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S U M M A R Y 

We present dynamos computed using a hybrid QG-3D numerical scheme in a thick spherical 
shell geometry. Our model is based on a quasi-geostrophic convection code extended with a 
3-D treatment of heat transport and magnetic induction. We find a collection of self-sustained, 
multipolar, weak field dynamos with magnetic energy one or two orders of magnitude lower 
than the kinetic energy. The poloidal magnetic energy is weak and, by construction, there is 
a lack of equatorially antisymmetric components in the Buoyancy and Lorentz forces. This 
leads to configurations where the velocity field is onl y weakl y impacted b y the magnetic field, 
similar to dynamos found in 3-D simulations where zonal flows and the �-effect dominate. 
The time-dependence of these dynamos is characterized by quasi-periodic oscillations that 
we attribute to dynamo waves. The QG-3D dynamos found so far are not Earth-like. The 
inability of our setup to produce strong, dipole-dominated, magnetic fields likely points to a 
missing ingredient in our QG flows, and a related lack of helicity and α-effect. The models 
presented here may be more rele v ant for studying stellar dynamos where zonal flows are 
known to dominate. This study was carried out at modest control parameters, however moving 

to lower Ekman numbers, when smaller values of both the magnetic and hydrodynamic Prandtl 
numbers can be of interest, our approach will be able to gain in efficiency by using relatively 

coarse grids for the 3-D magnetic and temperature fields and a finer grid for the QG velocity 

field. 

Key words: Dynamo: theories and simulations; Numerical modelling; Earth core. 
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 I N T RO D U C T I O N  

he magnetic field of the Earth is produced and sustained in Earth’s
uter core by turbulent motions of the liquid metal. These motions
re widel y belie ved to be dri ven b y thermal and chemical convection
nd can be described by the equations of magnetohydrodynamics
hereafter MHD). The rotation of the Earth strongly influences the
ynamics of the outer core as is evident from the extremely small
alues of its Ekman number, that characterizes the ratio between the
iscous and the Coriolis forces, Ek = ν/ �d 2 ∼ 10 −15 , where ν is the
inematic viscosity, � is the Earth’s rotation rate and d is the thick-
ess of the outer core, and its Rossby number, which characterizes
he ratio between the inertia and the Coriolis forces, Ro = U / �d ∼
0 −6 , where U is a typical velocity of the fluid. In addition to the
nertia and the viscosity, which are dwarfed by the Coriolis force,
he remaining forces in the system are the Buoyancy and the Lorentz
orce. The fact that Ek and Ro are so small in the outer core has
ead to suggestions that it may be in a Quasi-Geostrophic (hereafter
G) dynamical balance at the 0th order, that is a balance between

he pressure and the Coriolis force (Davidson 2013 ; Calkins 2018 ).
ther authors have argued that a Magnetostrophic balance could
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
old at leading order, that is an equilibrium between pressure, Cori-
lis and Lorentz forces (Roberts & Scott 1965 ; Dormy 2016 ); the
ele v ant balance may depend on the length-scale (Aurnou & King
017 ; Schwaiger et al. 2019 ) and part of the fluid volume (Schaef-
er et al. 2017 ) considered, the QG-balance being dominant in most
ases at large length-scales and outside of the tangent cylinder and
f the boundary layers. 

Numerical simulations of the primitive equations governing core
ynamics have proven to be powerful tools for investigating dynamo
echanisms in a spherical shell geometry and their parameter de-

endencies ( e .g . Glatzmaier & Roberts 1995 ; Christensen & Aubert
006 ). Despite being restricted to a region of parameter space still
emote from that of the Earth’s core—Ek � 10 −7 and Re � 5 ×
0 3 to be compared with Ek ∼ 10 −15 and Re ∼ 10 9 , where Re =
d / ν is the Reynolds number characterising the ratio between the

nertia and the viscous force—progress has gradually been made
n moving towards the Earth-like regime and in understanding the
eneric mechanisms at work (Schaeffer et al. 2017 ; Aubert et al.
017 ; Sheyko et al. 2018 ; Schwaiger et al. 2019 ). In particular, fol-
owing a specific path in parameter space, holding some parameters
xed at Earth-like values and gradually moving others towards the
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1373 
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desired values, Aubert ( 2019 , 2023 ) has been able to approach the 
conditions of Earth’s core, by focusing on large length-scales and 
employing hyperdiffusion. Such 3-D simulations are nonetheless a 
major computational undertaking, especially for the most extreme 
parameters. 

