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This paper presents an efficient method to perform uncertainty and sensitivity analyses in a cesium adsorption
model upstream chained with a pore water composition model. As the number of uncertain input parameters
is about twenty for each of the two models, a dimension reduction technique is implemented to build a
polynomial approximation of the cesium distribution coefficient in a reduced subspace. Two approaches are
tested depending on the water composition and adsorption models are treated as a single block or two separate
blocks. In view of assessing the robustness of the approaches, three initial cesium concentrations are considered
to explore different regimes of the adsorption model. The interpretation of the linear transformations projecting
the original inputs to the reduced coordinates is broadly consistent with the geochemical features of the model.
Validation results show that the relative error levels of the surrogate models are around a few percent for both
approaches with only one thousand realizations of the chained model. Global sensitivity analysis highlights
that the variance of the cesium distribution coefficient is overwhelmingly governed by the adsorption model.
Still, this conclusion is nuanced when considering the whole cumulative distribution function for which the
interaction effects between the two models account for a fifth.

1. Introduction The use of surrogate models has developed significantly in the

uncertainty quantification community and is now widely disseminated

Adsorption processes play a major role in the prediction of aqueous
species migration in the geosphere. The safety arguments in support of
many radioactive waste repository concepts are heavily relying on the
existence of adsorption reactions in the geological formation and the
multi-barriers systems [1-3]. Cation exchange and surface complexa-
tion models can be used to quantify the adsorption of radionuclides
as a function of specific geochemical conditions that are considered to
be representative of in situ conditions [4-6]. However, uncertainties in
these model predictions must also be evaluated to inform performance
assessment calculations. Uncertainty and sensitivity analyses make it
also possible to identify the most important model parameters affecting
uncertainty in radionuclide adsorption and help design new laboratory
experiments [7]. In the present study, the emphasis is put on the use
of surrogate model to underpin the influences of pore water chemistry
on a cesium adsorption model outcome. Two difficulties must be ad-
dressed to estimate uncertainties of cesium adsorption models, namely
the upstream chaining with a pore water composition model and the
plentiful number of input parameters (~40).
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in many disciplines. In particular, some works have been devoted to
the design of surrogate models for coupled problems described by
systems of solvers (or codes). These works may be based on Gaussian
processes [8,9] or polynomial approximations [10,11]. However, con-
structing and validating a surrogate model become intractable when the
dimensionality increases because the computational complexity grows
exponentially with the number of inputs as stated by the curse of
dimensionality [12]. This issue has motivated the development of di-
mensionality reduction approaches with a mapping of the original high
dimensional input parameters space to a suitable lower-dimensional
subspace. A dimension reduction-based surrogate model construction
relies on two key ingredients, which are an identification of the reduced
subspace and an approximation in this subspace. The reduction step can
be supervised or unsupervised whether the output is used to estimate
the reduced space or not. The most widespread linear unsupervised
technique is the principal component analysis but other possibly nonlin-
ear methods have been developed using machine learning approaches
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(see [13] for a review). Among the supervised techniques, the active
subspace method [14,15] has received much attention to identify the
reduced space using eigenpairs of a matrix derived from the output
gradient with respect to the input parameters. In this study, we im-
plemented a dimension reduction technique that linearly combines the
input parameters to get a few reduced coordinates able to describe the
main variations of the quantity of interest. We opted for the Partial
Least Squares (PLS) method that determines the reduced variables with-
out resorting to the model output gradient. Two strategies of surrogate
model construction were tested, with the two chained models treated
as a single block or two separate blocks. Then, we conducted a global
sensitivity analysis to identify the respective contributions of each of
the two models. This sensitivity study for groups of parameters was
drawn on the variance-based indices as well as on indices defined with
the conditional cumulative distribution function.

The paper is structured as follows. In Section 2, we present the
general modeling framework including the geochemical model, the set
of uncertain input parameters, and the different approaches imple-
mented to build surrogate models. In Section 3, we detail the dimension
reduction method combined with the polynomial expansion used to
approximate the cesium distribution coefficient. Validation results are
discussed in Section 4, and global sensitivity indices are analyzed in
Section 5.

2. Framework

This section provides an overview of the present study with its issues
related to the uncertainty propagation exercise. First, the geochemical
system is introduced, it is a cesium adsorption model upstream chained
with a pore water composition model. Second, the uncertain input pa-
rameters of each model and the linking parameters are listed with their
ranges of variation. Third, the two approaches for building surrogate
model are presented; one approach treats the different models as a
single one whereas the other approach considers each model separately.

