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Introduction:  Titan's abundant complex carbon-

rich chemistry, interior ocean, and past presence of liq-
uid water on the surface make it an ideal destination to 
study prebiotic chemical processes and document the 
habitability of an extraterrestrial environment [e.g., 1-
6]. Although pathways for the origin of life as we know 
it are poorly constrained, there is general agreement that 
liquid water, essential elements (especially CHNOPS), 
energetic disequilibrium, and a catalytic surface are re-
quired. In addition to the complex organic synthesis that 
Titan supports today, organic molecules may have inter-
acted with liquid water at the surface in the past (e.g., 
sites of cryovolcanic activity or impact melt [4]), in-
creasing the potential for oxygenation and chemical pro-
cessing to progress beyond the compositional function-
alities observed in high-altitude organic species. Titan 
provides an unparalleled opportunity to investigate 
prebiotic chemistry, as well as search for signatures of 
potential water- or even hydrocarbon-based life. 

The diversity of Titan's surface materials and envi-
ronments [7] drives a scientific need to sample a variety 
of locations, thus mobility is key for in situ measure-
ments. Titan's dense atmosphere provides the means for 
long-range exploration by a vehicle with aerial mobility. 
The Dragonfly mission concept, under study in NASA's 
New Frontiers Program, is a rotorcraft lander that would 
achieve wide-ranging in situ investigation by flying to 

access different geologic settings 10s – 100s of km 
apart, performing multidisciplinary science measure-
ments at each landing site. 

Dragonfly takes advantage of Titan's unique natural 
laboratory to understand how far chemistry can progress 
in environments that provide key ingredients for life. 

Exploration Strategy:  It has long been recognized 
that Titan's rich organic chemical environment provides 
a unique opportunity to explore prebiotic chemistry 
[e.g., 9,10], and development of Titan mobile aerial ex-
ploration was identified as a desirable next step after 
Cassini-Huygens. Although the hydrocarbon seas are an 
intriguing target [11], environments that offer the most 
likely prospects for chemical evolution similar to that 
on Earth occur on Titan's land [4] and Titan's northern 
winter precludes direct-to-Earth communication in the 
2020-2030s. Furthermore. Moreover, the dune sands 
may represent a 'grab bag' of materials sourced from all 
over Titan [10] (similar to Mars Pathfinder's landing 
site [12]) and thus may contain aqueously altered mate-
rials. As in Mars exploration, the approach with the 
highest scientific potential is to obtain samples directly 
from multiple locations. 

Given Titan's dense atmosphere (4x that at Earth's 
surface) and low gravity (1.35 m/s2), heavier-than-air 
mobility is highly efficient [9,13,14]. Recent develop-
ments in autonomous flight enable a lander with aerial 
mobility to convey a capable instrument suite to explore 
multiple locations. Modern control electronics make a 
multi-rotor vehicle [15] mechanically simpler than a 
helicopter, as the recent proliferation of terrestrial 
drones attests. For a given vehicle mass and rotor diam-
eter, the hover power required on Titan is 38x less than 
on Earth [9,15]. Flights of up to a few hours are possible 
using power from a battery recharged via an MMRTG. 
This strategy also has the advantage of flexibility to ad-
just to changes in power-source performance or science 
energy demands, merely taking longer to recharge be-
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tween flights. Adopting rotors as a substitute for the ret-
rorockets used for landing on other planets, the ability 
to take off and land elsewhere follows with little incre-
mental cost and tremendous science enhancement. 

Science Objectives:  Compositions of the solid ma-
terials on Titan's surface are still essentially unknown. 
So measurements [16] in different geologic settings 
[7,17] will reveal how far organic chemistry has pro-
gressed; sites where transient liquid water [4] may have 
interacted with the abundant photochemical products 
that litter the surface [2] are of particular interest. 

At each landing site, Dragonfly can answer key sci-
entific questions regarding habitability and prebiotic 
chemistry and put these measurements in the context of 
Titan's meteorology and methane cycle, local geologic 
setting and material properties [18], and geophysical 
measurements of the subsurface [19]. Dragonfly will: 
• analyze chemical components available and processes 

at work to produce biologically relevant compounds; 
• measure atmospheric conditions, identify methane 

reservoirs and determine transport rates [11,20,21]; 
• characterize geologic features and transport processes, 

seismic activity, and subsurface structure [22, 19]; 
• constrain processes that mix organics with past sur-

face liquid water or potentially the subsurface ocean; 
• search for water- or hydrocarbon-based chemical bi-

osignatures. 
Since the interior of the lander is maintained at con-

stant benign temperatures using ‘waste’ heat from the 
MMRTG, only modest adaptation for Titan's environ-
ment (94-K, 1.5-bar nitrogen atmosphere) is needed. 

