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Abstract
The presence of fractures in rock masses plays a major role in its stress state and its variability. Each fracture potentially 
induces a stress perturbation, which is correlated to its geometrical and mechanical properties. This work aims to understand 
and quantitatively predict the relationship between fractured systems and the associated stress fluctuations distribution, 
considering any regional stress conditions. The approach considers the rock mass as an elastic rock matrix into which a 
population of discrete fractures is embedded—known as a Discrete Fracture Network (DFN) modeling approach. We develop 
relevant indicators and analytical solutions to quantify stress perturbations at the fracture network scale, supported by 3D 
numerical simulations, using various fracture size distributions. We show that stress fluctuations increase with fracture density 
and decrease as a function of the so-called stiffness length, a characteristic length that can be defined as the ratio between 
Young’s modulus of the matrix and fracture stiffness. Based on these considerations we discuss, depending on DFN param-
eters, which range of fractures should be modeled explicitly to account for major stress perturbations in fractured rock masses.

Highlights

•	 Stress fluctuations in fractured rocks are predicted quantitatively from a tensorial approach.
•	 At the fracture scale, stress fluctuations depend on fracture size, orientation with respect to the applied remote stress field, 

and mechanical properties.
•	 At the network scale, stress fluctuations depend on fracture density, as well as size, orientation and mechanical property 

distributions.

Keywords  Stress fluctuations · Fractured rock mass · Fractures · DFN

1  Introduction

Evaluating the in-situ stress state is a key point of geome-
chanical site modeling for many industries such as nuclear 
waste disposal (Figueiredo et al. 2023; Martin 2007). The 
stress state at any location results from a combination of 
regional stress conditions (McGarr and Gay 1978; Zoback 
1992), and stress perturbations potentially induced by any 
significant heterogeneity such as topography (McTigue and 
Mei 1981; Savage and Swolfs 1986), material heterogeneity 
(Lei and Gao 2019), or geological structures (Martin and 
Chandler 1993).

Extensive field data (Barton and Zoback 1994; Yale 2003) 
have shown the role played by faults and joints in the per-
turbation of regional stress field. Indeed, the normal and 
shear displacements on fracture planes cause a deformation 
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of the surrounding matrix resulting in a stress concentration 
at the fracture tips and a stress shadow above and below its 
central part (Jaeger et al. 2009). All fractures produce stress 
fluctuations, but their impact is related to their geometrical 
and mechanical properties, as well as their stress condi-
tions (Homberg et al. 1997). At the network scale, stress 
interactions make the spatial distribution of the stress field 
even more complex, as any fracture may affect the loading 
conditions of the surrounding fractures (Kachanov 1989; 
Thomas et al. 2017). Understanding the controlling factors 
for stress fluctuations and interactions represents a key step 
for the prediction of fracture development (Healy et al. 2006; 
Kachanov 2003; Olson 1993). The inherent uncertainty in 
stress measurements and the scarcity of available data com-
pared to the large rock volume of interest motivates the use 
of numerical simulation to understand the role played by 
fractures at the rock mass scale (Hakami et al. 2022).

In this paper, we quantitatively analyze and identify con-
trolling factors for stress fluctuations at the network scale, 
supported by three-dimensional (3D) numerical simulations. 
We first perform a simple analysis from a single fracture, 
before addressing the network scale, using various fracture 
size distributions. We show that the intensity of the stress 
perturbation at the network scale can be predicted, knowing 
fracture geometrical and mechanical parameters, and applied 
stress conditions. Based on these considerations, we discuss 
the range of fractures that should be represented explicitly 
when performing geomechanical simulations, to correctly 
account for stress fluctuations while keeping manageable 
simulation time.

