

Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

E. P. Turtle, M. G. Trainer, J. W. Barnes, R. D. Lorenz, K. E. Hibbard, D. S. Adams, P. Bedini, W. B. Brinckerhoff, M. T. Burks, M. L. Cable, et al.

▶ To cite this version:

E. P. Turtle, M. G. Trainer, J. W. Barnes, R. D. Lorenz, K. E. Hibbard, et al.. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability. 51st Lunar and Planetary Science Conference, Mar 2020, The Woodlands, United States. pp.LPI Contribution No. 2326, 2020, id.2288. insu-04459771

HAL Id: insu-04459771 https://insu.hal.science/insu-04459771v1

Submitted on 15 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DRAGONFLY: IN SITU EXPLORATION OF TITAN'S ORGANIC CHEMISTRY AND HABITABILITY.

E. P. Turtle¹, M. G. Trainer², J. W. Barnes³, R. D. Lorenz¹, K. E. Hibbard¹, D. S. Adams¹, P. Bedini¹, W. B. Brinckerhoff², M. T. Burks⁴, M. L. Cable⁵, C. Ernst¹, C. Freissinet⁶, K. Hand⁵, A. G. Hayes⁷, S. M. Hörst⁸, J. R. Johnson¹, E. Karkoschka⁹, J. W. Langelaan¹⁰, D. J. Lawrence¹, A. Le Gall⁶, J. M. Lora¹¹, S. M. MacKenzie¹, C. P. McKay¹², R. S. Miller¹, S. Murchie¹, C. D. Neish¹³, C. E. Newman¹⁴, J. I. Núñez¹, J. Palacios¹⁰, M. P. Panning⁵, A. M. Parsons², P. N. Peplowski¹, L. C. Quick², J. Radebaugh¹⁶, S. C. R. Rafkin¹⁷, M. A. Ravine¹⁸, S. Schmitz¹⁰, H. Shiraishi¹⁹, J. M. Soderblom²⁰, K. S. Sotzen¹, A. M. Stickle¹, E. R. Stofan¹⁵, C. Szopa⁶, T. Tokano²¹, C. Wilson²², R. A. Yingst¹³, K. Zacny²³, ¹Johns Hopkins Applied Physics Lab., Laurel, MD (Elizabeth.Turtle@jhuapl.edu), ²NASA Goddard Space Flight Center, Greenbelt, MD, ³Univ. Idaho, Moscow, ID, ⁴LLNL, Livermore, CA, ⁵JPL, Pasadena, CA, ⁶LATMOS, Guyancourt, France, ⁷Cornell Univ., Ithaca, NY, ⁸Johns Hopkins Univ., Baltimore, MD, ⁹Univ. Arizona, Tucson, AZ, ¹⁰Penn State Univ., University Park, PA, ¹¹Yale Univ., New Haven, CT, ¹²NASA Ames Research Center, Moffett Field, CA, ¹³PSI, Tucson, AZ, ¹⁴Aeolis Research, Pasadena, CA, ¹⁵Smithsonian Inst., Washington, DC, ¹⁶Brigham Young Univ., Provo, UT, ¹⁷SWRI, Boulder, CO, ¹⁸MSSS, San Diego, CA, ¹⁹JAXA ISAS, Sagamihara, Japan, ²⁰MIT, Cambridge, MA, ²¹Univ. Köln, Köln, Germany, ²²Oxford Univ., Oxford, UK, ²³Honeybee Robotics, Pasadena, CA.

Introduction: Titan's abundant complex carbonrich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment [e.g., 1-6]. Although pathways for the origin of life as we know it are poorly constrained, there is general agreement that liquid water, essential elements (especially CHNOPS), energetic disequilibrium, and a catalytic surface are required. In addition to the complex organic synthesis that Titan supports today, organic molecules may have interacted with liquid water at the surface in the past (e.g., sites of cryovolcanic activity or impact melt [4]), increasing the potential for oxygenation and chemical processing to progress beyond the compositional functionalities observed in high-altitude organic species. Titan provides an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of water- or even hydrocarbon-based life.

The diversity of Titan's surface materials and environments [7] drives a scientific need to sample a variety of locations, making mobility a key aspect of an *in situ* measurement strategy. Conveniently, Titan's dense atmosphere (4x that at Earth's surface) and low gravity (1/7th Earth's) make heavier-than-air mobility highly efficient, providing the means for long-range exploration by a vehicle with aerial mobility [e.g., 9, 13-15]. And recent developments in autonomous flight enable a lander with aerial mobility to convey a capable instrument suite to explore multiple locations.

NASA's *Dragonfly* New Frontiers mission is a rotorcraft lander designed to perform wide-ranging *in situ* exploration by flying to different geologic settings up to ~180 km apart, performing multidisciplinary science measurements at each landing site.

Exploration Strategy and Landing Site: It has long been recognized that Titan's rich organic chemical environment provides a unique opportunity to explore

prebiotic chemistry [e.g., 9,10], and development of Titan mobile aerial exploration was identified as a desirable next step after Cassini-Huygens. Although the hydrocarbon seas are an intriguing target [11], environments that offer the most likely prospects for chemical evolution similar to that on Earth occur on Titan's land [4], and Titan's northern winter precludes direct-to-Earth communication in the 2020-2030s. Moreover, the equatorial dune sands may represent a 'grab bag' of materials sourced from all over Titan [10] (similar to Mars Pathfinder's landing site [12]) and thus may contain aqueously altered materials. As in Mars exploration, the approach with the highest scientific potential is to obtain samples directly from multiple locations.

