

The Latest Mars Climate Database (Version 6.0)

E Millour, F Forget, A Spiga, Margaux Vals, V Zakharov, L Montabone, Franck Lefèvre, Franck Montmessin, Jean-Yves Chaufray, M A López-Valverde, et al.

▶ To cite this version:

E Millour, F Forget, A Spiga, Margaux Vals, V Zakharov, et al.. The Latest Mars Climate Database (Version 6.0). Ninth International Conference on Mars 2019, Jul 2019, Pasadena, United States. pp.LPI Contribution No. 2089, id.6171. insu-04408091

HAL Id: insu-04408091 https://insu.hal.science/insu-04408091v1

Submitted on 21 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE LATEST MARS CLIMATE DATABASE (VERSION 6.0). E. Millour¹, F. Forget¹, A. Spiga¹, M. Vals¹, V. Zakharov¹, L. Montabone^{1,2}, F. Lefèvre³, F. Montmessin³, J.-Y. Chaufray³, M. A. López-Valverde⁴, F. González-Galindo⁴, S. R. Lewis⁵, P. L. Read⁶, M.-C. Desjean⁷, F. Cipriani⁸ and the MCD development team, ¹Laboratoire de Météorologie Dynamique (LMD), IPSL, Sorbonne Université, Paris, France, millour@lmd.jussieu.fr, ²Space Science Institute, Boulder, USA, ³Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), IPSL, Paris, France, ⁴Instituto de Astrofisica de Andalucia (IAA-CSIC), Granada, Spain, ⁵Department of Physical Sciences, The Open University, Milton Keynes, UK, ⁶Atmospheric, Oceanic and Planetary Physics (AOPP), Oxford, UK, ⁷Centre National D'Etudes Spatiales (CNES), Toulouse, France, ⁸European Space Research and Technology Center (ESTEC), Noordwijk, The Netherlands.

.

Introduction: The Mars Climate Database (MCD) is a database of meteorological fields derived from General Circulation Model (GCM) numerical simulations of the Martian atmosphere and validated using available observational data. The MCD includes complementary post-processing schemes such as high spatial resolution interpolation of environmental data and means of reconstructing the variability thereof.

The GCM that is used to create the MCD data is developed at Laboratoire de Météorologie Dynamique du CNRS (Paris, France) [1-3] in collaboration with LATMOS (Paris, France), the Open University (UK), the Oxford University (UK) and the Instituto de Astrofisica de Andalucia (Spain) with support from the European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES).

The latest version of the MCD, version 5.3, was released in July 2017, and at the time of writing of this abstract we are working on MCDv6.0, which we plan to release in the fall of 2019. This new version will benefit from all the recent developments and improvements [4-5] in the GCM's physics package.

The MCD is freely distributed and intended to be useful and used in the framework of engineering applications as well as in the context of scientific studies which require accurate knowledge of the state of the Martian atmosphere. Over the years, various versions of the MCD have been released and handed to more than 400 teams around the world.

Current applications include entry descent and landing (EDL) studies for future missions (e.g. Exo-Mars 2020), investigations of some specific Martian issues (via coupling of the MCD with homemade codes), analysis of observations (Earth-based as well as with various instruments onboard Mars Express, Mars Reconnaissance Orbiter, Trace Gas Orbiter)....

The MCD is freely available upon request (contact millour@lmd.jussieu.fr or forget@lmd.jussieu.fr); a simplified web interface for quick browsing at MCD outputs is available on http://www-mars.lmd.jussieu.fr

Overview of MCD contents: The MCD provides mean values and statistics of the main meteorological variables (atmospheric temperature, density, pressure and winds) as well as atmospheric composition (including dust and water vapor and ice content), as the GCM from which the datasets are obtained includes water cycle [6,7], chemistry [8], and ionosphere [9,10] models. The database extends up to and including the thermosphere [11,12] (~350km). Since the influence of Extreme Ultra Violet (EUV) input from the sun is significant in the latter, 3 EUV scenarios (solar minimum, average and maximum inputs) account for the impact of the various states of the solar cycle.

As the main driver of the Martian climate is the dust loading of the atmosphere, the MCD provides climatologies over a series of **dust scenarios**: **standard year** (a.k.a. **climatology**), **cold** (i.e. low dust), **warm** (i.e. dusty atmosphere) and **dust storm**, These are derived from home-made, instrument-derived (TES, THEMIS, MCS, MERs), dust climatology of the last 1 Martian years [13]. In addition, we also provide additional "add-on" scenarios which focus on individual Martian Years (MY 24 to 334) for users more interested in specific climatologies than the MCD baseline scenarios.

References: [1] Forget F., et al. (1999) JGR, 104, E10. [2] Lewis S., et al. (1999) JGR, 104, E10. [3] Forget F., et al. (2014), 5th Int. Workshop on Mars Atmosphere Modeling and Observations. [4] Vals M., et al. (2019), 9th Int. Mars Conference. [5] Vals M., et al. (2018) AGU Fall Meeting [6] Madeleine J.-B., et al. (2012) GRL, 39:23202. [7] Navarro T., et al. (2014) JGR (Planets). [8] Lefevre F, et al. (2011), 4th Int. Workshop on Mars Atmosphere Modeling and Observations. [9] Gonzalez-Galindo F., et al. (2013) JGR (Planets), 118. [10] Chaufray J.-Y., et al. (2014), 5th Int. Workshop on Mars Atmosphere Modeling and Observations. [11] Gonzalez-Galindo F., et al. (2009) JGR, 114. [12] Gonzalez-Galindo F., et al. (2015) JGR, 120. [13] Montabone L., et al. (2015) Icarus