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19 Abstract

20 Numerical representation and climate projections of sea surface winds over Southeast 

21 Asia (SEA) are assessed here using an ensemble of the Coupled Model Intercomparison 

22 Project Phase 5 (CMIP5) downscaled simulations performed over the 20th and 21st 

23 centuries under Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios 

24 within the CORDEX-SEA project. The ensemble is based on 2 Regional Climate 

25 Models (RCMs, RegCM4 and RCA4), and CMIP5 simulations performed with 5 Global 

26 Climate Models (GCMs : CNRM_CM5, HadGEM2, GFDL, MPI-ESM-MR, EC-Earth).

27 Comparison with QuikSCAT satellite data shows that dynamical downscaling improves 

28 sea surface wind speed representation, mainly by reducing its underestimation. The 

29 level of improvement depends on the RCM choice, GCM performance and wind 

30 strength.

31 Our results reveal significant differences in modeled projections of sea surface wind, 

32 depending on the models, RCPs, regions and season. GCMs simulate weak and 

33 contrasted changes, stronger for RCP8.5, with no clear common trend. RCA4 simulate 

34 weak changes, with high similarities between pairs, but contrasted results between 

35 RCPs. RegCM4 simulate stronger changes, with a weakening of average and intense 

36 winds for all seasons, stronger in June-August and in RCP8.5 than in RCP4.5. RCA4 

37 and RegCM4 simulate different changes, with no clear common trend except a 

38 weakening of seasonal and intense winds and an increase of seasonal wind interannual 

39 variability for June-August in RCP4.5, stronger for RegCM4. This corresponds to a 

40 weakening of the boreal summer monsoon and a slight increase of its interannual 

41 variability, and presumably to a decrease of the tropical cyclone frequency.

Page 41 of 104

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review Only

3

42 Differences of seasonal sea surface wind changes between models are related to 

43 differences of sea level pressure gradient changes. For a given RCM, those differences 

44 are partly related to the differences between parent GCMs. Finally, results suggest that 

45 uncertainties related to the RCM choice are larger than those related to the GCM choice.
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1 1 Introduction

2 Southeast Asia (SEA) is submitted to a wide range of climate forcing: tropical cyclones 

3 (TC, Mei and Xie 2016), seasonal monsoons (Chang et al. 2005), interannual variability 

4 such as El Niño Southern Oscillation (ENSO, Juneng and Tangang 2005), climate 

5 change (Tangang et al. 2020). In this region with many coastal areas of huge population 

6 density (CIESIN, 2005), the question of climate change impact is crucial. The Southeast 

7 Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling 

8 EXperiment (SEACLID/CORDEX-SEA) group aims to improve the knowledge of this 

9 impact: regional climate models (RCMs, Tangang et al. 2018, 2019, 2020) were used to 

10 downscale several global climate models (GCMs) simulations of the Coupled Model 

11 Intercomparison Project Phase 5 (CMIP5) over SEA.

12

13 Most downscaled climate projection studies in SEA focused on surface temperature and 

14 precipitation, showing spatiotemporally contrasted impacts (Ngo-Duc et al. 2014, 

15 Tangang et al. 2018, 2019, 2020, Trinh-Tuan et al. 2019, Supari et al. 2020). Several 

16 studies focused on TCs. Dynamical downscaling was shown to improve the 

17 representation of TC genesis and tracks over SEA (Diro et al. 2014; Wu et al. 2014), but 

18 underestimate their intensity and frequency, due to their resolution and coverage 

19 (Barcikowska et al. 2017, Gallo et al. 2018, Tibay et al. 2021 for RegCM3). Gallo et al. 

20 (2018) projected a tendency for fewer but slightly more intense TC over the Philippines. 

21 Dutheil et al. (2020) projected a decrease of cyclogenesis by half over South Pacific, 

22 attributed to a stronger vertical wind shear induced by a Convergence Zone equatorward 

23 shift. Examining the wind response to climate change is relevant for many aspects such 
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24 as risk, wind potential energy (Moemken et al. 2018, Soares et al. 2019, Chen et al. 

25 2020), oceans dynamics and ecosystems (Herrmann et al. 2013, 2014, Da et al. 2019, 

26 Piton et al. 2021). However, few studies focused on this question. Besides, though the 

27 added-value of dynamical downscaling in the representation of sea surface wind was 

28 highlighted for other regions (e.g. for the Mediterranean and Europe, Herrmann & 

29 Somot 2008, Herrmann et al. 2011, Moemken et al. 2018), it was barely assessed over 

30 SEA. Herrmann et al. (2020) examined sea surface wind response to climate change in 

31 SEA, from the climatological average to extreme events. They used a dynamical 

32 downscaling of CNRM-CM5 CMIP5 simulations performed with RegCM4 under the 

33 Representative Concentration Pathways (RCP) 4.5 and 8.5 scenarios. They showed the 

34 added-value of a RegCM4 downscaling of CNRM-CM5 in simulating sea surface winds 

35 in SEA, mostly related to a reduction of their underestimation. Moreover, their results 

36 suggested a significant summer weakening of sea surface wind at all time scales, 

37 associated with a monsoon weakening and a decrease by almost half of TC frequency. 

38 Those conclusions regarding the added-value of dynamical downscaling and the climate 

39 projection of sea surface wind over SEA were however only based on one GCM-RCM 

40 pair. The quantification of uncertainties in model representation and projections of sea 

41 surface wind speed through multi-model ensemble analysis is therefore necessary to 

42 improve our understanding of climate change impact over SEA (Tebaldi and Knutti, 

43 2007).

44

45 The objective of this study is to use a multi-model approach to contribute to better 

46 assess climate change impact on sea surface wind over SEA, and to explore the 

47 uncertainties related to the model choice. For that, we analyze 5 GCMs CMIP5 
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48 simulations and their downscalings performed with 2 RCMs in the framework of 

49 CORDEX-SEA. We first evaluate by comparison with satellite observations the ability 

50 of those runs to reproduce daily sea surface wind speed over SEA, and the added value 

51 of the dynamical downscaling depending on the RCMs and parent GCMs. We then 

52 examine the modelled evolution of sea surface wind speed between the end of 20th and 

53 21st centuries, from the climatological average to the daily values, in the GCMs, RCMs 

54 and in their ensemble means.

55 2 Models and data

56 2.1 GCMs runs

57 CMIP5 simulations from 5 GCMs were downscaled over SEA: CNRM_CM5, 

58 HadGEM2, GFDL, MPI-ESM-MR, EC-Earth. Historical GCM simulations running from 

59 1850 to 2005 were forced with a time-evolving historic reconstruction of observed 

60 greenhouse gas (GHG) concentrations. Future GCM projection simulations were forced 

61 from 2006 until 2100 with specified GHG concentrations consistent with the medium 

62 RCP4.5 and high RCP8.5 scenarios. Table 1 provides the references and sources for those 

63 GCM simulations.

64 2.2 Downscaled runs

65 We analyze an ensemble of dynamically downscaled runs performed by 5 teams (see 

66 Table 1 for an overview) with 2 RCMs (RegCM4 and RCA4) at a 25 km horizontal 

67 resolution over the CORDEX-SEA domain (see Figure 1a). These simulations run over 
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68 the historical and future periods under RCP4.5 and RCP8.5 hypothesis. They use 

69 outputs from the 5 GCMs listed above as lateral and initial conditions.

70 RegCM4 is developed by the International Center for Theoretical Physics (Giorgi et al. 

71 2012). It was used to downscale the 5 GCMs. The Rossby Central regional Atmospheric 

72 model (RCA4) is developed at the Swedish Meteorological and Hydrological Institute 

73 (Strandberg et al. 2015). It was used to downscale 2 GCMs (CNRM_CM5 and 

74 HadGEM2).

75 Configurations and parameterization schemes used for CORDEX-SEA RegCM4 and 

76 RCA4 runs are detailed in Tangang et al. (2019, 2020). No spectral nudging was used. 

77 Hereafter, RCM_GCM refers to the downscaling of a given GCM performed with a 

78 given RCM (see Table 1). We analyze model outputs in the SEA domain (Figure 1). We 

79 also analyse sea surface winds over five ~ 3° x 3° boxes located in the main regions of 

80 interest (IO, Indian Ocean; SCS, South China Sea; PAC, Pacific Ocean; INDO, 

81 Indonesian seas, Figure 1).

82 2.3 Satellite observations

83 We use QuikSCAT LEVEL 3 daily sea surface wind observations, available with a 

84 0.25° resolution from July 1999 to November 2009 on 

85 https://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_3_V2.

