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Abstract 

Mars atmospheric models have become increasingly 
important for the support of space missions to Mars 

and for the interpretation of the obtained observations. 
The NOMAD (“Nadir and Occultation for MArs 
Discovery”) spectrometer suite on board the 
ExoMars Trace Gas Orbiter (TGO) has been 
designed to investigate the composition of Mars' 
atmosphere, with a particular focus on trace gases, 

clouds and dust, and started its science operations in 
April 2018. Within the NOMAD science team, a 
wealth of state-of-the-art models and related 
expertise has been incorporated to support and 
validate NOMAD in terms of (1) observation 
planning, (2) providing a priori for retrievals, (3) 

interpretation of observations and derivation of new 
science results, and (4) data assimilation. This 
abstract provides an overview of the modeling 
capability on the NOMAD science team and 
addresses how models can contribute to fulfill the 
main science objectives of the mission. 

1. Introduction 

The NOMAD team includes 3 of the most advanced 
Mars General Circulation Models (GCMs) to date: (1) 
the GEM-Mars model [1, 2], (2) the UK version of 
the LMD model [3, 4], and (3) the LMD model [3, 5]. 
Besides the parameterizations for atmospheric 

dynamics and physics, necessary to represent the 
atmospheric circulation and thermodynamic state, the 
applied GCMs uniquely contain modules for 
atmospheric chemistry, which is crucial to 

understand and interpret the observations by 
NOMAD.  

2. Planning of observations 

The complexity of TGO’s operations, the 
observational constraints, and the specific 

capabilities of the various instruments and channels, 
impose a dedicated planning of observations for 
optimal science return. Atmospheric models can help 
in this planning by indicating which times, seasons 
and geolocations are of special interest, e.g. where 
current knowledge of atmospheric processes is 

known to be poor and requires specific observations. 
This may relate to the water cycle, photochemical 
cycles, dust storms etc. In the case of detection of 
special events, e.g. for methane, atmospheric models 
can provide new forecasts to support the mid-term 
observation planning. 

3. A priori information for retrieval 

At BIRA-IASB the GEM-Mars model has been 
applied to prepare atmospheric profiles to be used as 
a priori information in the retrieval algorithms. This 
work is presented in detail in an accompanying 
abstract at this conference by Erwin et al.  

4. Interpretation of observations 

and new science results 

TGO was designed to provide a refined search for 
atmospheric trace gases. Besides advancing the 
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detection limit for many species and creating 
inventories of them, the other main science 

objectives of TGO are (1) to understand the 
atmospheric processes that involve the detected trace 
gases, and (2) search for sources and sinks of the 
detected trace gases. This is where model support is 
vital, as it directly relates theoretical processes 
(reactions, sources, sinks, …) to a 3D+time 

atmospheric state, that can be compared to the 
(sparse) set of observations. The differences between 
model and data provide direct insight in the 
plausibility of the imposed processes, and provide 
suggestions in how to modify them if necessary. In 
the case of detection of methane releases, the models 

can provide information on the source location by 
either doing an ensemble of forward simulations 
[Viscardy et al., this conference] or by calculating 
back trajectories [6]. 

5. Data assimilation 

Data assimilation is a technique that allows to 

combine the dense 3D+time (theoretical) information 
from models with the sparse set of actual 
observations, in order to provide the most complete 
set of information of the atmospheric state and 
composition. The UK team has considerable 
expertise on data assimilation for Mars [7] and will 

extend this work with data assimilation of 
atmospheric state and chemical composition from the 
NOMAD observations. Data assimilation is also 
envisaged using the GEM-Mars model. 
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