2 � Methodology

2.1 � Discrete Fracture Network (DFN) Model

For geological environments, fracture networks are often 
characterized by a wide distribution of fracture sizes (Bon-
net et al. 2001). We denote the fracture density distribution 
n(l, �) , as the statistical characterisation of a fractured system 
defined from fractures orientation � and size l (Selroos et al. 
2022), so that  n(l, �)dld� is the number of fractures of size 
and orientation in the range [l, l + dl] and [�, � + d�] per unit 
volume of rock. Natural fracture systems, especially in crys-
talline rocks, can often be described by a power law size dis-
tribution model (Bour 2002; Davy 1993; Davy et al. 1990):

with �(�) a density term that only depends on fracture ori-
entation and a the power law exponent of the fracture size 
distribution. This exponent is usually between 3 and 4 in 

(1)n(l, �) = �(�)l−a,

crystalline rocks (Bonnet et al. 2001; Darcel et al. 2006; 
Davy et al. 2010). Fracture density can be measured in dif-
ferent ways depending on the dimension of the measurement 
region and the dimension associated to fractures (Dershow-
itz and Herda 1992). For fracture networks made of circular 
fractures of minimum and maximum diameters lmin and lmax , 
the total fracture intensity P32 is defined as the total fracture 
surface per unit volume:

Also, fracture connectivity may be assessed by the per-
colation parameter p (Balberg et al. 1984; Bour and Davy 
1998), expressed as the total excluded volume around frac-
tures per unit volume:

The DFN is statistically connected if p is larger than the 
percolation threshold pc . Considering a 3D DFN made of 
disk-shaped fractures, the percolation threshold lies within 
the range 0.7–2.8 (Balberg 1985; Bour and Davy 1998; De 
Dreuzy et al. 2000).

In this study, we define a set of DFN models following 
a uniform orientation distribution (all fracture orientations 
are equally represented) and a power law size distributions 
of exponent a = [3, 4] with lmin = 0.4m and lmax = 4m , 
embedded in a cubic system of size L = 5m , from low to 
high percolation parameter. These values are chosen to 
cover a wide range of fracture sizes while keeping the sim-
ulation time manageable (the larger the range of fracture 
sizes, the more fractures and blocks, and the longer the 
simulation time and memory requirements), and to avoid 
fractures that completely cut through the domain. Fig-
ure 1a, b shows the fracture size distribution of the gener-
ated DFNs. We also define “equivalent” DFN models with 
constant fracture size la=3 and la=4 so that corresponding 
DFNs following power law size distribution of exponent 
a = 3 and a = 4 have the same P32 and p ( la=3 = 1.56m and 
la=4 = 1.02m ). For each set of parameters, only one reali-
zation is generated. In total, 44 DFN models are generated.

In the following, we refer to simulations with the fol-
lowing conventions. A simulation based on a DFN with 
power law size distribution is noted with the letter “a” and 
constant size models with a “l”. The density of the network 
is noted with “p” and the stiffness length with “ls” (see 
Sect. 2.2). For example, the simulation based on DFN with 
power law exponent a = 3, percolation parameter p = 4 and 
stiffness length ls = ∞ is referred by “a3p4ls∞”. Figure 1 
shows examples of generated DFN models.

(2)P32 =
�

4 ∬
l,�

n(l, �)l2dld�.

(3)p =
�2

8 ∬
l,�

n(l, �)l3dld�.
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2.2 � The Synthetic Rock Mass Approach

We use the Synthetic Rock Mass (SRM) approach (Mas 
Ivars et al. 2011) for simulating the mechanical behav-
iour of the fractured rock mass. In the SRM approach, 
the rock is modeled as an assembly of deformable blocks 
delimited by fractures using a DFN representation. The 
mechanical behaviour of the rock mass is governed by the 

interaction of the deformable rock blocks and fractures. 
Each block contact is divided into sub-contacts, where 
interaction forces between the blocks are applied. Simula-
tions are performed using 3DEC (Itasca Consulting Group 
2020), a three-dimensional numerical software dedicated 
to discontinuum modeling, based on the distinct element 
method (DEM). The cubic system of size L containing the 

Fig. 1   Fracture size distributions and examples of generated DFN 
realizations. a, b Power-law fracture size distributions with expo-
nent a = 3 and a = 4 (dotted lines represent the DFN realizations and 

dashed lines represent the density model) in a log–log plot. c–f DFN 
realizations of the a3p4, a4p4, l3p4, l4p4 models
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DFN is progressively cut into smaller and smaller blocks 
when fractures are added to the sample (Fig. 2).