86 3 Representation of sea surface wind speed 

87 We assess the ability of GCM and RCM_GCM runs and of their respective ensemble 

88 means to represent the spatiotemporal variability of sea surface wind speed over SEA. 
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89 We examine the added value of the dynamical downscaling from daily to climatological 

90 scales. For that, we compare model outputs with QuikSCAT, following previous studies 

91 (e.g. Capps and Zender 2008, Winterfeldt et al. 2011). For each model, we average at 

92 each grid point the daily sea surface wind speed simulated by RCP4.5 and RCP8.5 

93 simulations for 2006-2008. We concatenate this averaged time series with the time 

94 series simulated by the historical simulation over 2000-2005, obtaining a time series 

95 that can be compared with QuikSCAT over 2000-2008. We also compute the ensemble 

96 means of time series obtained for the 5 GCMs, named ENS-GCM hereafter, and for the 

97 7 RCM_GCM pairs, named ENS-RCM hereafter.

98 3.1 Climatological mean to intense wind speed

99 Figure 2 shows the quantile-quantile plot (QQplots) of models versus observations of 

100 the wind speed averaged over boxes B1-B5 for the GCMs, RCMs and their ensembles, 

101 and the relative difference of absolute biases. Climatological mean and 95th percentile 

102 (q95) biases are given in Table 2. Figures 3,4 show the maps of the ratio of RCM vs. 

103 GCM mean and q95 biases.

104 3.1.1 GCMs underestimation

105 Most GCMs underestimate sea surface wind speed over the whole spectrum of values 

106 for all boxes (Figure 2 and Table 2). Mean and q95 SEA average biases are negative for 

107 all the GCMs, exceeding 10% for all GCMs except MPI. Average SEA biases in ENS-

108 GCM are in the lower range of individual biases (-15% for the mean, -19% for q95).

109
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110 Locally, we obtain positive biases only for MPI, mostly related to an overestimation of 

111 strong winds: QQ-plots are below the identity line for weak winds and above for strong 

112 winds (Figure 2b,c,d). Besides that, all GCMs mean and q95 biases are negative for all 

113 boxes: QQ-plots are below the identity line for the whole spectrum of wind speed 

114 values. This underestimation is stronger for EC-Earth: mean and q95 biases exceed -

115 10% for 4 over 5 boxes, and even -20% for 2 boxes. GFDL and MPI show the best 

116 performances: mean biases are below -10% for 4 boxes and q95 biases are below -10% 

117 for all boxes. ENS-GCM mean biases are intermediate (weaker than -15%) and ENS-

118 GCM q95 biases are in the lower range of individual runs biases (weaker than -11%). 

119 3.1.2 Downscaling added value

120 The GCM underestimation of sea surface wind speed is globally reduced through the 

121 downscaling (Figures 2,3,4, Table 2). SEA average mean and q95 biases are strongly 

122 reduced for all the RCM_GCM pairs. Bias reductions compared to the parent GCM 

123 exceed 10% for all pairs except RGM_GFDL and RGM_MPI.

124

125 The stronger the underestimation by a GCM is, the more successful is the reduction by 

126 the downscaling. For EC-Earth, biases are reduced for all boxes for the mean, q95 and 

127 over most of the spectrum (Figure 2), and the improvement (reduction of bias) can 

128 exceed 15%. Mean and q95 SEA average biases are reduced in RGM_EC compared to 

129 EC-Earth over respectively 81% (Figure 3) and 85% (Figure 4) of the SEA area. As a 

130 result, the mean bias in RGM_EC is below 10% and the q95 bias below 5% for 3 boxes.

131 For CNRM-CM5, the downscaling also reduces biases for all boxes. The improvement 

132 is slightly better with RegCM4 than with RCA4. In both RGM_CNRM and 
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133 RCA_CNRM, the mean bias is reduced for 4 over 5 boxes (by up to 15% in 

134 RGM_CNRM and up to 12% in RCA_CNRM). The q95 bias is reduced for all boxes 

135 (by up to 12% in both RCMs). Mean and q95 biases are reduced compared to CNRM-

136 CM5 over respectively 74% and 92% of SEA in RGM_CNRM, and respectively 79% 

137 and 84% in RCA_CNRM. The resulting mean bias in RGM_CNRM is below 10% for 4 

138 boxes and the q95 bias is below 5% for all boxes. For RCA_CNRM, the resulting mean 

139 bias is below 10% and the q95 bias is below 5% for 3 boxes, but both biases exceed 

140 10% for 2 boxes. 

141 For HadGEM2, the initial underestimation is less pronounced and the improvement 

142 induced by downscaling is smaller. RegCM4 also performs better than RCA4. 

143 RGM_HadGEM significantly reduces the mean bias for 2 over 5 boxes and q95 bias for 

144 4 boxes, by less than 10%. It increases biases for B3 (+5% for the mean) over most of 

145 the wind spectrum (see biases difference, Figure 2c). For RCA_HadGEM, biases for the 

146 mean and whole spectrum are either unsignificantly changed, or even increased (see 

147 differences of absolute biases for B2,4, Figure 2,b,d). The mean and q95 biases are 

148 reduced respectively over 75% and 91% of SEA with RGM_HadGEM, and respectively 

149 over 57% and 82% with RCA_HadGEM. The resulting mean and q95 biases are below 

150 6% for 4 boxes for RGM_HadGEM. For RCA_HadGEM, the mean and q95 biases 

151 exceeds 10% for respectively 4 and 2 boxes. 

152 GFDL and MPI show the best performances, and the improvement induced by the 

153 downscaling is the least significant. For RGM_GFDL, the mean bias is slightly reduced 

154 for 2 boxes (by less than 6%) and increases for B2,3,4 (by up to 19%) over the whole 

155 spectrum (Figure 2b,c,d). The q95 bias is only reduced for B5 and slightly increases for 

156 the other boxes. For RGM_MPI, the mean and q95 biases increase by more than 6% for 
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157 one box and are only slightly reduced for one box. The areas of improvement are 

158 smaller than those obtained for the other downscaled runs. However, the mean and q95 

159 biases are still reduced over more than half of SEA in both RGM_GFDL (respectively 

160 59% and 74%) and RGM_MPI (55% and 59%). For RGM_GFDL the resulting bias 

161 (positive for almost all boxes and variables) is below 10% for both variables for 3 

162 boxes, and reaches 20% for 2 boxes. For RGM_MPI, the resulting mean and q95 biases 

163 are respectively below 10% and 5% for 4 boxes. 

164

165 ENS-RCM also reduces the mean and q95 biases for all boxes compared to ENS-GCM, 

166 by up to ~10% (Table 2). SEA average biases are reduced by ~15% (Table 2), and 

167 biases are reduced over respectively 83% and 96% of SEA area (Figures 3,4). 

168

169 3.1.3 Intercomparison of downscaled runs

170 Mean and q95 SEA average biases are below 10% for all the RCM_GCM pairs (Table 

171 2). Only 3 RCMs produce slight overestimation: RGM_CNRM for q95, 

172 RCA_HadGEM for the mean and RGM_GFDL for the mean and q95. Besides that, 

173 mean and q95 values are always underestimated. Locally, downscaled runs behave at a 

174 first order similarly, with comparable QQplots (Figure 2). Biases are overall below 10% 

175 (mean and q95, Table 2), but are however larger for some given pairs, boxes and scales.