The possibility that the Coriolis force dominates and that core 
motions are columnar has moti v ated the de velopment of reduced QG 

models to study core dynamics. These involve a 2-D projection of 
the 3-D MHD equations with the flow dynamics of the system being 
constrained to the equatorial plane (Busse 1970 ; Cardin & Olson 
1994 ; Gillet & Jones 2006 ). Despite some limitations, especially if 
the temperature is also treated as 2-D and contributions from the 
thermal wind are not included (Gillet & Jones 2006 ), this approach 
has proven ef fecti ve at mimicking the behaviour of the full 3-D 

system, at least in the purely hydrodynamic case (Aubert et al. 
2003 ; Guervilly et al. 2019 ; Barrois et al. 2022 ). In the past few 

years, some interesting extensions of the QG method, mainly aiming 
at better accounting for the dynamics near the outer boundary, have 
been proposed (Labb é et al. 2015 ; Maffei et al. 2017 ; Jackson & 

Maffei 2020 ; Gerick et al. 2020 ). 
A small number of studies have tried to include the effect of 

the magnetic field within a QG framework. QG-MHD models have 
been implemented in the context of mechanical forcing and only 
considering the largest scales of the Lorentz force (Schaeffer & 

Cardin 2006 ) or within a kinematic dynamo framework with con- 
vection including the effects of a 3-D thermal wind (Guervilly 
2010 ). Schaeffer & Cardin ( 2006 ) argued that a combination of 
flow time-dependence and the β-effect—due to the Coriolis force 
acting on fluid columns in spherical geometry—is sufficient to pro- 
duce a QG dynamo independent of Ekman pumping. Both studies 
managed to obtain dynamos but found that the onset of the dynamo 
action as a function of the magnetic Reynolds number Rm = Ud / λ, 
which characterizes the ratio of magnetic diffusion over the convec- 
tion over tur n timescales, where λ is the magnetic dif fusi vity—w as 
about 5–10 times higher than that expected for 3-D dynamos ( e.g. 
Petitdemange 2018 ), with critical values of Rm c ∼ 500 in the QG 

compared with Rm c ∼ 50 in the full 3-D case. 
Sev eral studies hav e inv estigated eigenmodes in QG-MHD sys- 

tems, including the effect of the Lorentz force, considering small 
perturbations about an imposed background magnetic field. Canet 
et al. ( 2014 ) considered only the dynamics of axiall y inv ariant mag- 
netic fields within a purely QG model, while more recently hybrid 
models have been developed, considering QG flow but a 3-D mag- 
netic field and projecting the 3-D quantities on a QG basis (Gerick 
et al. 2021 ). Latel y Jackson & Maf fei ( 2020 ) have described a more 
complete 2-D model QG-MHD based on quadratic magnetic quan- 
tities. 

Using mean-field electrodynamics theory (Steenbeck et al. 1966 ; 
Krause & Radler 1980 ), it is possible to characterize dynamo action 
b y considering azimuthall y averaged ef fects (see e .g . Schrinner et al. 
2007 ). In this context, the terminolo gy α-ef fect refers to the mean 
electrodynamics effect of helical flow generating poloidal magnetic 
energy from toroidal magnetic energy (or toroidal magnetic energy 
from poloidal energy) while �-effect refers to the production of 
toroidal from poloidal magnetic energy through an axisymmetric 
shear flow (Parker 1955 ; Moffatt 1978 ; Hollerbach 1996 ). Dynamo 
action in 3-D conv ection-driv en models of the geodynamo that 
produce strong dipolar fields is usually classified as being of α2 type 
(Olson et al. 1999 ), at least when considering field generation by 
conv ectiv e motions outside the inner core tangent cylinder. Inside 
the tangent cylinder the �-effect can also play a role, especially 
in strongl y dri ven cases (Schaef fer et al. 2017 ). In contrast, when 
strong zonal winds dominate convection outside the tangent cylinder 
the dynamo mechanism is typically found to be of α� type with 
the resulting poloidal magnetic fields being weak and multipolar 
(Schrinner et al. 2012 ). It seems there is a trade-off between strong 
zonal winds and strong dipolar magnetic fields. 