The block assembly is then meshed block by block 
with a target mesh size h that should be at least two times 
smaller than the smallest fracture contained in the system 
to correctly describe displacements on the fracture plane. 
The matrix assumed to be elastic, with Young’s modulus 
E and Poisson’s ratio � . Fracture frictional properties are 
assigned to the area fraction corresponding to the frac-
tures at the interfaces between the blocks. In the follow-
ing, we consider simple elastic behaviour of the fracture 
plane, where the shear resistance stress �f in the fracture 
plane is expressed as a linear function of shear displace-
ment t  on the fracture walls, modeled by a constant shear 
stiffness ks. If the applied stress is compressive, the frac-
ture walls cannot penetrate as normal stiffness kn is gen-
erally much larger than ks and normal displacement is 
negligible in comparison to shear displacement. In the 
following, the surrounding matrix deformation is entirely 
due to fracture shearing, as we only apply compressive 
stress, considering kn ≫ ks . To focus on the importance 
of fracture length, we define the fracture stiffness length 
ls = E∕ks (Davy et  al. 2018). Decreasing the stiffness 
length ls is equivalent to increasing fracture plane resist-
ance (increasing ks). The SRM specimens are loaded 
with conditions such that the maximum principal stress 
�a is vertical and the confinement stress �l is isotropic 
in the lateral directions (x and y directions). Numerical 
parameters used to perform the numerical simulations 
are summarized in Table 1. The elastic properties of the 
rock matrix are selected from the granite properties of the 
Forsmark site in Sweden (Hakami et al. 2022; SKB 2008). 
DFN density and shear stiffness are selected over a wide 
range of values to perform sensitivity analysis.

2.3 � Stress Fluctuations Quantification

The stress field in the fractured rock mass in response to 
applied tectonic stress is obtained by solving the linear elastic 
geomechanical problem. At any point, i.e., mesh element, the 
stress field is defined by a tensor and corresponding invariants. 
For example, Von Mises stress �e quantifies the intensity of 
the deviatoric component of a stress tensor. It is defined from 
stress tensor � as:

with �1 , �2 and �3 the principal stress components of the 
stress tensor � . At any point x in the 3D cartesian space, 
σe(x) refers to the Von Mises stress at position x.

It is possible to analyze distributions of local values, as well 
as deviation from the mean stress tensor 

⟨
�

⟩
 in the volume V:

(4)�e

�
�

�
=

1
√
2

��
�1 − �2

�2
+
�
�1 − �3

�2
+
�
�2 − �3

�2
,

(5)
⟨
�

⟩
=

1

V ∫V

�(x)dV ,

Fig. 2   Numerical setup used to perform simulation from DFN gener-
ation (left), block domain discretization (center), and stress field reso-
lution (right). The initial cubic sample is cut by the DFN into smaller 

blocks, meshed with a size h that must be much smaller than the aver-
age spacing between fractures

Table 1   Parameters of the SRM specimens

Parameter Symbol Value

Domain size L 5 m
Mesh size h 0.2 m
DFN percolation parameter p 0.5–8
Young’s modulus E 76.9 GPa
Poisson’s ratio � 0.23
Fracture stiffness length ls = E∕ks ∞–0.2 m
Maximum principal stress �a 3 kPa
Confinement stress �l 1 kPa
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which is approximately equal to the applied remote stress 
(Gao et al. 2017).

Most studies characterize stress perturbation by analyz-
ing separately the principal stress magnitudes and orienta-
tion variations (Hakala et al. 2019; Hakami 2006; Valli et al. 
2011). However, given the tensorial nature of the stress, both 
analyses are not independent. Gao and Harrison (2016) pro-
posed to have a single descriptor of the stress fluctuations 
by calculating the difference between the local and mean 
tensors. This is the approach we have implemented by cal-
culating the local stress dispersion De(x) as defined by Gao 
and Harrison (2018):

where ‖ ‖
F
 refers to the Frobenius norm (also called Euclid-

ean norm). Global stress dispersion DE is then defined as 
the quadratic mean of local stress dispersion over the whole 
volume:

To our knowledge, most numerical studies of fracture-
induced stress perturbation based on this tensorial approach 
are made in 2D (Khodaei et al. 2020, 2021a; b; Lei and Gao 
2018), which reduces the complexity of spatial organization 
and anisotropy inherent to fracture networks. It has been 
shown that stress variability depends on applied stress ratio, 
fracture and matrix mechanical parameters, fracture spatial 
organization and connectivity. Lei and Gao (2018) show that 
stress variability is more dominated by matrix resistance if 
fractures are disconnected, but more dependent on frictional 
sliding of fractures if the system is well connected.