176 First, for B5, an area of weak winds in the southern PAC (Figure 1bcd), the 

177 underestimation of average wind speed exceeds 10% for ENS-GCM and all GCMs 

178 except HadGEM2 (Table 2). This bias is reduced in all RCMs except RCM-MPI and in 

179 ENS-RCM, but the resulting bias is below 10% only for RGM_HadGEM, 
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180 RCA_HadGEM and RGM_GFDL. Moreover, for all GCMs except HadGEM2, the 

181 underestimation of q95 values is smaller than the underestimation of the mean values 

182 (by at least 3%). Except for HadGEM downscalings, this is also the case for RCMs (by 

183 at least 8%). This decreasing underestimation with increasing wind speeds reflects a 

184 general overestimation of the daily variability in this region in most of the GCMs and 

185 RCMs.

186 Second, 3 pairs (RCA_CNRM, RCA_HadGEM and RGM_GFDL) show higher and 

187 positive biases for areas of strong winds, in the northern SCS and PAC (Figure 1bcd). 

188 For B3 and B4, the 2 only boxes where q95 exceeds 13 m.s-1 in QuikSCAT, QQ-plots 

189 are above the identity line for those 3 pairs, and positive biases increase with increasing 

190 wind speeds. Biases are above +7% while they are negative or below +4% for the 4 

191 other pairs. Those 3 pairs therefore particularly overestimate strong winds.

192 Last, for CNRM-CM5 and HadGEM2 downscaled runs used here, RCA4 overestimates 

193 more (or underestimates less) wind speeds than RegCM4. RCA4 indeed produces 

194 positive biases for 1 to 2 boxes more than RegCM4 and SEA average biases are up to 

195 6% more positive for RCA4 than for RegCM4 (Table 2). 

196

197 ENS-RCM overall reduces the biases over the whole range of values compared to the 7 

198 individual RCM_GCMs pairs. On SEA average, mean and q95 biases are below 5%, 

199 and ENS-RCM QQplot is close to the identity line for all boxes, with biases below 10% 

200 for the mean and q95. They are thus smaller than biases obtained for individual pairs, 

201 that can exceed 20%.

202
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203 3.2 Seasonal cycle

204 To evaluate the representation of the seasonal cycle, we consider time series of monthly 

205 climatological averages of sea surface wind speed over 2000-2008 for each box and 

206 model (Figure 5). Table 3 shows the correlation coefficients between observed and 

207 modeled time series.

208

209 Except for EC-Earth for B2, all GCMs show highly significant correlations with 

210 observations (i.e. with a p-value < 0.01, corresponding to correlation coefficients > 

211 0.71). Correlations exceed 0.80 for the 5 boxes for MPI, for 4 boxes for CNRM-CM5, 

212 and for 3 boxes for HadGEM2, GFDL and EC-Earth. For ENS-GCM, correlations vary 

213 between 0.86 and 0.98, in the upper range of those obtained for individual runs or even 

214 higher. GCMs therefore reproduce well the monthly chronology of climatological sea 

215 surface wind speed.

216

217 Downscaling does not significantly improve the correlations compared to the GCMs, 

218 and rather tends to decrease them. In particular, except for RGM_GFDL, the correlation 

219 decreases for B2 for all RCM_GCM pairs by more than 0.1 and is not significant except 

220 for RGM_MPI. For the other boxes, results differ depending on the GCMs and RCMs. 

221 RGM_GFLD is the only downscaled run that shows slight improvement for the 5 boxes 

222 (up to +0.08). Both CNRM-CM5 downscaling show correlations close to CNRM-CM5. 

223 RGM_EC shows contrasted results: the correlation increases by at least 0.05 for 2 

224 boxes, and decreases by at least 0.05 for 2 boxes. RGM_MPI decreases the correlation 

225 by more than 0.05 for 3 boxes, and HadGEM downscaling by more than 0.10. 
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226 Except for B2, most pairs show highly significant correlations with observations, with 

227 modeled values in the range of observed values. RCA_HADGEM however shows non-

228 significant correlations for 4 boxes with a strong (40% to 100%) summer 

229 overestimation. RGM_HADGEM also shows a non-significant correlation for B3 with a 

230 ~30% underestimation of winter values. 

231 ENS-RCM improves the representation of the seasonal cycle compared to individual 

232 RCMs runs. Correlations are highly significant for all boxes, varying between 0.76 and 

233 0.96. ENS-RCM correlations are higher than for each of the 7 runs for B1 and B2, than 

234 for 6 runs for B3 and B4, and than for 5 runs for B5. Except for B2, ENS-RCM shows 

235 correlation very similar to those obtained for ENS-GCM.

236 As CMIP5 time series do not correspond to the actual chronology, the sequence of 

237 events, including extreme events, is different between simulations and observations. We 

238 therefore evaluate how monthly climatological cycle computed over 9 years may be 

239 affected by interannual variability. For that, we compute, for each GCM and point, the 

240 correlation and bias between the climatological monthly time series computed 

241 respectively over the periods 2000-2008 (9 years) and 1985-2004 (20 years). The 

242 correlation is always highly statistically significant (between 0.94 and 1.00) and the bias 

243 is negligible (=0.0%). The choice of the period of averaging does therefore not 

244 significantly impact our results. This conclusion agrees with Herrmann et al. 2020, who 

245 showed for RCM-CNRM that including years of extreme wind events in their analysis 

246 did not significantly modified their results concerning the average cycle as well as daily 

247 variability. Herrmann et al. (2011) also showed that computing QQ-plots over 1 or 9 

248 years of QuikSCAT data did not significantly change their results.
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249 3.3 Spatial variability

250 To assess the representation of daily sea surface wind speed spatial variability, we 

251 compute for each run and both metric (mean, q95) the spatial centered root-mean-square 

252 difference (RMSD), standard deviation ratio (STDR) and spatial correlation coefficient 

253 between the modeled and observed sea surface wind speed fields (Taylor Diagram in 

254 Figure 6).

255

256 STDR exceeds 1 for all GCMs for the mean and q95: all GCMs overestimate the spatial 

257 variability of sea surface wind speed, for climatological and intense values. For the 

258 mean, STDR varies between 1.2 and 1.4, RMSD between 0.6 and 0.9, and the 

259 correlation between 0.72 and 0.83. Scores in ENS-GCM are globally improved 

260 compared to individual GCM runs for the mean (1.2, 0.6 and 0.85 for respectively 

261 STDR, RMSD and correlation). For q95, STDR varies between 1.3 and 1.7, RMSD 

262 between 1.9 and 1.3, and the correlation between 0.60 and 0.72. ENS-GCM improves 

263 STDR (1.5) compared to 3 of the 5 individual runs. It improves RMSD (1.1) and the 

264 correlation (0.70) compared to 4 of the 5 individual runs.

265

266 Again, STDR exceeds 1 for all RCMs pairs and both metrics. This corresponds to an 

267 overestimation of the spatial variability. For RGM_CNRM the spatial correlation for the 

268 mean wind decreases by ~0.03 compared to the GCM. For the 6 other pairs it increases 

269 (by up to 0.1 in RCA_CNRM and RCA_HadGEM). The spatial correlation for q95 

270 increases for the 7 pairs (by more than 0.15 for RCA4 runs).
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271 Overall, RCMs performances can be classified following 3 “groups”: a 1st group of 4 

272 RegCM4 pairs (RGM_CNRM, RGM_HadGEM, RGM_MPI, RGM_EC), a 2nd group 

273 including only RGM_GFDL, and a 3rd group with both RCA4 pairs. Performances in 

274 terms of STDR and RMSD are significantly better for the 1st group (respectively below 

275 1.3 and 0.8 for the mean and 1.4 and 1.1 for q95) than for the 2nd (intermediate) and 3rd 

276 groups (above 1.6 and 0.9 for the mean, and 2.0 and 1.3 for q95). Conversely, for the 

277 spatial correlation, the range is ~0.1 better for the 2nd and 3rd groups than for the 1st 

278 group. The 2nd and 3rd groups therefore better improve the spatial correlation, i.e. the 

279 representation of the spatial patterns. Doing so, they however increase the 

280 overestimation of the spatial variability compared to the 1st group. This is consistent 

281 with the analysis of QQplots and mean and q95 biases above (see 3.1.2.2), and with the 

282 RCM/GCM ratio (Figure 3). For RCA4 runs and RGM_GFDL, the ratio is below -1 in 

283 the northern part (> 10°N) of the domain, a region of strong winds (Figure 1). They are 

284 underestimated in GCMs and overestimated in those 3 pairs. Ratio is above 1 in the 

285 equatorial part, a region of weak winds. They are underestimated in GCMS and (even 

286 more) in those 3 pairs. Overall, those 3 pairs therefore overestimate strong winds and 

287 underestimate weak winds. 