2.1. Cesium distribution estimation

We are interested in the cesium (Cs*) distribution coefficient
Kp [L kg™!] which is representative of the cesium adsorbed on the
solid normalized to the cesium remaining at equilibrium in solution.
The cesium Kp, is calculated with an adsorption model of which a part
of the input parameters originates from an independent pore water
chemical composition model. A complete description of the model used
to calculate the pore water chemical composition in the Callovian-
Oxfordian claystone can be found in [16], and for which we conducted
an uncertainty propagation study in [17]. The input parameters of this
model are the CI” and SOi’ total concentration obtained from core
sample leaching measurements, the measured sodium Na‘, potassium
K*, calcium Ca”*, magnesium Mg?*, and strontium Sr’* exchangeable
concentrations, the related Na*/K*, Na*/Ca’*, Nat/Mg?*, Na*/Sr’*
cation exchange selectivity coefficients, and the solubilities of Celestite,
Calcite, Dolomite, Goethite, Quartz, Pyrite, Ripidolite, and Illite. The
reference values of these N| = 19 parameters are reported in Table 1.
The cesium adsorption model is based on a cation exchange model
taking into account only two clay mineral phases illite and smectite
(montmorillonite) [18], see [4] for a complete description. The model
is briefly presented and made available in the form of a PHREEQC
v3.5.0 [19] input file and its associated database (THERMOCHIMIE
vOb [20]). The input parameters of the adsorption model contain the
properties of the montmorillonite and illite planar sites, and the illite
type II sites and Frayed Edge Sites (FES), which are relevant for the
adsorption of Cs* present at trace concentration in the aqueous phase.
The reference values of these N, = 18 parameters are reported in
Table 2.

The computational software chain of the two previous models forms
a directed system of solvers, meaning that the solvers can be ordered
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Fig. 1. Computational chain of the cesium distribution coefficient estimation.

Table 1
List of the N, uncertain input parameters of the pore water composition model with
their mean, minimal and maximal values.

# Type Species Unit Mean Min Max
Leached parameter Cl'7 mmol L' 41 37.4 44.6
2 N mmol L™' 66 60.3 71.7
3 Na* mol L! 1.0824 0.99 1.17
4 K+ mol L~! 0.417 0.38 0.45
5  Exchanged cation Ca®* mol L~! 1.549  1.41 1.69
6 Mg+ mol L 0.602  0.55  0.65
7 Na mol L~! 0.0737 0.067 0.081
8 Na*/K* - 1.2 1.03 1.37
9  Selectivity coefficients Na*t/Ca** - 0.7 053  0.87
10  (logK,, value) Na*/Mg** - 0.7 0.53  0.87
11 Na*/Sr** - 0.6 043 077
12 Celestite - -6.62 -6.71 -6.53
13 Calcite - —8.48 -8.57 -8.39
14 Dolomite - -17.12 -17.5 -16.8
15  Solubility Goethite - 0.39 0.044 0.74
16 (logK value) Quartz - -3.74 -3.83 -3.65
17 Pyrithe - -58.78 -59.1 -58.4
18 Ripidolite - 61.35 60.5 62.2
19 Illite - 11.54 10.7 12.4

and the information can only be transferred forward in the system. This
aspect is schematically illustrated in Fig. 1 where the outputs of the
water composition model are a part of the inputs of the adsorption
model. In the following, the global input parameters of the water
composition model and the adsorption model are collected into N,-
dimensional and N,-dimensional vectors denoted &, and &, respectively
while the linking parameters are regrouped into a N;,-dimensional
vector &, ,. Formally speaking, the global inputs are defined as the
inputs of the models that are not an output of another model.

2.2. Input parameters perturbation

The N, inputs of the water composition model and the N, + N, =

18 + 5 inputs of the adsorption model are listed in Tables 1 and 2
with their mean and extreme values. The ranges of variation have been
chosen as a proportion of the mean values with the aim of generating
plausible perturbations. In addition, the parameters are assumed to be
uniformly distributed except the components of &, , whose probability
distributions are unknown a priori since they are outputs of the pore
water composition model. Under the assumption of independence, the
parametric domain X, C RN and the probability distribution pe X >
R* of the random vector & = (¢, ..., &y) have a product form,

N N
Xe= X 1), and p& =[] ri)

i=1 i=1
where p;(-) is the marginal distribution of the variable & with support
I¢¢) c R,

2.3. Surrogate modeling

Two approaches exist to build surrogate models of a system of
solvers, namely the monolithic and the fragmented approaches [8].
On the one hand, the monolithic (or black-box) approach handles the
computational software chain as a single block. The advantage of this
approach is to rely on the global inputs, whose probability distributions
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Table 2

List of the N, uncertain input parameters of the adsorption model with their mean,
minimal and maximal values as well as their global numbering #,. The N, input
parameters stemming from the water composition model are also reported but their
mean and extreme values are not available a priori.