If the global stress dispersion quantifies the intensity of 
stress fluctuations at the network scale, we need another 
indicator to quantify its localization. Depending on fracture 
network properties, the percentage of rock volume affected 
by this stress fluctuations may vary. To measure stress fluc-
tuations localization, we use the participation ratio, inspired 
from (Davy et al. 1995; Edwards and Thouless 1972; Maillot 
et al. 2016), and defined as:

where Q is a measure of local stress perturbation (either 
stress dispersion or Von Mises stress), and Ω the integration 
volume. We first define dDe the stress dispersion participa-
tion ratio, with Q = De and Ω = V  , the SRM volume. As 
local stress dispersion De is positive, it is impossible to know 
if the deviation from applied remote stress corresponds to a 

(6)De(x) =
‖
‖
‖
‖
�(x) −

⟨
�

⟩‖
‖
‖
‖F
,

(7)DE =

√
1

V ∫V

De(x)
2
dV .

(8)dQ =
1

Ω
.

(∫
Ω
QdΩ

)2

(∫
Ω
Q2dΩ

) ,

stress enhancement or diminution. We then introduce two 
Von Mises stress participation ratio d�+

e
 and d�−

e
 , where the 

quantity Q = �e(x) − �e

(⟨
�

⟩)
 is integrated over V+ and V− 

respectively, which corresponds to the volumes where the 
Von Mises stress is respectively larger and lower than the 
Von Mises stress of the mean stress tensor �e

(⟨
�

⟩)
 . The 

participation ratio is a measure of the percentage of volume 
that is affected by the stress perturbation. If the deviation 
from applied remote stress is perfectly homogeneous in the 
volume, the ratio is equal to 1. On the other hand, if the 
stress perturbation is localized in a small volume, the par-
ticipation ratio will tend to zero as the contribution of the 
perturbed volume to the total volume.

3 � Results

We first perform a sensitivity analysis on fracture parameters 
at the single fracture scale, before going to the network scale 
by performing numerical simulations on the 44 DFN realiza-
tions described in Sect. 2.1.

3.1 � Stress Fluctuations Induced by an Isolated 
Fracture

We consider an isolated disk-shaped fracture of diameter l , 
positioned at the center of the cubic domain of size L , with 
a strike direction aligned with y⃗ axis and tilted with a dip 
angle � (Fig. 3a). Maximum principal and confining stresses 
�a and �l are applied vertically and horizontally, respectively, 
to the specimen boundaries. The stress field is solved in the 
matrix, and Von Mises stress �e and local stress dispersion 
De are computed in each mesh element of the model. The 
relative displacement between blocks on opposite sides of 
the fracture induces a stress perturbation around the fracture. 
Figure 3b shows that the Von Mises stress is maximum near 
the fracture tip while it decreases around the central part of 
the fracture, known as shadow effect. The Von Mises stress 
measured far from the fracture is �a − �l = 2 kPa (green 
color in Fig. 3b). Figure 3c shows the local stress dispersion 
field that is null far from the fracture, and positive around the 
fracture. It is not possible to know if the deviation from the 
applied remote stress corresponds to a stress enhancement or 
diminution when only looking at the local stress dispersion.

Figure 4a, c show the probability density functions of 
normalized Von Mises stress �∗

e
 (normalized by the Von 

Mises value of the applied remote stress) for various frac-
ture size l and stiffness length ls for the isolated fracture 
case with θ = 45°, in a log-linear representation. The dis-
tribution is a two-tails distribution, dominated by its central 
part around �∗

e
= 1 , which reflects the limited volume of 
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Fig. 3   a Numerical setup for the isolated fracture case, and b 2D slice 
of Von Mises stress (rainbow color scale is indicated) and c stress dis-
persion (cool-warm color scale is indicated) fields. 2D slices cut view 

is defined from cutting plane perpendicular to the y axis at the center 
of the model