288 Downscaling effect on spatial variability representation seems therefore more related to 

289 the RCM choice than to the GCM choice. Indeed, differences of RMSD, STDR and 

290 spatial correlation are much stronger between pairs with different RCMs and same 

291 GCM, than between pairs with same RCM but different GCMs. Only RGM_GFDL 

292 shows significant differences compared to the 4 other RegCM4 runs. 

293 ENS-RCM performances are average between the 3 groups. STDR, RMSD and 

294 correlation coefficient are equal to 1.3, 0.6 and 0.90 for the mean and 1.6, 1.0 and 0.79 
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295 for q95. ENS-RCM therefore improves the spatial correlation compared to ENS-GCM 

296 (by 0.05 and 0.09 respectively for the mean and q95). It slightly increases STDR and 

297 RMSD by ~0.1 for both metrics.

298

299 This comparison with QuikSCAT data therefore confirms conclusions obtained for the 

300 Mediterranean (Herrmann et al. 2011). It shows that dynamical downscaling overall 

301 reduces the underestimation of the whole spectrum of sea surface wind speeds over 

302 most (from more than 50% to more than 90%) of SEA for the 5 GCMs and 2 RCMs 

303 analysed here, though at different levels. The improvement depends in particular on the 

304 RCM and on the GCM performance. RegCM4 performs slightly better than RCA4 for 

305 the runs examined here, and the improvement is better when underestimation is 

306 stronger. It is also more significant for intense winds. Downscaling also improves the 

307 representation of spatial variability. The improvement of spatial correlation is however 

308 associated for some RCMs (RCA4 pairs and RGM_GFDL) to a strong overestimation 

309 of spatial variability, with an overestimation of high values and an underestimation of 

310 weak values. Last, downscaling does not significantly improve the representation of 

311 climatological monthly cycles for most of the models, and rather tends to worsen it for 

312 HadGEM2 downscalings.

313 This evaluation moreover shows that the representation of sea surface wind speed 

314 spatiotemporal variability is realistic in all pairs of RCM_GCM. However some groups 

315 of pairs perform slightly better, depending on the metrics examined. The group of 4 

316 RegCM4 runs performs better in terms of biases than the second group of RCA4 runs 

317 and RGM_GFDL. However, the second group performs better in terms of spatial 

318 correlation. Regarding the representation of sea surface wind speed in downscaled runs, 
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319 and for the GCMs and RCMs examined here, the RCM choice therefore seems to have a 

320 stronger impact than the GCM choice. This suggests that uncertainties related to the 

321 RCM choice are larger than those related to the GCM choice (though for one case 

322 (RGM_GFDL) the GCM choice can induce differences of the same order).

323 Finally, for both GCMs and the RCMs ensembles, taking the ensemble average of all 

324 runs significantly improves the representation of sea surface wind speed compared to 

325 individual runs : it decreases both mean and intense values biases and increases the 

326 temporal correlation for the monthly cycle. The ensemble averaging does not have a 

327 physical meaning beyond the simple arithmetic operation. This bias reduction in the 

328 ensemble compared to the individual pairs can be attributed to the compensation of 

329 individual pair’s biases. Some pairs indeed tend to globally overestimate wind speed 

330 values (RCA_HadGEM and RGM_GFDL) and others to underestimate (RGM_MPI, 

331 RGM_EC and RGM_CNRM).

332 4 Impact of climate change

333 To assess the impact of climate change on sea surface wind speed, we examine the 

334 differences between two 20-year periods: 2079-2098 (named FUT) and 1986-2005 

335 (named HIST). To illustrate the changes in terms of climatological average, interannual 

336 variability and intense daily events, we compute the maps of relative variations between 

337 HIST and FUT of the climatological average of daily sea surface wind speed, CVy (the 

338 ratio between standard deviation of annual mean and its climatological average) and 

339 q95. They are shown for RCP4.5 and RCP8.5, for the whole year, December-January 

340 (DJF) and June-August (JJA) and for the ensemble means of GCMs (ENS-GCM, Figure 

341 7), of RegCM4 (ENS-RGM, Figure 8) and of RCA4 (ENS-RCA, Figure 9). Maps for 
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342 individual runs are shown in supplementary materials (Figures SM1-SM6 for GCMs 

343 and SM7-SM12 for RCMs). Table 4 shows for the individual runs and their ensembles 

344 the relative changes between HIST and FUT of the SEA average mean and q95 values 

345 for the whole year, JJA and DJF.

346 4.1 Yearly and seasonal climatological winds

347 All GCMs simulate SEA average changes of yearly wind speed lower than 2%, and 

348 varying from one GCM to another (Table 4). 4 models simulate decreases for RCP4.5, 3 

349 for RCP8.5. SEA average changes are slightly stronger for DJF and JJA (up to 5%). 

350 Those changes show a large spatial variability, with different areas of changes 

351 depending on the GGM, season and RCP (Figures SM1, SM2). Locally, variations 

352 hardly reach +/- 10% for RCP4.5, vs. +/- 20% for RCP8.5. 

353 ENS-GCM mostly simulates non-significant SEA average changes. It only simulates for 

354 RCP8.5 a weak SEA increase for JJA and a weak SEA decrease for DJF ( 2%, Table 

355 4). The JJA increase occurs over most of the domain (Figure 7), and the DJF decrease 

356 occurs mostly over IO, INDO and southern PAC. They locally reach +/- 10% and are 

357 simulated by at least 4 GCMs.

358

359 Downscaled simulations show different results depending on the RCM.

360 All RegCM4 runs simulate a weakening of yearly average wind that covers most of 

361 SEA (Figures SM7, SM8). Decrease is stronger (reaching -10% for RCP8.5 on SEA 

362 average) for RGM_HadGEM and RGM_GFDL, both locally and on SEA average 

363 (Table 4). For ENS-RGM, it reaches in RCP8.5 -7% on SEA average and locally -10% 
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364 over IO and INDO (Figure 8). For DJF, all RegCM4 runs simulate a weakening over 

365 southern SEA, a region of weak winds (Figure 1d). In ENS-RGM, it is below -5% on 

366 SEA average and locally reaches -20% in RCP8.5. For JJA, the decrease occurs over 

367 most of SEA and is stronger than for DJF for most RegCM4 runs, with a -7% average 

368 SEA decrease in RCP8.5 for ENS-RGM. All RegCM4 runs simulate JJA decreases in 

369 the INDO and IO, and at least 4 RegCM4 runs over the northern and southern PAC, 

370 reaching -10% in ENS-RGM. For all seasons, decreases are globally stronger in RCP8.5 

371 than RCP4.5, both on SEA average (see Table 4, ~ 2% to 3% stronger for RCP8.5 in 

372 ENS-RGM) and locally (Figure 8). Most RegCM4 runs thus simulate on average over 

373 SEA a climatological winds weakening, stronger for the whole year and JJA than for 

374 DJF, stronger for RCP8.5 than RCP4.5, and of intensity depending on the parent GCM.

375

376 RCA4 runs simulate quite different changes. First, changes are much weaker, below 4% 

377 on SEA average and not exceeding ~+/-10% locally (Table 4, Figures SM7, SM8). 

378 Second, for a given RCP, both RCA_CNRM and RCA_HadGEM simulate quite similar 

379 results (Figure 9, SM7, SM8). However, significant trends, stronger for JJA (reaching 

380 +4%) are only simulated for RCP8.5 (Table 4). Locally, changes are also consistent 

381 between RCA_CNRM and RCA_HadGEM, but contrasted between both RCPs. Both 

382 RCA4 pairs simulate for RCP4.5 a weak (<10%) decrease for the northern PAC for the 

383 whole year and JJA vs. a weak increase for RCP8.5.

384 4.2 Daily variability and intense events

385 The daily standard deviation and 95th and 99th percentiles are used as indicators of the 

386 daily variability, intense events and extreme events. As shown in Herrmann et al. 
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387 (2020), their spatiotemporal patterns and trends are very similar (Figures not shown). 