Measuring Titan's Composition: Surface material 
is sampled with a drill and ingested using a pneumatic 
transfer system [23] into the mass spectrometer, DraMS 
[16,24]. The sampling system, DrACO, has one drill on 
each skid for sample diversity and redundancy and pro-
vides rotary and rotary-percussive modes. Supported in 
part by NASA's COLDTech program, the drill has been 
tested at Honeybee Robotics in a range of cryogenic ices 
and organic materials chilled with liquid nitrogen. Cut-
tings are collected by a pneumatic transfer system, 
which conveys the material rapidly into DraMS for 
analysis. Pneumatic transfer ensures samples are main-
tained at near-ambient Titan temperatures, with particu-
lar attention to avoiding cross-talk between samples. 

DraMS supports both laser desorption (LDMS) and 
pyrolysis gas chromatography (GCMS) operating 
modes, with heritage from the MSL SAM and ExoMars 
MOMA instruments. Phase-A activities have included 
environmental testing of a scroll pump, which brings the 
internal atmosphere of the sample delivered by DrACO 
from 1.5-bar Titan to ~10 mbar, in family with Mars 
heritage inlet designs. 

A novel element of Dragonfly's payload is a neu-
tron-activated gamma-ray spectrometer, DraGNS, to 
quickly identify bulk elemental composition at landing 
sites [16,25] and inform decisions about sampling and 
DraMS measurements. DraGNS uses a high-purity ger-
manium (HPGe) detector for superior spectral resolu-
tion and a pulsed neutron source to excite gamma-ray 
emission from surface and near-subsurface material. 
Previous applications required active cryocoolers, but 
for Dragonfly Titan's cold, dense atmosphere can be 
used to passively hold the detector at temperature. 
Phase-A activities have included demonstration of 
HPGe passive cooling and operation of a testbed with a 
commercial neutron source using compositional ana-
logs to simulate Titan organics overlying water ice. 

The Dragonfly [26] rotorcraft lander is designed to 
take advantage of Titan's environment to explore dozens 
of diverse sites, covering 10s – 100s km during its >2-
yr mission, to characterize Titan's habitability and de-
termine how far organic chemistry has progressed in en-
vironments providing key ingredients for life. 

References:  [1] Raulin F. et al. (2010) Titan's As-
trobiology, in Titan from Cassini-Huygens Brown et al. 
Eds. [2] Thompson W.R. & Sagan C. (1992), C. Organic 
chemistry on Titan: Surface interactions, Sympos. on Ti-
tan, ESA SP-338, 167-176. [3] Neish C.D. et al. (2010) 
Astrobiology 10, 337-347. [4] Neish C.D. et al. (2018) 
Astrobiology 18, 571-585. [5] https://astrobiology. 
nasa.gov/research/life-detection/ladder/ [6] Hand K. et 
al. (2018) LPSC 49, #2430. [7] Barnes J.W. et al. (2018) 
LPSC 49, #2721. [8] Chyba, C. et al. (1999) LPSC 30, 
#1537. [9] Lorenz, R.D. (2000) J. British Interplanetary 
Soc. 53, 218-234. [10] Leary J. et al. (2008) Titan Flag-
ship study https://solarsystem.nasa.gov/multimedia/ 
downloads/Titan_Explorer_Public_Report_FC_opt.pdf 
[11] Stofan E. et al. (2013) Proc. Aerospace Conf. 
IEEE, DOI: 10.1109/AERO.2013.6497165. [12] 
Golombek M.P. et al. (1997) JGR 102, 3967-3988. [13] 
Lorenz R.D. (2001) J. Aircraft 38, 208-214. [14] Barnes 
J.W. et al. (2012) Experimental Astron. 33, 55-127. [15] 
Langelaan J.W. et al. (2017) Proc. Aerospace Conf. 
IEEE. [16] Trainer M.G. et al. (2018) LPSC 49, #2586. 
[17] Lorenz R.D. et al. (2018) LPSC 49, #1647. [18] 
MacKenzie S.M. et al. (2019) LPSC 50. [19] Lorenz 
R.D. et al. (2019) LPSC 50. [20] Wilson C.F. & Lorenz 
R.D. (2017) LPSC 48, #1859. [21] Lorenz R.D. et al. 
(2012) Int'l Workshop Instr. Planet. Missions, LPI Con-
trib. 1683, p.1072. [22] Lorenz R.D. & Panning M. 
(2018) Icarus 303, 273-279. [23] Zacny K. et al. (2017) 
LPSC 48, #1366. [24] Trainer M.G. et al. (2017) LPSC 
48, #2317. [25] Lawrence D.J. et al. (2017) LPSC 48, 
#2234. [26] Lorenz R.D. et al. (2018) APL Tech Digest 
34, 374-387. 

2888.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)