Fig. 4   Probability density functions of a, c normalized Von Mises stress and b, d normalized local stress dispersion for different a, b percolation 
parameters and c, d stiffness lengths, in the case of an isolated fracture
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influence around the fractures. Values where 𝜎∗
e
< 1  refer 

to the shadow zone around the fracture, while, values where 
𝜎∗
e
> 1 refer to the stress increase at the fracture tips. Fig-

ure 4a shows that the larger the fracture size l , the higher 
the two tails of the distribution, the larger the stress pertur-
bation. Note that stress shadowing cannot reduce the Von 
Mises stress by more than half of the applied Von Mises 
remote stress, while stress increase seems to have no limit 
(up to 3�∗

e
 for l = 2.4m ). Figure 4c shows that the smaller 

ls, the smaller the two tails of the distribution (distribution 
is dominated by its central part). Indeed, fracture shear stiff-
ness limits the fracture plane displacement, which limits the 
stress perturbation induced by the fracture.

Figure 4b, d shows the normalized local stress disper-
sion D∗

e
 (normalized by the Frobenius norm of remote 

stress) for various fracture size l and stiffness length ls for 
the isolated fracture case, in a log-linear representation. The 
local stress dispersion measured far from the fracture (blue 
color in Fig. 3c) is null. The distribution is dominated by 
these unperturbed zones (distribution peak is at D∗

e
= 0 ) 

and decreases for large D∗
e
 (the larger D∗

e
 , the smaller the 

probability of occurrence). The larger the fracture size l , the 
larger the stress perturbation, and the more large D∗

e
 values 

are represented in the distribution. On the other hand, the 
smaller ls, the smaller the stress perturbation, and the less 
large D∗

e
 values are represented in the distribution.

We perform a sensitivity analysis to identify the depend-
ency of global stress dispersion DE on fracture size l , dip 
angle � , stiffness length ls and applied stress ratio �a∕�l 
(Fig. 5). Global stress dispersion increases with fracture size 

Fig. 5   Evolution of global stress dispersion DE with a fracture size l, b fracture length ratio l/ls, c fracture dip angle θ, and d applied stress ratio 
σa/σl. Numerical results (dots) are correctly matched by Equ. 9 (dashed lines)
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l , while it decreases with the fracture size ratio l/ls. Also, it 
depends on the fracture orientation and applied stress ratio 
as the applied force on the fracture plane depends on the 
relative orientation of the fracture with respect to the applied 
stress tensor. The fixed values when tuning a parameter for 
the sensibility analysis are: fracture size l = 2m , stiffness 
length ls = ∞ , fracture dip angle θ = 45° and applied stress 
ratio �a∕�l = 3 . Based on this sensitivity analysis, we pro-
pose an analytical solution for the global stress dispersion 
DE,f induced by a uniformly loaded disk-shaped fracture:

(9)DE,f

(
l, �, ls

)
=

3�

8

(
�a − �l

)
cos(�) sin(�)

1 +
l

ls

√√√√
√

4

3
�

(
l

2

)3

L3
.

3.2 � Correlations Between Fracture Network 
Properties and Stress Fluctuations

Considering the DFN models defined in Sect. 2.1, numerical 
simulations are performed according to parameters summa-
rized in Table 1. Maximum principal and confining stresses 
�a and �l are applied vertically and horizontally, respectively, 
to the specimen boundaries. The stress field is solved in the 
matrix, and Von Mises stress �e and local stress dispersion 
De are computed in each mesh element of the model. Fig-
ure 6 shows the probability density functions of normalized 
Von Mises and normalized local stress dispersion in a linear 
plot, considering percolation parameters from low to high 
for the a4ls∞ models, and different stiffness lengths ls for 
the a4p4 models.

Figure  6a shows that the larger the fracture density 
(the larger the DFN percolation parameter), the wider the 

Fig. 6   Probability density functions of a, b normalized Von Mises stress and c, d normalized local stress dispersion, as a function of a, c perco-
lation parameter p for the a4ls∞ models and b, d stiffness length ls for the a4p4 models
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distribution of Von Mises stresses. Also, for high percolation 
parameters, the distribution mode (i.e. the most probable 
value) is larger than the Von Mises stress of the applied 
remote stress; the distribution is also asymmetric with 
respect to its mode. The same effect is observed on Fig. 6b, 
with increasing ls at constant fracture density.