388 We therefore only show here the q95 maps (Figures 7, 8, 9, SM3, SM4, SM9, SM10).

389

390 GCMs simulate contrasted q95 changes. There is no clear common trend except a 

391 decrease over SEA for the whole year and DJF, and an increase over northern PAC and 

392 SCS. They are simulated in 4 of 5 models and vary from ~5% to ~20% (Figures 7, SM3, 

393 SM4). Besides that, the 5 GCMs simulate different results and trends, both spatially and 

394 on SEA average. SEA average changes are below 5% for most runs (Table 4).

395

396 Nearly all RegCM4 pairs simulate decreases on SEA average for both RCPs and all 

397 seasons (year, DJF and JJA), that vary from pair to pair similarly as for the mean (Table 

398 4). Decrease are weak for RGM_CNRM, RGM_MPI and RGM_EC, exceed -5% for 

399 RGM_HadGEM and even -10% for RGM_GFDL in RCP8.5. For ENS-RGM, they 

400 reach -7% in RCP8.5. Locally, they are associated in particular with a weakening of 

401 intense winds over the INDO, IO and southern PAC, for all the seasons, simulated for 

402 all pairs and both RCPs (Figures 8, SM9, SM10). At least 4 pairs also simulate a 

403 decrease over the northern PAC for the year and JJA. These local decreases reach -10% 

404 for RCP4.5 and -20% for RCP8.5 in ENS-RGM. Both RCPs simulate similar spatial 

405 patterns for a given parent GCM, however, changes, whether decreases or increases, are 

406 stronger for RCP8.5, reaching locally +/-30% (Figures 8, SM9, SM10).

407

408 RCA4 runs simulate weaker changes compared to RegCM4. Again, for a given RCP, 

409 RCA_CNRM and RGM_HadGEM results are similar, while both RCPs simulate 
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410 contrasted results. Locally, RCA4 simulates for the whole year a decrease for both 

411 RCPs over the southern IO, PAC and INDO and an increase over the SCS, which do not 

412 exceed +/-10%. However, RCP4.5 simulates a decrease over all the PAC, whereas 

413 RCP8.5 simulates a decrease over the central and northern PAC. For DJF, both RCA4 

414 pairs simulate for both RCPs a weak (<2%) strengthening of intense winds on SEA 

415 average (Table 4). It is mainly related to a strengthening in the northern SCS, PAC and 

416 IO, though both pairs and RCPs simulate a weakening in the INDO, southern PAC and 

417 IO (Figures 9, SM9, SM10). Those variations reach locally +/-10% for RCA_HadGEM. 

418 Areas of strong variations are larger in RCP8.5. For JJA, the difference between both 

419 RCPs is even clearer. RCP4.5 simulates a weakening of intense winds over most of 

420 SEA, whereas RCP8.5 simulates a strengthening over most of the PAC and SCS. Those 

421 variations locally reach +/- 10% in both RCPs in ENS-RCA. 

422

423 For all GCMs and RCMs considered here, trends simulated for q95 are therefore very 

424 similar to those simulated for the climatological mean. Changes for the mean value thus 

425 affect the whole spectrum, including intense and extreme events. Again, results for a 

426 given RCM but different parent GCMs are closer than results with a given GCM but 

427 different RCMs.

428 4.3 Interannual variability of yearly and seasonal averages

429 To examine the impact of climate change on the interannual variability, we show the 

430 maps of CVy in Figures 7, 8, 9, SM5, SM6, SM11, SM12.

431
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432 For all GCMs, CVy changes are weak. On SEA average, there is no clear common 

433 trend. For each season and each RCP, at least 2 GCMs simulate increases and 2 GCMs 

434 simulate decreases (Table 4). For RCP8.5, changes are stronger for GFDL, exceeding -

435 3% on SEA average for all seasons and locally reaching ~-20%. For the other GCMs 

436 and for RCP4.5, changes are very weak, below 3% and not exceeding +/-10% locally 

437 (Figures 7, SM5, SM6).

438

439 Changes are stronger for RCMs, both on SEA average and locally.

440 Except RGM_GFDL which simulates CVy decreases reaching -10% in the southern 

441 SEA in DJF, all RegCM4 pairs simulate for the whole year and DJF, for both RCPs, 

442 weak (<2% on SEA average, Table 4) and spatially contrasted changes (Figures SM11, 

443 SM12), with no clear common and significant trend (Figure 8). CVy changes are 

444 stronger for JJA, reaching 4% on SEA average. At least 4 pairs and ENS-RGM simulate 

445 for both RCPs a strong decrease over the PAC, that locally reaches ~10%. Moreover 

446 RCP4.5 simulates a strong increase over the southern SCS and equatorial IO.

447

448 Both RCA4 pairs simulate for all seasons weak and spatially contrasted changes of 

449 CVy. They however simulate locally large areas of common trend sign (Figures 

450 9,SM11,SM12), and spatial patterns are very similar in RCP4.5 and RCP8.5. Common 

451 features are a weak (<5%) increase over the PAC and a weak decrease over southern 

452 SEA for all seasons. RCA_CNRM simulates slightly stronger changes than 

453 RCA_HadGEM, in particular in JJA, locally reaching +/-10%.

454
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455 CVy changes in downscaled simulations are therefore strongly contrasted, depending on 

456 the season, region and RCM. There is practically no clear common signal. 6 over 7 

457 downscaled runs however simulate, for both RCPs, a weak increase over the PAC for 

458 the whole year and for DJF, and a more significant increase over the PAC for JJA, that 

459 locally reaches 10%.

460

461 5 The role of pressure gradient 

462 Herrmann et al. (2020) showed that the changes of seasonal wind speed could be 

463 attributed to variations of the mean sea level pressure (MSLP) meridional gradient. We 

464 show for individual runs (Figure 10) and for the 3 ensembles (Figure 11) this gradient 

465 during HIST, and its variations between HIST and FUT.

466 MSLP meridional gradient changes explain sea surface wind speed changes simulated 

467 in each RCM and GCM run and ensemble, both on average and spatially (Figures SM1, 

468 SM2, SM7, SM8 and Table 4). For example, MPI simulates over the whole range of 

469 latitude a strengthening of the negative meridional MSLP gradient in JJA, stronger in 

470 RCP8.5 than RCP4.5 (Figure 10). This is consistent with the strengthening of southward 

471 (Figure 1) wind simulated over all SEA (Figures SM1,SM2). HadGEM2 and 

472 RGM_HadGEM simulates in JJA for RCP4.5 a MSLP meridional gradient weakening 

473 between 0°N and 20°N. This is consistent with the wind weakening simulated over this 

474 region. They simulate in DJF a MSLP gradient weakening (strengthening) south (north) 

475 of ~12°N, stronger in RCP8.5 than RCP4.5 in HadGEM. It is again consistent with the 

476 wind changes obtained over these ranges of latitude. These are some examples, but a 
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477 careful examination of Figures 10 and SM1, SM2 ,SM7, SM8 shows that those 

478 conclusions stand for all the runs.

479 MSLP meridional gradient changes (Figure 11) moreover explain the different sea 

480 surface wind speed trends obtained for the 3 ensembles. ENS-GCM simulates for DJF a 

481 MSLP gradient weakening (strengthening) south (north) of ~12°N, consistent with 

482 corresponding wind speed changes (Figures 7, Table 4). It simulates for JJA an overall 

483 MSLP gradient strengthening consistent with the general SEA wind strengthening. Both 

484 MSLP gradient and wind speed changes are stronger in RCP8.5. ENS-RGM simulates 

485 both for DJF and JJA an overall MSLP gradient weakening, stronger in RCP8.5, 

486 consistent with the average SEA wind weakening (Figure 8). ENS-RCA simulates for 

487 DJF a MSLP gradient strengthening north of 10°N, stronger in RCP8.5, also consistent 

488 with the simulated wind changes (Figure 9). It simulates for JJA a MSLP gradient 

489 weakening (strengthening) for RCP4.5 (RCP8.5), again consistent with the RCP 

490 contrasted wind speed changes detailed in 4.1.

491 Finally, for a given RCM, differences between RCM_GCM pairs are partly related to 

492 differences between parent GCMs, though it is not the only driver. For RGM_GCM 

493 pairs (except RGM_GFDL for RCP8.5), changes of yearly and seasonal average winds 

494 are indeed correlated with changes obtained in the parent GCM, as shown in Figure 12. 