Dragonfly's initial landing site within the longitudinal dunes to the south of Selk Crater (Figure 1) provides access to multiple types of materials in close proximity, including organic sediments as well as materials with a water-ice component. During science operations over ≥2.7 years — at least 60 Titan days (Tsols) — Dragonfly will perform a series of flights covering several kilometers each, ultimately traversing from the interdunes at first landing to investigate deposits associated with the 80-km-diameter impact crater. Sites where liquid water may have interacted with the abundant photochemical products that litter the surface [2] are of particular interest [4]. By using a "leap-frog" exploration strategy, it will be possible to scout and select potential landing sites in advance based on aerial observations.

Science Objectives: The compositions of the solid materials on Titan's surface are still essentially unknown. So measurements [16] in different geologic settings [7, 17] will reveal how far organic chemistry has progressed. At each landing site, *Dragonfly* can answer key scientific questions regarding habitability and prebiotic chemistry and put these measurements in the context of Titan's meteorology and methane cycle, local geologic setting and material properties [18], and geophysical measurements of the subsurface [19].

Dragonfly's science objectives are to:

- Sample materials and analyze chemical components available and processes at work to produce biologically relevant compounds
- Measure atmospheric conditions, identify methane reservoirs and determine transport rates [11, 20, 21]
- Characterize geologic features, transport processes, seismic activity, and subsurface structure [22, 19]
- Constrain processes that mix organics with past surface liquid water or potentially the subsurface ocean
- Search for water- or hydrocarbon-based chemical biosignatures

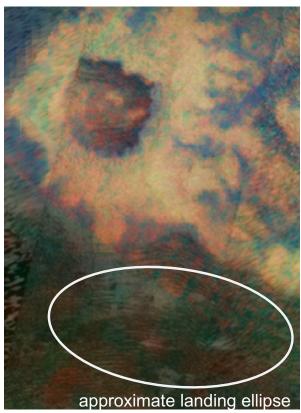


Figure 1: Combined Cassini VIMS and RADAR imaging of the region to be explored by Dragonfly. The initial landing site is targeted in the northwestern area of the Shangri-La Sand Sea, to the south of the 80-km-diameter Selk Crater, providing access to materials with a variety of compositions and geological histories.

Science Instruments and Measurements: Surface material is sampled [23] and ingested into the *Dragon-fly* mass spectrometer, DraMS [16, 24], which supports both laser desorption (LDMS) and pyrolysis gas chromatography (GCMS) modes. The sampling system, DrACO [23], has one drill on each skid for sample diversity and redundancy and provides rotary and rotary-percussive modes. Pneumatic transfer ensures material

is maintained at near-ambient Titan temperatures, with particular attention to avoid cross-talk between samples.

A novel element of the payload is a neutron-activated gamma-ray spectrometer, DraGNS [16, 25], to quickly identify bulk elemental composition and shallow stratigraphy (10s of cm), and inform decisions about sampling and DraMS measurements.

Dragonfly's geophysical and meteorology sensor package, DraGMet, will characterize Titan's atmosphere, surface properties, and seismic activity [11, 20-22]. Remote sensing observations will be performed on the surface and in flight by a suite of cameras, Dragon-Cam, with resolutions ranging from grain-size at the DrACO sampling sites to decimeter-scale imaging of the surrounding terrain and meter-scale aerial views.

The *Dragonfly* [26] rotorcraft lander is designed to take advantage of Titan's environment to explore dozens of diverse sites in this unique natural laboratory, covering up to ~180 km during its ≥2.7-yr mission, to characterize Titan's habitability and determine how far organic chemistry has progressed in environments that provide key ingredients for life.

References: [1] Raulin F. et al. (2010) Titan's Astrobiology, in Titan from Cassini-Huygens Brown et al. Eds. [2] Thompson W.R. & Sagan C. (1992), C. Organic chemistry on Titan: Surface interactions, Sympos. on Titan, ESA SP-338, 167-176. [3] Neish C.D. et al. (2010) Astrobiology 10, 337-347. [4] Neish C.D. et al. (2018) Astrobiology 18, 571-585. [5] https://astrobiology. nasa.gov/research/life-detection/ladder/ [6] Hand K. et al. (2018) LPSC 49, #2430. [7] Barnes J.W. et al. (2018) LPSC 49, #2721. [8] Chyba, C. et al. (1999) LPSC 30, #1537. [9] Lorenz, R.D. (2000) J. British Interplanetary Soc. 53, 218-234. [10] Leary J. et al. (2008) Titan Flagship study https://solarsystem.nasa.gov/multimedia/ downloads/Titan Explorer Public Report FC opt.pdf [11] Stofan E. et al. (2013) Proc. Aerospace Conf. *IEEE*, DOI: 10.1109/AERO.2013.6497165. [12] Golombek M.P. et al. (1997) JGR 102, 3967-3988. [13] Lorenz R.D. (2001) J. Aircraft 38, 208-214. [14] Barnes J.W. et al. (2012) Exp. Astron. 33, 55-127. [15] Langelaan J.W. et al. (2017) Proc. Aerospace Conf. IEEE. [16] Trainer M.G. et al. (2018) LPSC 49, #2586. [17] Lorenz R.D. et al. (2018) LPSC 49, #1647. [18] Mac-Kenzie S.M. et al. (2019) LPSC 50. [19] Lorenz R.D. et al. (2019) LPSC 50. [20] Wilson C.F. & Lorenz R.D. (2017) LPSC 48, #1859. [21] Lorenz R.D. et al. (2012) Int'l Workshop Instr. Planet. Missions, LPI Contrib. 1683, p.1072. [22] Lorenz R.D. & Panning M. (2018) Icarus 303, 273-279. [23] Zacny K. et al. (2020) LPSC 51. [24] Trainer M.G. et al. (2017) LPSC 48, #2317. [25] Lawrence D.J. et al. (2017) LPSC 48, #2234. [26] Lorenz R.D. et al. (2018) APL Tech Digest 34, 374-387.