We next compare the relative variations of the distribu-
tions with increasing fracture density. To do this, we normal-
ize the distribution by the sum of the influence volume of 
each fracture, which is approximately a sphere of diameter 
similar to the fracture diameter. This normalization volume 
is proportional to a percolation parameter, as it is defined 
as the total excluded volume around fractures per unit vol-
ume. If interactions between fractures can be neglected, the 
differences between the distributions should be explained 
by a change of the affected volume only, and normalized 

distribution should overlap. Normalized distributions are 
plotted in Fig. 7a, c. The distribution tails for low percola-
tion parameters (p < 2) overlap and are approximately equal 
to the sum of the perturbations induced by the different frac-
tures taken independently of each other, meaning that stress 
interactions are negligible over this fracture density range. 
Figure 7b, d shows the normalized probability density func-
tion of Von Mises stress and stress dispersion for all p4ls∞ 
models. The distributions overlap, meaning that regardless 
of the fracture size distribution, only the excluded volume 
occupied by fractures determines the distribution of stresses 
in the surrounding rock matrix.

We now calculate the global dispersion considering that 
fracture stress interactions are negligible, meaning that frac-
tures have independent contributions to the stress fluctua-
tions. Under these assumptions, the global stress dispersion 

Fig. 7   Normalized probability density functions of normalized Von 
Mises stress (a, b) and normalized local stress dispersion (c, d), as a 
function of percolation parameter p for a4ls∞ models (a, c) and DFN 

type for p4ls∞ models (b, d). Distributions are plotted in linear-log 
axis to facilitate curves comparison
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to the square is additive, i.e., it is equal to the sum of the 
contribution of each individual fracture loaded by the 
applied remote stress.

We derive an equation for stress dispersion, noted D̃E , 
from an analytical reasoning based on fracture density dis-
tribution n(l, �) where l and � refer to the fracture size and 
orientation, respectively:

If fracture size and orientation distributions n(l) and n(�) , 
respectively, are not correlated (i.e., n(l, �) = n(l) ⋅ n(�) ), 
hence Equ. 10 becomes:

where F� = ∫
�

�2(�)n(�)d� , is an orientation factor. If frac-

ture size is much smaller than stiffness length 
(
l ≪ ls

)
 , the 

network stress dispersion is proportional to the square root 
of the percolation parameter:

Otherwise, it depends on the fracture size distribution. 
For constant size network, Equ. 11 becomes:

with Nf the number of fractures contained in the volume V  . 
For power law fracture size distribution, the network global 
stress dispersion is proportional to the power law exponent 
of the fracture size distribution. If a = 3 or a = 4 , then 
Equ. 11 becomes respectively:

We also compute the global stress dispersion D∗
E
 for the 

set of DFN realizations (Sect. 2.1) by applying the principle 
of superposition of the fracture contribution:

where DE,f is the global dispersion generated by the fracture 
f  . To estimate the deviation of the actual stress dispersion 

(10)D̃E

2

= ∬
l,�

n(l, �)D2

E,f

(
l, �, ls

)
dld�.

(11)D̃E

2

= F�

lmax∫
lmin

n(l)l3

(
1 + l∕ls

)2 dl,

(12)D̃E ∝
√
F�p.

(13)D̃E

2

= F� .
Nf

V
.

l3

(
1 + l∕ls

)2 ,

(14)D̃E

2

= �F�

(
ls

1 + lmin∕ls
−

ls

1 + lmax∕ls

)

.

(15)
D̃E

2
= �F�

(

ln
(

lmax

lmin

)

+ ln
(

ls + lmin

ls + lmax

)

+ 1
1 + lmax∕ls

− 1
1 + lmin∕ls

)

.