495 This is related to the fact that (except for RGM_GFDL with RCP8.5) MSLP meridional 

496 gradient changes in RegCM4 runs are also linked with MSLP changes in the parent 

497 GCM runs, as can be seen in Figure 10a,b.

498
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4996 Conclusion

500 This analysis is the first multi-model study focusing on the regional modeling and 

501 climate projection of sea surface wind speed in SEA.

502

503 Comparisons with QuikSCAT data confirm that dynamical downscaling of GCM 

504 simulations overall improves the representation of sea surface wind speed at all time 

505 scales, mainly by reducing its underestimation over most of SEA, for both RCMs 

506 considered here. It moreover shows that the level of improvements depends on the 

507 GCM, RCM and wind intensity. RegCM4 better reduces the underestimation while 

508 RCA4 better represents the spatial variability. The improvement is better for GCMs 

509 showing strong underestimation, and for strong winds. For both GCM and RCM 

510 ensembles, taking the ensemble average of all runs improves the representation of sea 

511 surface wind spatial and temporal variability, at all time scales compared to individual 

512 runs. This is presumably due to a bias compensation induced by arithmetic averaging.

513

514 Our results reveal significant differences in modeled projections of sea surface wind 

515 evolution, depending on the models, RCPs, regions and seasons. The 5 GCMs all 

516 simulate relatively weak and different changes. They are slightly stronger for RCP8.5 

517 than for RCP4.5, both spatially and on SEA average. There is no clear common trend 

518 other than a small weakening of average and intense winds in the southern IO in DJF for 

519 RCP8.5. RCA4 pairs also simulate weak changes, with strong similarities between both 

520 pairs, but contrasted results between RCPs. For RCP8.5, RCA4 simulates a 

521 strengthening of average and intense winds over most of SEA for all seasons. For 
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522 RCP4.5, it simulates a weakening for the whole year and JJA, and a slight strengthening 

523 for DJF. CVy changes in GCMs and RCA4 runs are overall weak and non-significant. 

524 RegCM4 runs and ensemble simulate more significant changes. First, they simulate 

525 over most of SEA a weakening of average and intense winds for all seasons and both 

526 RCPs. It locally reaches -20%, and is stronger for the whole year and JJA than for DJF, 

527 and stronger in RCP8.5 than in RCP4.5. The DJF weakening affects mostly the southern 

528 IO and PAC. The JJA weakening affects predominantly the southern SCS and northern 

529 PAC and all the southern SEA. Second, most RegCM4 runs simulate for JJA a CVy 

530 increase over the PAC that locally reaches 10% in RGM-ENS for RCP8.5. For both 

531 average and intense wind values, RCA4 and RegCM4 ensembles therefore simulate 

532 different changes, with no clear common trend between both ensembles except for JJA 

533 in RCP4.5: both ensembles simulate a weakening of average and intense winds and an 

534 increase of average wind interannual variability. It is stronger for RegCM4 and mainly 

535 located over the INDO, northern PAC and southern SCS.

536

537 These JJA climatological decrease and CVy increase correspond to a weakening of the 

538 intensity and increase of the interannual variability of boreal summer southerly 

539 monsoon. Climatological seasonal sea surface wind speed changes are related to MSLP 

540 meridional gradient changes, both for RCMs and GCMs. Factors inducing those MSLP 

541 gradient changes need further investigation to be understood in details. In particular 

542 factors inducing the stronger weakening of the gradient (and summer wind) simulated 

543 by RegCM4 than by GCM and RCA4 could also explain the results obtained by 

544 Tangang et al. (2020), who showed that RegCM4 projected a higher rainfall reduction 

545 than the parent GCMs. As shown by Herrmann et al. (2020), the intense winds 

Page 66 of 104

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review Only

25

546 weakening in these regions and periods of strong TC activity presumably corresponds to 

547 a decrease of TC frequency. For comparable q95 decreases, they obtained a decrease by 

548 nearly half of yearly TC frequency. The present multi-model study therefore agrees with 

549 previous results (Gallo et al. 2018, Dutheil et al. 2020) suggesting that climate change 

550 could induce a weakening of TC activity over SEA.

551

552 This study partially sampled the uncertainties in terms of modeling and climate 

553 projections of sea surface wind speed associated with the RCM and GCM choices. It 

554 suggests, for the 5 GCMs and 2 RCMs examined here, that uncertainties related to the 

555 RCM choice are larger than those related to the GCM choice. Our conclusions are 

556 indeed partly related to the RCM choice. This underlines the need to run more 

557 downscaling experiments, varying in particular the number of RCMs. For a given RCM, 

558 differences between RCM_GCM pairs are then partly related to differences between 

559 parent GCMs, though it is not the only driver. Further developments are necessary to 

560 increase the quality and robustness of downscaled projections (Giorgi, 2019). In 

561 particular, ocean-atmosphere regional coupling would be particularly relevant in this 

562 region of strong air-sea interactions. Moreover, the representation and projection of sea 

563 surface winds may now also be examined using coupled high resolution global 

564 simulations available through HighResMIP (Haarsma et al. 2016). Those simulations 

565 should reproduce better TCs but also Madden-Julian Oscillation (MJO, Hung et al., 

566 2013, Ahn et al. 2017), both factors involved in seas surface wind extremes. The 

567 representation and climate projections in CORDEX-SEA downscaled simulations of 

568 MJO and TCs now require a more detailed examination based in particular on TC 

569 tracking tools, as done for 3 RegCM4 pairs by Tibay et al. (2021).
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FIGURES AND TABLES 
 

 
Figure 1 : (a) SEA domain (black frame) and orography (grey: sea; colors : land topography, 
m)  and average over 2000-2008 of QuikSCAT daily winds over the b) the whole year, c) DJF 
and d) JJA (colors : wind speed, m; arrows : wind vector). Boxes B1-5 and main areas (IO, 
SCS, PAC, INDO) of the SEA domain are also indicated. 

 

 

 

3

4

5

6

7

8

9

10

  96oE  108oE  120oE  132oE  144oE 

   9oS 

   0o  

   9oN 

  18oN 

  27oN 

1

2

3 4

5

RegCM mask and orography (m)

INDO

SCS

SEA domain and orography (m)

IO

PAC

(a) (b)

(c) (d)



 



Figure 2: For boxes B1 (a) to B5 (e), each panel shows : the QQplots of sea surface wind 
speed (m.s-1) averaged over the box for the period 2000-2008 for GCMs (top) and 
GCM_RCMs (middle) runs vs. QuikSCAT ; (bottom) the difference of GCM and RCM bias 
relative to the QuikSCAT value for each percentile, for each RCM_GCM pair and for the 
ensembles (black) : a negative value corresponds to an improvement in the downscaling. Dots 
: q95 values. QuikSCAT climatological average and q95 values are indicated in the title, and 
their relative biases for each GCM, GCM-RCM pair and for the ensembles are given in Table 
3. 
 
 
 
 
 
 

 
 
Figure 3 : RCM/GCMratio of the mean sea surface wind speed biases compared to 
QuickSCAT in each GCM_RCM pair and corresponding GCM (a ratio between -1 and 1 
corresponds to smaller bias in the RCM compared to the GCM). The percentage of SEA 
domain where the ratio is smaller than +/-1 is indicated in the title of each map. 



 
 
Figure 4 : Same as Figure 3 for q95. 
 

  



 
Figure 5. Climatological monthly time series of observed (QuikSCAT) and modeled sea 

surface wind speed (m.s-1) averaged over boxes B1 to B5. Correlation coefficients between 
model and observations and associated p-value are given in Table 3 for each model and for 

the ENS-GCM and ENS-RCM ensembles. 



 
 
 
 
 

 
Fig. 6. Taylor diagram between models and QuikSCAT of the spatial fields over SEA of 

climatological mean (stars) and q95 (crosses) of daily sea surface wind speed over the period 
2000-08. Black symbols correspond to ENS-GCM and ENS-RCM ensembles. 

