 𝑀-samples of input variables  = {𝝃(𝑚)} and
∗ = {𝝃∗(𝑚)}, the PF replication of 𝑌 is obtained by holding 𝝃𝒊 (frozen
ariable) and by replacing 𝝃𝒊c with 𝝃∗𝒊c (picked variables). Once the 𝑀
eplications 𝑌 (𝝃𝒊, 𝝃∗𝒊c ) have been computed, the PF empirical estimator
f the index 𝒊 reads

𝒊 ≃
Ê(𝑌 𝑌𝒊) − Ê(𝑌 )Ê(𝑌𝒊)

V̂(𝑌 )
,

here Ê(⋅) and V̂(⋅) denotes the empirical mean and variance, 𝑌 =
[𝑌

(

𝝃(𝑚)
)

] and 𝑌𝒊 = [𝑌
(

𝝃(𝑚)𝒊 , 𝝃∗(𝑚)𝒊c
)

].

C.2. Cramér–Von Mises indices

The numerator’s integrand of the Cramér–Von Mises index with
respect to 𝝃𝒊 can be rewritten as [52],

V(𝐹𝑌 (𝑧|𝝃𝒊)) = V(E
(

1{𝑌≤𝑧}|𝝃𝒊
)

) = Cov
(

1{𝑌≤𝑧},1{𝑌𝒊≤𝑧}
)

.

he computation of the index 𝑖 requires a third independent sample
= {𝑧(𝑛)} of the output to calculate the integral with respect to 𝑑𝐹𝑌 ,

eading to the following PF empirical estimator,

𝒊 ≃

∑

𝑧∈

[

Ê(1{𝑌≤𝑧}1{𝑌𝒊≤𝑧}) − 𝐹𝑌 (𝑧)𝐹𝑌𝒊 (𝑧)
]

∑

𝑧∈

[

𝐹𝑌 (𝑧)(1 − 𝐹𝑌 (𝑧))
] ,

here 𝐹𝑌 (𝑧) denotes the empirical cumulative distribution function
efined as

�̂� (𝑧) =
1
𝑀

𝑀
∑

𝑚=1
1{𝑌 (𝑚)≤𝑧}.
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