(16)D∗2
E

=
∑

f

D2

E,f
,

DE from D∗
E
 , we define ΔDE =

(
DE − D∗

E

)
∕DE , as an indica-

tor of the stress interactions between fractures.
Figure 8a shows that, for ls = ∞ , the global stress disper-

sion DE evolves as the square root of the percolation param-
eter, in agreement with Equ. 12 (dashed line in Fig. 8a). The 
principle of superposition correctly approximates the global 
stress dispersion for low percolation parameter 

(
ΔDE ≈ 0

)
 

but underestimates it when p > 2.5 (Fig. 8b). This empha-
sizes the role of fracture connectivity in increasing the stress 
fluctuations, showing that fracture clusters can be considered 
as “meta-fractures”, and produce more stress fluctuations 
than the sum of the fractures that compose them. Figure 8c 
shows that global stress dispersion decreases with shear stiff-
ness ks in a way that depends on fracture size distribution, 
as shown by Equs. 13–15 that are reported as dashed lines.

Figure 9a shows the evolution of stress dispersion and 
Von Mises stress participation ratio with percolation param-
eter in the case where ls = ∞ . According to Equ. 8, the par-
ticipation ratio measures the extent of stress perturbations, 
by computing the percentage of affected volume. For low 
percolation parameter, the participation ratios tend to 0, 
meaning that the stress perturbation is very localized in a 
small volume around the fracture themselves. The larger the 
percolation, the larger the participation ratio, until a plateau 
is reached. For percolation parameter much larger than the 
percolation threshold 

(
p ≫ pc

)
 , the whole volume is sta-

tistically filled with intersecting fractures. Hence, adding 
new fractures in the system increases the stress perturbation 
intensity (measured by DE ), but not its localization. Fig-
ure 9b shows the volume ratios that is concerned by a stress 
increase or decrease, respectively noted V+ and V− . For low 
fracture density, the volume V+ (respectively V− ), which cor-
responds to the volumes where the Von Mises stress is larger 
(respectively lower) than the Von Mises stress of the mean 
stress tensor, slightly decreases (respectively increases) with 
percolation parameter until a plateau is reached around 70% 
(respectively 30%) of the total volume, reached at p ∼ 2.5 . 
Also, both participation ratio and volume ratio are independ-
ent of the fracture type, meaning that stress perturbation 
localization is independent of the fracture size distribution.

4 � Discussion

Fractured rock masses typically consist of many discontinui-
ties over a wide range of fracture sizes (Bonnet et al. 2001), 
which poses numerical problem when building geomechani-
cal models based on an explicit representation of the frac-
tures. Identifying fractures that are responsible for major 
stress fluctuations is of great interest to simplify geome-
chanical numerical models by modeling explicitly only a 
part of the fractured system (Wang and Lei 2021). Several 
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studies have focused on understanding the link between DFN 
parameters and stress fluctuations (Khodaei et al. 2021b; Lei 
and Gao 2018), but none of them propose a direct quantifi-
cation of this process. In this study, we propose analytical 
solutions of global stress dispersion derived from the prin-
ciple of superposition in Equ. 10. We show that for perco-
lation parameter larger than the percolation threshold, the 
principle of superposition tends to underestimate the global 
stress dispersion, as connected fractures induce larger frac-
ture plane displacements. This is coherent with findings of 
Lei and Gao (2018) who states that stress variability is more 
dominated by matrix resistance if fractures are disconnected. 
Still, these analytical solutions can be used to identify the 
range of fracture sizes that are responsible for most of the 

stress perturbation in the system, depending on the fracture 
density distribution. Figure 10 shows the global stress dis-
persion DE and the corresponding cumulative contribution, 
for fractures of sizes ranging from lmin = 1 to an upper limit 
x , considering power law fracture size distribution exponent 
a = 3 and a = 4 , and a stiffness length ls = ∞ and ls = 10 . 
This shows the high impact of the fracture size distribution 
on the global stress dispersion. Considering ls = ∞ , i.e., fric-
tionless fractures, one can see that all fractures scales have 
important contribution for a = 4 . This exponent is charac-
teristic of self-similar (i.e., statistically similar at all scales) 
three-dimensional fracture networks (Bour 2002). For a = 3 , 
this contribution to stress dispersion increases with fracture 
size, because the proportion of ‘large’ fractures inducing 

Fig. 8   Evolution of a, c global stress dispersion DE and b, d devia-
tion from superposition principle ΔDE , with a, c percolation param-
eter for all ls∞ models and with b, d 1∕ls for all p4 models. Filled dots 
refer to global stress dispersion DE computed by numerical simula-

tions, while empty dots refer to approximated global stress dispersion 
D∗

E
 (neglecting interactions) for the corresponding DFN realizations. 