# #,  Type\Clay Species  Unit Mean Min Max
1 20 [-] mol kg™ 1.3 107" 99102 1.6 107!
2 21 K+ - 1.1 0.8 1.4
3 22 Planar Ca* - 0.6 0.3 0.9
4 23 montmorillonite Mg?* - 0.6 0.3 0.9
5 24 Sr2* - 0.3 0.0 0.6
6 25 Cs* - 1.7 1.4 2.0
7 26 [-] mol kg™ 50102 3.01072 69 102
8 27 K+ - 1.2 0.9 1.5
9 28 Planar Ca** - 0.7 0.4 1.0
10 29 illite Mg?* - 0.7 0.4 1.0
11 30 Sr2* - 0.7 0.4 1.0
12 31 Cs* - 1.6 1.3 1.9
13 32 [-] mol kg™' 8.0 107 40107 121072
14 33 Type II illite K+ - 2.1 1.8 2.4
15 34 Cs* - 3.6 3.3 3.9
16 35 [-] mol kg™ 1.0 10 5.0 10° 15107
17 36 “FES” illite K+ - 2.4 2.1 2.7
18 37 Cs* - 7.0 6.7 7.3
# Type Species  Unit Mean Min Max
1 Nat mol L™ N/A N/A N/A
2 K* mol L™ N/A N/A N/A
3 Exchanged cations Ca®* mol L™'  N/A N/A N/A
4 Mgt mol L™ N/A N/A N/A
5 Sr2t mol L' N/A N/A N/A

can be chosen a priori. This approach, however, can be difficult to
implement when the solvers are created and maintained by distinct
teams. On the other hand, the fragmented approach deals with each
solver of the computational chain separetely. This splitting is more at-
tractive than the monolithic approach when the dimensionality of each
solver is lower than the dimensionality of the global inputs because
it moderates the curse of dimensionality. Nevertheless, this approach
uses the linking parameters between the solvers, whose probability
distributions are unknown a priori.

Both approaches are tested in this paper in order to evaluate the
robustness of the dimension reduction method for approximating the
model output ¢ = K. The monolithic approach provides an approx-
imation ¢ of ¢ by solving a single problem in dimension N; + N, =
37,

c(€,8) = E(glyéz)’

The fragmented approach produces an approximation ¢ of ¢ by solving
N, =5 problems in dimension N, = 19,

51,2(51)ﬁ£1,2(§1)y 51,2 P Xe = Ee

and one problem in dimension N, + N;, = 23,

c(&y,&10) = 5(1,‘2,;,‘1,2), ¢ X, X Zy, o R

where the parametric domain Zg, C RS of &,, is unknown a priori
and does not necessarily have a product form. The advantage regarding
the dimensionality decrease offered by the fragmented approach is
seen in Table 3 where the number of terms in Polynomial Chaos
(PC) expansions using a basis of total degree d° is reported for both
approaches. This table shows that it would require O(10*) to O(10%)
model evaluations to fit the PC coefficients with the standard least
squares method. Of course, there is extensive literature on sparse
regression where most of the PC coefficients are equal to zero [21]
but we decide to follow an alternative route using a dimensionality
reduction approach.

c: X§1 XX‘EZ - R.
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Table 3
Number of terms N, = (N +d°)!/(N!d°!) in the PC basis of total degree d° defined by
the set of multi-indices K(d°) = {k € NV, ||k, < d°}.

d° Monolithic Fragmented

N =37 N =19 N =23
1 38 20 24
2 741 210 300
3 9880 1540 2600
4 101270 8855 17550

3. Methodology

This section details the approach used to build a surrogate model
of the cesium Ky, in order to perform cheaply the uncertainty prop-
agation in the cesium adsorption model upstream chained with a
pore water composition model. The surrogate construction relies on a
dimension reduction by means of partial least squares and a functional
approximation in the reduced space with polynomial chaos expansion.

3.1. Partial least squares

PLS regression was developed by Wold and coworkers [22-24] to
counteract the ill-posedness of the ordinary least squares solution when
the predictors are highly collinear [25] and/or when the number of pre-
dictors exceeds the number of observations [26]. Initially introduced
in econometrics and chemometrics, PLS has become popular in many
scientific areas as a statistical tool of choice in multivariate analysis.
The concept of PLS is to reduce the N original predictors to a smaller
set of n uncorrelated latent components and to perform least squares
regression on these components. The latent components express as
linear combinations of the N original predictors and have been used
recently in high-dimensional surrogate modeling for estimating the
effective dimension of a problem [27]. Moreover, PLS can be applied
to scalar (PLS1 version) or vectorial (PLS2 version) outputs [28].

3.1.1. Notation

Let us consider a system (or model) with N uncertain input param-
eters collected into a random vector & = (&,...,&y) € X ¢ RN and a
single output quantity y. In PLS setting, the inputs are not necessarily
independent and the output is assumed to be a function of n < N
underlying latent components. By sampling the parametric domain X
with M realizations X = {£™} fx’: , and computing the ensuing outputs
Yy = {ym = y(é("‘))}x’:l, we can assemble the matrix of inputs X =
[£] € RM:N and the vector of output y = [y™]| € RM. Without loss
of generality, the data X and y are centered.

3.1.2. Description

The principle of the PLS method is to identify a set of weight vectors
{@, € RN} that maximize the covariance between the inputs and the
output. The weights are calculated in a sequential manner by solving
the following optimization problem at the current iteration &,
o, = argmax (Cov (E;o, f;)).

o, |oll,=1

argmax (o' E} f).
o, oll=1

EL £/ NE] fillas

where E, € RM-N and f, € RM denote the current residual of X and
y, respectively (see Algorithm 1 for the definitions). The residual of
X is first projected onto the weight vector to get the associated latent
component (or score) 7, € RM,

7 = Exor /I Eyogll,



P. Sochala et al.

and then projected onto the latent component to obtain the X-loading
vector p, € RV,

—_ 5T
p=E; 7.