 
 
 

 
 



 
Figure 7. Maps of the relative variation (%) of the mean, CVy and q95 values of daily surface 

wind speed between HIST and FUT in RCP4.5 and RCP8.5 for ENS-GCM for the whole 
year, DJF and JJA. Mean SEA value and relative (%) differences between HIST and FUT are 
indicated in the titles. Large, resp. small stars indicate areas where all, i.e. 5, resp. 4 models 

produce a trend of the same sign. 
 



 

 
  Figure 8. Same as Figure 7 for ENS-RGM. 

 



 
Figure 9. Same as Figure 7 for RCA. Small stars indicate areas where both2 RCA_GCM runs 

produce a trend of the same sign. 
 



 



Figure 10. Each panel shows the meridional gradient (hPa/deg) of the mean sea level pressure 
over the HIST period (1st line) and changes between the HIST and FUT periods for RCP4.5 
(2nd line) and RCP8.5 (3rd line), for DJF (left) and JJA (right), for each GCM (a), RegCM (b) 
and RCA (c) run and for their ensembles. 
 
 
 

 
Figure 11. Meridional gradient (hPa/deg) of the mean sea level pressure over the HIST period 
(top) and changes between the HIST and FUT periods (bottom) for RCP4.5 (blue) and 
RCP8.5 (red) , for DJF(left) and JJA (right) for the 3 ENS-GCM (full line), ENS-RCA (dotted 
line) and ENS-RGM (dashed line) ensembles.  
 
 
 
 

 
Figure 12. SEA average relative changes (from Table 4) for each GCM vs. the corresponding 
RegCM downscaling for the yearly, DJF and JJA averages. “Corr” indicates the correlation 
coefficient (all with p-values smaller than or equal to 0.01) between the GCM and RCM 
values excluding RGM_HadGEM value for RCP8.5 (green dot). 



Table 1. Overview of CMIP5 GCM runs and RCM_GCM downscaled runs. Near-surface 
monthly and daily wind RCMs and GCMs outputs are available on ESGF cores 
(https://esgf.llnl.gov/) and on USTH server 
(http://remosat.usth.edu.vn//Download/dat_was_CORDEX). 

RCM_GCM pair RCM (see 
Tangang et 
al. 2019, 
2020 for 
details) 

GCM and reference  Group  

RGM_CNRM RegCM4 CNRM-CM5 (Centre 
National de Recherches 
Météorologiques, France), 
Voldoire et al. (2013) 

University of Sciences and 
Technology of Hanoi, 
USTH, Vietnam 

RGM_HADGEM RegCM4 HadGEM2 (Hadley 
Centre, UK), Martin et al., 
(2011) 

Ateneo de Manila 
University and Manila 
Observatory, AMU, 
Philippines 

RGM_GFDL RegCM4 GFDL (Geophysical Fluid 
Dynamics Laboratory, 
USA), Dunne et al. (2012, 
2013) 

National University of 
Malaysia, UKM, Malaysia 

RGM_MPI RegCM4 MPI-ESM-MR (Max-
Planck-Institut für 
Meteorologie, Germany), 
Jungclaus et al. (2010) 

Ramkhamhaeng University 
Center of Regional climate 
change and Renewable 
Energy, RU-CORE, 
Thailand 

RGM_EC RegCM4 EC-Earth (EC-Earth 
Consortium, European 
Community), Hazeleger et 
al. (2012) 

Ramkhamhaeng University 
Center of Regional climate 
change and Renewable 
Energy, RU-CORE, 
Thailand 

RCA_CNRM  RCA4 CNRM-CM5,  Voldoire et 
al. (2013) 

Swedish Meteorological 
and Hydrological Institute, 
SMHI, Sweden 

RCA_HADGEM RCA4 HadGEM2, Martin et al. 
(2011) 

Swedish Meteorological 
and Hydrological Institute, 
SMHI, Sweden 

 
 
 

  



 
 
 
Table 2 : Relative mean and q95 biases (%) of sea surface wind speed compared to 
QuikSCAT over 2000-2008 in average over boxes B1 to B5 and over the SEA for the 5 
GCMs and the 7 RCM_GCM pairs. Color code : black : absolute value of bias > 20%; red : > 
15%; orange : >10%; cyan : > 5%; blue : < 5% 
 
 

ENS-GCM  B1 B2 B3 B4 B5 SEA ENS-RCM   B1 B2 B3 B4 B5 SEA  

CNRM mean -9,6 -9,4 -18,0 -12,5 -13,5 -17,1 RGM_CNRM mean -0,5 -6,7 3,1 -5,3 -13,9 -3,7 

  q95 -7,2 -13,4 -15,2 -14,1 -10,0 -21,0   q95 0,2 1,0 4,1 -3,1 -2,2 -6,0 

            RCA_CNRM   -0,1 -5,7 6,5 12,4 -10,8 -2,9 

                    -2,9 -1,5 10,5 12,6 -1,5 -4,3 

HadGEM mean -10,3 -4,0 -8,1 -9,6 -3,5 -18,4 RGM_HadGEM mean 5,5 -3,5 -12,9 -2,6 3,7 -1,4 

  q95 -7,0 -10,0 -10,4 -12,9 -6,6 -26,5   q95 3,6 0,0 -10,3 -4,5 3,2 -8,3 

            RCA_HadGEM   -10,1 15,1 10,5 20,5 3,2 3,1 

                    -7,6 9,7 10,4 26,1 1,4 -1,8 

GFDL mean -9,1 -6,9 -4,1 -1,2 -10,9 -15,3 RGM_GFDL mean 5,0 9,3 16,4 20,2 -4,8 8,1 

  q95 -6,8 -5,1 -1,6 -3,5 -8,2 -20,9   q95 7,1 8,8 14,6 16,2 5,8 2,7 

MPI mean -5,4 -4,6 -8,9 2,7 -16,3 -6,3 RGM_MPI mean -5,5 -6,0 -3,4 2,3 -25,7 -3,9 

  q95 0,4 1,5 1,3 4,0 -6,3 -8,3   q95 -0,1 -2,6 -2,8 1,0 -11,9 -4,7 

EC-Earth mean -17,2 -21,8 -17,6 -7,9 -30,1 -17,5 RGM_EC mean 7,6 -17,6 -2,8 -4,0 -24,5 -7,3 

  q95 -11,3 -15,2 -6,8 -10,4 -23,8 -19,1   q95 4,7 -2,8 -1,3 -6,1 -6,3 -8,5 

ENS-GCM mean -10,3 -9,3 -11,3 -5,7 -14,9 -15,1 ENS-RCM mean 0,3 -2,2 2,5 6,2 -10,4 -1,1 

  q95 -6,4 -8,4 -6,5 -7,4 -11,0 -19,1   q95 0,7 1,8 3,6 6,0 -1,6 -4,4 
 
 
 
 
Table 3 : correlation coefficient between monthly climatological time series of sea surface 
wind in QuikSCAT and in GCM and RCM runs. Color code : blue > 0.90; light blue > 0.80; 
black > 0.71 (corresponding to p-value >0.01); red < 0.71 
 
 GCM B1 B2 B3 B4 B5  RCM_GCM B1 B2 B3 B4 B5 
CNRM 0,95 0,72 0,96 0,88 0,81 RGM_CNRM 0,92 0,4 0,92 0,91 0,82 
       RCA_CNRM 0,90 0,59 0,91 0,87 0,82 
HADGEM 0,93 0,86 0,74 0,71 0,85 RGM_HADGEM 0,74 0,70 0,37 0,71 0,84 
       RCA_HADGEM 0,67 0,69 0,69 0,25 0,86 

GFDL 0,89 0,72 0,91 0,86 0,78 RGM_GFDL 0,93 0,72 0,98 0,94 0,79 

MPI 0,84 0,94 0,95 0,89 0,92 RGM_MPI 0,76 0,71 0,94 0,82 0,91 
EC-EARTH 0,73 0,59 0,92 0,81 0,86 RGM_EC 0,90 0,47 0,91 0,73 0,91 

ENS-GCM 0,95 0,86 0,98 0,92 0,86 ENS-RCM 0,94 0,76 0,96 0,92 0,87 
 
  



 
Table 4 : relative changes (%) on SEA average of seasonal average, q95 and CVy of daily sea 
surface wind speed for the whole year, DJF and JJA in all GCMs and RCMs runs, and in 
ENS-GCM, ENS-RGM and ENS-RCA ensembles. Color code : black : <-10%; blue <-5%; 
light blue <-1%; green <0%; orange >0%; magenta > 1%; red >5%. Changes stronger that +/-
1 % are highlighted in grey cells. 
 