The dots colors refer to the DFN type. Dashed lines refer to analytical 
solutions of D̃E (Eqs. 12–15)
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important stress perturbation also increases. Moreover, 
it shows that, for frictional fractures with constant stiff-
ness length, most of the contribution is made by fractures 
smaller than stiffness length ls (considered as frictionless). 
The stiffness length thus represents a characteristic length 
above which the associated stress perturbation becomes lim-
ited. This shows that special attention should be paid to the 
parameters controlling the contribution of fractures to stress 
fluctuations to simplify geomechanical models, and that a 
criterion based only on fracture size may be too simplistic 
(Wang and Lei 2021).

5 � Conclusion

In this paper, we study the way stress is redistributed 
around fractures and assess stress variability in fractured 
rock masses, considering various fracture size distribu-
tions, densities, and frictional properties, supported by 3D 
numerical simulations.

Looking at one isolated fracture embedded in an elastic 
isotropic matrix, a detailed sensitivity analysis on different 
parameters showed the dependence of stress fluctuations 

Fig. 9   Evolution of a stress dispersion and Von Mises stress participation ratios and b affected volume ratio V+∕V  and V−∕V  . The dots colors 
refer to the DFN type

Fig. 10   a Global stress dispersion DE and b corresponding cumulative contribution, for fractures of sizes ranging from lmin = 1 to an upper limit 
x , considering power law fracture size distribution exponent a = 3 and a = 4 , and stiffness length ls = ∞ and ls = 10
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on fracture geometrical and mechanical parameters (size, 
orientation, friction, etc.). Based on this sensitivity anal-
ysis, an analytical solution for global stress dispersion 
induced by a uniformly loaded fracture is proposed. For 
simplicity and to develop a clear analytical framework, 
we consider the fracture resistance to be elastic. Exten-
sion to more complex frictional laws is straightforward, 
as we show that the stress perturbation induced by a 
fracture depends on the force applied to its plane, which 
can be easily recovered from the surrounding stress field 
and the fracture orientation. However, extension to more 
complex elastic–plastic constitutive models of the rock 
matrix is not as simple, since the superposition principle 
used in Equ. 10 is only applicable to elastic conditions 
(Timoshenko 1951).

When looking at the network scale, because the contribu-
tion of individual fractures is nearly a sphere surrounding 
the fractures, a good proxy for fracture stress perturbation 
is the percolation parameter. We show that the distributions 
of Von Mises stress and local stress dispersion are driven by 
the DFN percolation parameter, regardless of the fracture 
size distribution. Moreover, for low fracture density (below 
the percolation threshold) the global stress dispersion can 
be reasonably approximated by summing the contribution 
of each individual fracture. For percolation parameter larger 
than the percolation threshold, the principle of superposition 
tends to underestimate the global stress dispersion, as con-
nected fractures induce larger fracture plane displacements. 
Still, approximation from the principle of superposition can 
be used as a lower bound of global stress dispersion. This 
represents a key step forward the understanding of stress 
fluctuations in fractured rock mass.

Also, stress dispersion decreases when decreasing the 
stiffness length ls in a way that depends on fracture size dis-
tribution. The stiffness length is identified here as a charac-
teristic length for stress fluctuations. Identifying character-
istic length scales is critical to predict stress fluctuations, 
as a fracture may redistribute stress differently depending 
on whether it is reactivated or not, which depends on its 
geometrical and mechanical parameters. When dealing with 
dense multiscale fracture networks, identifying which frac-
tures are responsible for major stress perturbations is of great 
interest for numerical models, as modeling every fracture is 
far beyond the reach of current numerical capabilities. The 
use of dual-scale models, where only a part of the fracture 
system is modeled explicitly (the other one being modeled 
implicitly using effective properties) is of great interest to 
tackle this issue. The developed analytical solutions at the 
network scale thus represent a key step towards geomechani-
cal model simplifications.
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