Both matrices of latent components T = [r;] € RM" and weights W =
[0,] € RN" are orthonormal, that is TTT = WTW = I, (the identity
matrix). When performing PLS regression, the latent components are
used as regressors instead of the original ones (X is replaced by T in
the normal equations). From a dimension reduction perspective, the
latent components appear as a compressed version of the original inputs
through the relation

T =XR,
where the reduction matrix R € RN is written as [28]
R=w (PTw)™", m

with P = [p,] € RV the X-loadings matrix.

3.1.3. Implementation

A detailed description of the PLS algorithm that we have imple-
mented to compute the reduction matrix is given in Appendix A. The
optimal number of latent components to retain in a PLS model or in a
PLS-based surrogate can be selected by many techniques including the
Jackknife method, cross-validation technique, or information criterion.
The numerical experiments presented in Section 4 use the surrogate val-
idation error and show that only two latent components are sufficient in
our case. As a closing remark, a sparsity constraint can be added to the
weight vectors in order to eliminate the input parameters with small
contributions, thus improving the reduction dimension procedure. The
sparse PLS [29] is not necessary in this study since it increases the
computational cost (for tuning the penalty parameters controlling the
sparsity) but without significant influence on the surrogate accuracy.

3.2. Polynomial chaos expansion

PC methods have been broadly used for uncertainty quantifica-
tion [30,31] in many application domains including geosciences [32-
34]. Given a model subject to uncertain input parameters, the princi-
ple of a PC expansion is to approximate the model output by using
multivariate polynomial basis functions orthogonal with respect to the
inputs’ probability distributions. The main advantages of PC methods
are the exponential convergence rate for smooth quantities of interest
and the direct exact derivation of the moments and variance-based
sensitivity indices. Although the standard framework assumes that the
inputs are independent and have exact (or analytical) distributions,
PC can be extended to arbitrary dependent distributions [35-37] only
defined by their moments.

3.2.1. Generdlized polynomial chaos

In classical generalized Polynomial Chaos (gPC), the inputs are
assumed to be independent and the multivariate gPC basis functions
{¢} are explicitly defined as product of univariate orthonormal poly-
nomials,

N
¢® = [ o}, ).
i=1

where k = (ky, ..., ky) € NV is a multi-index and {(pL,} are univariate
basis functions orthogonal with respect to the variable &. As an ex-
ample, Legendre polynomials are orthogonal for uniform distributions.
The orthogonality condition satisfied by the gPC reads

(@n-b1) :/x Dk ©)D1(Epe(E)AE = lIbicl 55
£

where (-, ) is the inner product in Lig(Xg) and |||l = (dp. Py )/ its
induced norm.
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3.2.2. Arbitrary polynomial chaos

When the inputs are dependent, arbitrary Polynomial Chaos (aPC)
basis functions {y;} can be constructed to satisfy a discrete orthogonal-
ity condition,

X v @wn(@) =y ll76,ms @

1
Wi Wm) =
lTl teT
where (-,-) is the discrete weighted inner product and [||ly;lll =
(wp,w;)'/? its induced norm. The random vector 7 = (z,,...,7,) C R”
corresponds here to n reduced coordinates defined by the PLS reduction
matrix R. A sampling 7 of r is obtained from a sampling X of & as

follows
T ={r=¢&R, E€X).

The aPCs are built empirically with the Gram-Schmidt orthogonal-
ization procedure briefly summarized hereafter. Let { P;(r)} be a set of
N, linearly independent polynomials of total degree d° defined by the
set of multi-indices £(d°) = {l e N4, £4d° } The orthonormal basis
functions {y;(7)} are constructed recursively from { P,(r)}. Foralll € L,
we have

WO =P = Y W),
meM(l)

wi(0) = 50/l )l 3

where the set M(!) starts with M(0) = @ and then collects the multi-
indices of the polynomials orthonormalized in the previous iterations.
Normalization step (3) is optional but simplifies condition (2) into
(W1 W) = 8 - A first way for computing the set of coefficients {r,,,} is
from a recursive algorithm [36] based on the definition r;,, = (P, y,,)
and using multivariate monomials P (r) = 7' = [J/_, T/{, to simplify
the inner products calculations. A more direct way followed here and
described in Appendix B is through a QR factorization P = QR of the
matrix P = [T'] € RM-Mo, T € RM" being the PLS latent components
matrix. Finally, the aPC basis functions appear as linear combinations
of the 7/,

VIEL, ()= ) ayT" (4

meL

where {a,,;} are the coefficients of the inverse R~! of the matrix R.