GCMs year DJF JJA  RegCM4 Year DJF JJA  RCA4  Year DJF JJA 

C
N

R
M

 

mean rcp4,5 -0,62 0,98 -0,39 

R
G

M
_C

N
R

M
 

mean rcp4,5 -3,10 -1,94 -1,23 

R
C

A_
C

N
R

M
 

mean rcp4,5 -0,12 0,35 -1,14 

  rcp8,5 0,26 2,06 0,52   rcp8,5 -2,43 -0,48 -2,54   rcp8,5 3,10 2,64 2,51 

q95 rcp4,5 -0,21 1,34 0,01 q95 rcp4,5 -2,41 -1,56 1,39 q95 rcp4,5 -0,42 0,52 -1,48 

  rcp8,5 0,48 1,67 0,78   rcp8,5 -2,03 -0,81 -0,04   rcp8,5 1,86 2,21 2,23 

CVy rcp4,5 1,14 0,36 1,84 CVy rcp4,5 0,91 0,32 4,25 CVy rcp4,5 0,93 1,06 1,34 

  rcp8,5 0,28 0,00 0,54   rcp8,5 -0,39 -0,02 4,11   rcp8,5 -0,36 0,51 0,97 

H
ad

G
EM

 

mean rcp4,5 -1,76 0,02 -3,47 

R
G

M
_H

ad
G

EM
 mean rcp4,5 -7,14 -3,90 -12,96 

R
C

A_
H

ad
G

EM
 mean rcp4,5 -0,38 -0,18 -1,99 

  rcp8,5 -1,99 -0,89 -1,95   rcp8,5 -9,66 -6,36 -12,18   rcp8,5 2,57 0,84 4,14 

q95 rcp4,5 -2,26 0,27 -4,70 q95 rcp4,5 -5,27 -3,19 -9,41 q95 rcp4,5 -0,61 0,41 -1,52 

  rcp8,5 -2,73 -0,96 -3,02   rcp8,5 -7,58 -6,07 -8,11   rcp8,5 2,53 1,38 3,02 

CVy rcp4,5 -0,32 0,14 -0,42 CVy rcp4,5 0,81 -1,02 1,79 CVy rcp4,5 -0,36 -0,39 -0,28 

  rcp8,5 -0,14 0,18 0,17   rcp8,5 0,66 -0,65 -0,04   rcp8,5 0,02 0,10 -0,47 

G
FD

L 

mean rcp4,5 0,40 -0,29 2,93 

R
G

M
_G

FD
L 

mean rcp4,5 -4,30 -1,11 -2,75        

  rcp8,5 1,27 0,83 4,04   rcp8,5 -13,09 -4,43 -17,81        

q95 rcp4,5 0,36 0,68 1,66 q95 rcp4,5 -2,11 -0,80 -2,17        

  rcp8,5 -0,55 0,88 -0,05   rcp8,5 -12,61 -9,80 -22,65        

CVy rcp4,5 -0,84 -1,35 0,17 CVy rcp4,5 1,00 -1,20 3,65        

  rcp8,5 -3,64 -2,88 -4,23   rcp8,5 -2,18 -3,56 -1,03        

M
PI

 

mean rcp4,5 -0,55 -1,14 2,97 

R
G

M
_M

PI
 

mean rcp4,5 -3,28 -1,89 -1,37        

  rcp8,5 -0,05 -3,60 5,00   rcp8,5 -3,82 -5,25 1,08        

q95 rcp4,5 -1,32 -1,49 2,50 q95 rcp4,5 -2,77 -1,78 -1,40        

  rcp8,5 -1,39 -3,77 3,73   rcp8,5 -3,84 -4,75 -0,60        

CVy rcp4,5 0,05 -1,09 0,56 CVy rcp4,5 0,65 -1,61 2,54        

  rcp8,5 -0,27 -0,70 -0,56   rcp8,5 0,97 -0,91 0,80        

EC
-E

AR
TH

 

mean rcp4,5 -0,42 -3,19 2,83 

R
G

M
_E

C
 

mean rcp4,5 -4,68 -3,94 -4,96        

  rcp8,5 -1,83 -5,69 2,30   rcp8,5 -7,54 -6,73 -5,64        

q95 rcp4,5 -0,61 -1,73 4,79 q95 rcp4,5 -3,19 -2,74 -4,97        

  rcp8,5 -1,22 -4,11 6,19   rcp8,5 -5,03 -4,03 -2,99        

CVy rcp4,5 0,37 1,22 -0,27 CVy rcp4,5 -0,45 0,20 -2,73        

  rcp8,5 1,99 0,95 2,57   rcp8,5 1,33 2,29 0,61        

EN
S-

G
C

M
 

mean rcp4,5 -0,56 -0,78 0,98 

EN
S-

R
G

M
 

mean rcp4,5 -4,50 -2,60 -4,70 

EN
S-

R
C

A 

mean rcp4,5 -0,30 0,00 -1,50 

  rcp8,5 -0,39 -1,58 2,14   rcp8,5 -7,30 -4,60 -7,40   rcp8,5 2,80 1,70 3,30 

q95 rcp4,5 -0,95 -0,24 0,80 q95 rcp4,5 -3,10 -2,00 -3,30 q95 rcp4,5 -0,50 0,40 -1,50 

  rcp8,5 -1,35 -1,37 1,54   rcp8,5 -6,20 -5,10 -6,90   rcp8,5 2,10 1,70 2,60 

CVy rcp4,5 0,22 -0,14 0,38 CVy rcp4,5 0,58 -0,66 1,89 CVy rcp4,5 0,28 0,30 0,54 

  rcp8,5 -0,20 -0,48 -0,31   rcp8,5 0,08 -0,57 0,88   rcp8,5 -0,18 0,28 0,23 
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Figure SM1. Maps of the relative change (%) between the HIST and FUT periods of the average 
wind (m.s-1) for the whole year (left), DJF (middle) and JJA (right) for each of the 5 GCMs in 
RCP4.5. Average value of average wind over the SEA and its relative variation between HIST and 
FUT are indicated in the titles. 
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Figure SM2. Same as Figure SM1 for RCP8.5. 

 

Annual DJF JJA 

   

   

   

   

   
  

Page 88 of 104

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review Only

Figure SM3. Same as Fig. SM1 for q95 (m.s-1). 
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Figure SM4. Same as Fig. SM3 for RCP8.5. 
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Figure SM5. Same as Fig. SM1 for CVy.(%). 
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Figure SM6. Same as Fig. SM5 for RCP8.5. 
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Figure SM7. Maps of the relative change (%) between the HIST and FUT periods of the average 
wind (m.s-1) for the whole year (left), DJF (middle) and JJA (right) for each of the 7 GCM_RCM 
pairs in RCP4.5. Average value of average wind over the SEA and its relative variation between 
HIST and FUT are indicated in the titles. 
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Figure SM8. Same as Fig. SM7 for RCP85 
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Figure SM9. Same as Fig. SM7 for q95 (m.s-1). 
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Figure SM10. Same as Fig. SM9 for RCP85. 
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Figure SM11. Same as Fig. SM7 for CVy (%). 
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Figure SM12. Same as Fig. SM12 for RCP85 
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Climate change impact on sea surface winds in Southeast Asia 

Marine Herrmann*, Nguyen Duy Tung, Thanh Ngo-Duc, Fredolin Tangang

Numerical representation and climate projections of sea surface winds over Southeast Asia 
are assessed here using an ensemble of downscaled simulations. Our results reveal 
significant differences in projections of sea surface wind, depending on the models, 
scenarios, regions and seasons. The only common signal is a weakening of summer seasonal 
and intense winds and an increase of seasonal wind interannual variability. Differences of 
seasonal sea surface wind changes between models are related to differences of sea level 
pressure gradient changes.

Page 103 of 104

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only



Peer Review Only

Page 104 of 104

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only