3.2.3. Spectral coefficients computation

Once the aPC basis functions have been built, the second step is to
estimate the set of spectral coefficients of the model output approxi-
mation. By exploiting the matrix Q of sampled aPC basis functions, we
calculate the least squares solution,

Q"0c=0'c, 5)

where ¢ € R™ collects the spectral coefficients ¢, and ¢ € R is the
vector of model output ¢(r™). Finally, the PLS-aPC approximation ¢(&)
of the model output Kj, is expressed as

&) = Y quiER), (6)
leL

where R, {y,(-)} and {¢;} are defined by Egs. (1), (4) and (5), re-

spectively. The number of coefficients N, in the PLS-aPC surrogate

model (6) is

N.(n,d°) =nX N + Ny(n,d°),

where the first term corresponds to the number of coefficients of the
reduction matrix R and the second term is the number of PC basis
in the reduced subspace given a total degree d°. The impact of the
number of reduced coordinates and polynomial basis functions on the
approximation accuracy is investigated in the next section.
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Table 4
Monolithic approach - RMSRE obtained using M, = 10° realizations of the chained
geochemical model for the three initial concentrations [Cs], (mol L™).

[Cs]y d° n=1 n=2 n=3
2 1.46 - 107! 1.18 - 107! 1.16 - 107!
107 3 1.16 - 107! 6.59-1072 6.41-1072
4 1.16 - 107! 6.67-1072 6.50-1072
2 7.92-1072 5.31-1072 5.22-1072
1073 3 7.91-1072 5.31-1072 5.20-1072
4 7.87 - 1072 5.32-1072 5.23-1072
2 9.80- 1072 5.59-1072 5.43-1072
107! 3 9.77-1072 5.49.1072 5.24-1072
4 9.78 - 1072 5.55-1072 5.30-1072
Table 5

Monolithic approach - Number of coefficients N (n,d°) in the PLS-aPC surrogate
model.

d° n=1 n=2 n=3
2 40 80 121
3 41 84 131
4 42 89 146

4. Surrogate model validation and comparison

The adsorption model presented in Section 2.1 must be completed
with an initial cesium concentration [Cs],. In what follows, we choose
the three contrasting values 1072, 10~3, and 10~ mol L~! to explore
different regimes of the model. The influence of the sample size M
on the cesium adsorption is shown on Fig. 2 where the empirical
statistical moments are plotted for M = 102, 10%, and 10* Monte-Carlo
realizations. We observe on Fig. 3 that the probability density functions
estimated for M = 10° are close to those obtained for M = 10*. This
aspect is consistent with the low bootstrap errors calculated for these
values of M. On the basis of these observations, we use a training set X
of M = 10° realizations to build the surrogate models in the monolithic
and fragmented approaches.

4.1. Monolithic approach

A linear transformation is applied to each component ¢; of the global
inputs vector & = (£,,&,) in order to manipulate, in the dimension
reduction step, a set of random variables uniformly distributed over
[—1,1]. The surrogate model accuracy is measured with the root mean
squared relative error (RMSRE) defined as

2
1 (&) —c®
M, g§*< c(&) ) 7

where X, is a validation set of M, = 10° realizations independent
from the training set X. The empirical errors of the surrogate models
are reported in Table 4 where the number of reduced coordinates
varies from one to three and the total polynomial degree varies from
two to four. The corresponding number of coefficients are indicated
in Table 5, they are much lower than the number of terms in high
dimensional cases (see Table 3). The representation of cesium Kp
by PLS-aPC surrogate models is very effective and robust since the
error level is small for few reduced coordinates and low polynomial
degree, whatever the initial condition. Indeed, a sampling of size 10% in
dimension 37 yields a RMSRE around 5-6% when n > 2 and d° > 3, for
the three initial concentrations. Such a level of error can be appreciated
from Fig. 4 where the surrogate model values and absolute errors are
plotted versus the true values for n =2 and d° = 3.

Let us now take a close look into the principle and effect of the
dimension reduction. Fig. 5 depicts the first column coefficients of the
reduction matrix for the three initial conditions. The first comment

RMSRE =
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Fig. 2. Cesium K; means and standard deviations as functions of the sample size
M with the bootstrap errors [38] computed with 20 replicants from resampling with
replacement.

is that the Na‘/K™* selectivity coefficient is the only input of the
water composition model that stands out. This coefficient is indeed
the main factor controlling the K* concentration in solution and K+
is the main competitor for Cs* adsorption on the Type II sites and
FES. The second comment is that the main contributors of the Cesium
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adsorption model depend on [Cs],. For [Cs], = 10~ mol L~!, the main
contributors are the Na*/Cs* and Na*/K* selectivity coefficients for
the exchange reactions on the illite FES and the FES site density on
the illite surfaces. For [Cs], = 1073 mol L™, the main contributors are
the Na*/Cs* and Na* /K™ selectivity coefficients and the site densities
for the exchange reactions on both FES and Type II sites on illite.
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Fig. 4. Monolithic approach - Surrogate model values c¢(£) and absolute errors
le(€) — c(&)| versus true values c(&) for the validation set X, plotted in logarithmic
scales. Results for n =2 reduced coordinates and a total degree d° = 3.

For [Cs], = 107! mol L~!, the FES site parameters do not contribute
significantly. This result can be understood with the gradual saturation
by Cs* of the most reactive sites (FES, then Type II, then planar) with
increasing Cs* aqueous concentration. Fig. 6 plots the cesium K, with
respect to the most important inputs of the adsorption model (in terms
of amplitude in the first reduction vector) and the reduced coordinates.
It is clear that the advantage conferred by the dimension reduction is to
deliver a structuring of the data, which can be efficiently approximated
with low-order polynomials.
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4.2. Fragmented approach

Contrary to the monolithic approach, the fragmented approach
treats each solver separately by relying on the parameters connecting
the different solvers. One complication encountered in this approach
is that the linking parameters’ probability distributions are unknown a
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Table 6
Fragmented approach - RMSRE of the linking parameters obtained using M, = 103
realizations of the pore water composition model.

&1n d° n=1 n=2 n=3
Na* 2 1521072 1181072 1181072
3 1521072 1.18- 1072 1191072
- 2 4201072 1.68 - 1072 1.56 - 1072
3 4201072 1.65- 1072 1521072
ot 2 6.11-1072 4291072 4281072
3 6.10- 1072 4301072 4281072
Mo 2 6.24-1072 4451072 4.49-1072
o 3 625107 450 - 1072 4521072
2+ 2 2.60- 1072 1.87-1072 1.84-1072
3 2.60- 1072 1.87-1072 1.84-1072

Table 7

Fragmented approach - Fitted shape parameters of the beta distributions as well as
Kolmogorov-Smirnov distance dg.

3% a B dys

Na* 7.61 10.03 6.0-1073
K+ 2.19 4.06 29-1072
Ca* 4.36 9.05 6.8-1073
Mg** 2.50 6.12 891072
Sr2* 414 7.57 1.0-1072

priori since these parameters are outputs of solvers. In this section, we
explain the procedure to deal with this aspect and present the analysis
of cesium Kp, in this context.

4.2.1. Linking parameters

Our procedure to estimate the joint probability distribution of the
linking parameters is to build surrogate models for these parameters
and then to fit analytical probability distributions thanks to large sam-
ples of surrogate models. We build PLS-aPC surrogate models whose
errors are reported in Table 6 for the five linking parameters. We see
that the errors are a few percent and are converged when n > 2 and
d° > 2. The uncertainty propagation into the pore water composition
model is out of the scope of the present paper but can be found in [17].

For the probability distributions fitting, we begin by measuring
the dependence between the linking parameters with the Chatterjee
coefficient [39] computed from a massive sampling XT of MT = 10°
surrogate models realizations. The assumption of independence is valid
here since this coefficient, not shown for brevity, is close to zero for all
the pairs of distinct parameters. In case of dependency, a copula-based
model [40] could be used to describe the relations between the linking
parameters. For each of the five linking parameters, we then adjust beta
distributions with the method of moments. The two shape parameters a
and p of a beta distribution are directly obtained through the relations

=Em@ Fu V) and ﬁz(E 1ME@ 1)+V%
A\ \%

where £ and ¥ denote the empirical mean and variance computed from
XT. The adjusted shape parameters are indicated in Table 7, together
with the Kolmogorov-Smirnov (KS) distance between the beta cumula-
tive distributions and the empirical ones. The KS distances are relatively
small, thereby validating the choice and fitting of beta distributions.
For illustrative purposes, the adjusted and empirical distributions of the
two linking parameters having the minimal and maximal KS distances
are plotted in Fig. 7.

4.2.2. Global output

Linear transformations of the components of £, and inverse transfor-
mations of the linking parameters &, ,, through their inverse cumulative
distribution functions, are enforced to handle random variables uni-
formly distributed over [—1,1]. The RMSRE listed in Table 8 and the
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concentration [Cs], = 10~ mol L™!.

Table 8
Fragmented approach - RMSRE obtained using M, = 10° realizations of the cesium
adsorption model for the three initial concentrations [Cs], (mol L™).

Table 9
Fragmented approach - Number of coefficients N (n,d°) in the PLS-aPC surrogate
model.

[Cs]y d° n=1 n=2 n=3 d° n=1 n=2 n=3
2 147107 1.19- 107! 1.17- 107! 2 26 52 79
10- 3 1.08 - 107! 6.22-1072 620102 3 27 56 89
4 1.07 - 107! 6.25-1072 6.31-1072 4 28 61 104
2 6.68- 1072 523.1072 520-1072
1073 3 6.67-1072 5241072 521-1072
4 6.65-1072 5.23-1072 5.22-1072
> 638 102 So1.102 S51.102 5. Global sensitivity analyses
107! 3 8.31-1072 5.40-1072 5.20- 1072
4 8.32-107 539107 522107 A very useful information when examining a physical model with

first column coefficients of the reduction matrix represented in Fig. 8
are strongly consistent with those obtained in the monolithic approach.
One advantage offered by the fragmented approach is that the number
of coefficients N, in Table 9 is lower than in the monolithic approach.
However, considering the similarity of the reduction matrix first col-
umn coefficients between the monolithic and fragmented approaches
(see Figs. 5 and 8), more than likely that sparse PLS would have
produced denoised reduction matrix with roughly the same number of
non-zero coefficients.

multiple inputs is the relative impact of each input and set of inputs on
the model output. Of particular interest is the global sensitivity anal-
ysis which measures the contribution of inputs and their interactions
over the whole parametric domain. Different measure criteria have
been proposed in global sensitivity analysis such as the variance [41],
higher-order moments [42] as well as probabilistic divergences and
distances [43]. The most popular indices are the so-called Sobol in-
dices that decompose the output variance into normalized elementary
contributions. In this section, after recalling the definition of such
variance-based indices in the case of a group of inputs, we spec-
ify the Cramér-Von Mises indices that are formulated on the whole
distribution of the output.
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5.1. Closed sensitivity indices

Variance-based global sensitivity analysis methods [41,44] deter-
mine the contribution of each input and set of inputs onto the variance
of the model output. This analysis can be applied for groups of in-
puts [45,46] to quantify the influence of subsets of inputs. Specifically,
when the vector of input parameters £ is divided into two groups &, and
&,, the variance decomposition of a quantity of interest Y is written as

V(@) = VEYE)) + VET[E) + V ,(Y), )

where E(Y|€) denotes the conditional expectation of Y given &. The
term V(E(Y|¢;)) measures the part of the variance due to the group
of inputs &; while the term V, ,(Y) = V(Y) — V(E(Y|£,)) — V(E(Y&,))
quantifies the interaction effects between the two groups &, and é&,.
The influence of a group of parameters, that regroups the own effect
of each parameter and all the interaction effects within the group, is
measured by the closed sensitivity index C; defined as

c = V(EY|)))

' V()

In other words, if the group contains n parameters, the closed index
corresponds to the sum of the first-order, second-order, ..., and nth-
order Sobol indices. The closed sensitivity indices of Y = K, are plotted
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in Fig. 9(a) and show that the cesium variance is overwhelmingly
governed by the adsorption model without interaction with the pore
water composition model, regardless of the initial concentration.

5.2. Cramér-Von Mises indices

The variance-based indices are well adapted to describe the mean
output behavior of a model [47] but, by nature, they do not quantify
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the influence of an input over the whole distribution. For that purpose,
more general indices exist in the available literature [47] including
those based on the Cramér-Von Mises distance [48]. If Y (x) = 1.,
the variance decomposition (7) becomes

®

where F,(x) = P(c < x) = E (1;,«,,) is the cumulative distribution func-
tion of ¢ and F,(x|€) the conditional cumulative distribution function
given £. The left-hand side of Eq. (8) is obtained through the relation
V(1 ,) = P(A)(1-P(A)) with A = {¢ < x}. The Cramér-Von Mises indices
W; defined as

_ Je V(F.(xI€))dF,(x)
Jo Fe0(1 = F,(x)d Fu(x)’

are obtained after integrating Eq. (8) in x with respect to the dis-
tribution of ¢ and normalizing. The indices (9) have nice properties
and advantages: they are based on the Hoeffding decomposition and
sum to one (as Sobol indices), they always exist whatever the output
distribution, and they can be simply obtained with a pick-freeze method
(see Appendix C). The Cramer-Von Mises indices associated to cesium
K are drawn on Fig. 9(b) and indicate that the interaction between
the adsorption model and the pore water composition model represents
about 20% of the uncertainty over the distribution of cesium Kp. It is
interesting to note that these interaction indices strongly contrast with

F.(x0)(1 = F.(x)) = V(F.(x|€) + V(F.(x|£)) + V| ,(1 <y,

9

i

10
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the Sobol ones, illustrating that a negligible Sobol index does not imply
that the associated input (or group of inputs) has no effect over the
whole distribution.

6. Conclusion

This work focused on investigating the use of dimension-reduction
techniques to represent the output of a cesium adsorption model in vari-
ous regimes. The specificity of the adsorption model is its upstream link
with a pore water composition model as well as the plentiful number
of input parameters. A linear supervised dimension reduction approach
combined with a functional approximation has proved effective for
constructing a surrogate model of the cesium distribution coefficient.
Assessment of the surrogate models revealed that both monolithic and
fragmented approaches have comparable mean squared relative errors.
Direct exploitation of the surrogate models through global sensitivity
analysis emphasized that the upstream pore water composition model
has no effect on the cesium Ky, variance. Also, we evidenced the benefit
of going beyond the variance-based sensitivity analysis by estimat-
ing the impact of the inputs over the whole output distribution. The
uncertainty propagation methodology presented in this paper could
be repeated for other radionuclides and different models in order to
investigate further the role of the pore water composition model into
adsorption processes.
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Appendix A. NIPALS algorithm

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm
with orthonormal latent components is detailed in Algorithm 1 for a
single output (PLS1 model). Recall that the goal of the PLS method is
to extract from the matrix of input data X, a set of n latent components
that are more suitable to describe the output quantity y than the N > n
original predictors. Algorithm 1 starts with the initialization of the
inputs and output residuals E; and f| to X and y, respectively. The
first step of the iterative loop is to compute the current weight vector
by maximizing the covariance between the X and y residuals. The
second step is to calculate the current latent component (or score) by
projecting the X residual onto the weight vector. The current X and
y-loadings are then estimated by a projection of the residuals onto
the current latent component. Finally, the residuals are updated by
deflation and the procedure is started again. Once the loop is over,
the different matrices are stored and the regression coefficients f as
well as the PLS approximation § are computed. A number of variants of
PLS exist for estimating the different matrices. For instance, the latent
component matrix can be orthogonal or not, normalized or not, and we
refer to [49,50] for a comparison of the different PLS variants.
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Algorithm 1  NIPALS algorithm

Input: X,y, n
E =Xand f, =y,
fork=1,...,ndo
o = E] [i/IE] fella,
7 = Epor /I Epoglly,

> Residuals

> Weights
> Scores
P = El 7 > X-loadings
a = f] 7 > y-loading
Ey = Ex —7ep], > X deflation
Sew1 = Fi — > y deflation
end for
W= [“’k]: T= [Tk]s P= [Pk]’ q= [qk],
R=w (PTW)",
B=RTTy,
y=X8p,
Output: §,8,W,T,P,q, R

> Reduction Matrix
> Regression coefficients
> PLS1 Model

Appendix B. Weighted-QR factorization algorithm

The Gram-Schmidt (GS) procedure is a well-known method for or-
thogonalizing a set of vectors with respect to a given discrete (possibly
weighted) inner product (-,-). Starting from a finite set of m linearly
independent vectors {p, ..., p,,} of RM2" the GS procedure generates
an orthogonal set of vectors {q,,...,q,,} that spans the same subspace
of RM . The orthogonality condition of the g, reads

M
@90 = ), wideidrs = Naell*6e,

i=1

where |||q.lll = (gx>q,)'/? and the weights w, are here equal to 1/M.
The m vectors g, express as

Pk q]')
(q]wqj')

k-1

qk=Pk—z

j=1

(B.1)

qj,

and can be normalized. In that case, the relations (B.1) can be rewritten
as
k

Pe= 2 rxd gl =1,
Jj=1

(B.2)

where the coefficients r; ; can be obtained from a weighted-QR factor-
ization of the matrix P = [p,] € RM-",

P=0R, with (VWQ) vVweo=1,,

where Q = [g;] € RM™, R = [r; ;] € R™™" is an upper triangular matrix
and W = diag(1/M) € RM-M is the diagonal weight matrix coming from
the definition of the inner product. Algorithm 2 details the two steps to
get the factorization of P, namely (i) the QR factorization of the matrix
\/WP to calculate the matrix R, and (ii) the computation of the matrix
Q= (VW) ~'U that ensures the normalization with respect to the inner
product. Note that the m relations (B.2) must be inverted to calculate
the g, from the p, which is tantamount to inverse the matrix R.

Algorithm 2 Weighted-QR factorization

Input: P and W
VWP = UR,
2= (VW) v,

Output: R~! and Q

> R computation

> Q computation

11
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Appendix C. Pick-Freeze method

The Pick-Freeze (PF) procedure allows to compute several types
of sensitivity indices by reformulating the variances of conditional
expectations in terms of covariances which are estimated by empirical
estimators. In this section, the model output Y (&) is assumed to be a
function of N independent input parameters ¢; collected into the vector
& = (§,...,Ey). Let i denote a non-empty subset of indices such that
iCI={1,...,N}and leti¢=1T)\ibe the complementary set of i in 7.

C.1. Closed indices

The numerator of the closed index with respect to &; = (§,i € i)
can be viewed as the covariance between the model output and its PF
replication (see, e.g., [51]),

VEY (©)1€)) = Cov (Y(E). Y (1. &) -

Using two independent M-samples of input variables X = {£™} and
X* = (€™} the PF replication of Y is obtained by holding ¢, (frozen
variable) and by replacing &;c with &} (picked variables). Once the M
replications Y (¢;, &;.) have been computed, the PF empirical estimator
of the index C; reads

)
where ]/E\(.) and WA/(.) denotes the empirical mean and variance, Y =
[Y (é‘(m))] and Y; = [Y(égm)’gf(m))].

lC
C.2. Cramér-Von Mises indices

The numerator’s integrand of the Cramér-Von Mises index with
respect to &; can be rewritten as [52],

V(Fy (21€)) = V(E (1{y; &) = Cov (l(ygzw Tiy,<z) ) :

The computation of the index W, requires a third independent sample
Z = {z} of the output to calculate the integral with respect to d Fy,,
leading to the following PF empirical estimator,

Tz [BQyen Ly - @ Fy o)

ez [Fr@01 - R

~

5

i

where ﬁy(z) denotes the empirical cumulative distribution function
defined as

M

A 1

Fy(z)= 3¢ 2 Liyones-
m=1
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