QG models can ef ficientl y simulate the dynamics of strong zonal 
flows (Schaeffer & Cardin 2005 ; Gastine 2019 ), so they might be 
expected to be rele v ant for studying dynamos where the �-effect is 
important, for instance in the context of stellar magnetic fields ( e .g . 
Grote & Busse 2000 ; Goudard & Dormy 2008 ), or gas giants ( e .g . 
Gastine et al. 2012 ). It is however less obvious whether or not QG 

dynamo models are rele v ant to terrestrial planets such as the Earth 
( e .g . Aubert et al. 2013 ). Schaeffer et al. ( 2016 ) have shown, within 
a kinematic dynamo framework, that adding magnetic pumping (an 
additional source of helicity related to the action of the Lorentz 
force, see Sreeni v asan & Jones 2011 ) enables simple, observation- 
based, QG flows to generate dipole-dominated dynamos. The ques- 
tion of whether dynamically consistent QG flow models, driven 
by convection and including feedback from the Lorentz force, can 
result in Earth-like dynamos is central to our study. 

Our main objective here is to develop a hybrid QG-3D model 
based on QG convection in a thick spherical shell geometry (Gastine 
2019 ), incorporating a 3-D temperature field and thermal wind 
ef fects (Guervill y & Cardin 2017 ; Barrois et al. 2022 ), treating the 
magnetic field and its time evolution through the magnetic induction 
equation’ in 3-D, and exploring the type of dynamos that are possible 
in this configuration. We compute the Lorentz force in 3-D then z - 
average to obtain the impact on the QG flows. Building on previous 
QG-dynamos studies (Schaeffer & Cardin 2006 ; Guervilly 2010 ; 
Schaeffer et al. 2016 ), we present here an attempt to produce fully 
resolved self-consistent convection-driven dynamos. 

We describe our method and then the equations used in Section 2 , 
present our main results in Section 3 and we conclude with a brief 
discussion and summary in Section 4 . Tables with diagnostics and 
benchmarks of our method can be found in the Appendix section. 

2  M E T H O D O L O G Y  

2.1 Hybrid QG-3D model f orm ulation 

Our hybrid QG-3D model builds on earlier work by Schaeffer & 

Cardin ( 2005 ), Gillet & Jones ( 2006 ), Guervilly & Cardin ( 2016 ) 
and Gastine ( 2019 ). We adopt the QG model formulation and no- 
tations of Barrois et al. ( 2022 ), and use the cylindrical coordinates 
system ( s , φ, z )—with unit vectors 

(
e s , e φ, e z 

)
—in a spherical shell 

between the inner and outer radii, s i and s o respecti vel y, that rotates 
about the z -axis at a constant angular velocity �. We take η = s i / s o 
= 0.35 suitable for a thick shell such as the Earth’s outer core. We 
solve the dimensionless equations of our problem under the Boussi- 
nesq approximation for the velocity field u , the magnetic field B 

and the temperature field T 3D ≡ T cond 
3D + ϑ 3D . The last two fields are 

fully treated in 3-D using the spherical coordinates system system 

( r , θ , φ3D ), with unit vectors 
(
e r , e θ , e φ3D 

)
. Both boundaries of the 

spherical shells are considered as electrically insulating, mechani- 
cally rigid and we impose a fixed temperature contrast � T = T i −
T o = T 3D ( r i ) − T 3D ( r o ) which drives convection. 

In order to non-dimensionalize our variables, we use the shell 
thickness d = s o − s i as the reference length-scale, the viscous 
diffusion time d 2 / ν as the reference timescale, the temperature con- 
trast between the boundaries � T as the reference for temperature, 
and 

√ 

ρμ0 λ�—where ρ and λ are, respecti vel y, the density and the 
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agnetic dif fusi vity of the fluid and μ0 is the magnetic permeabil-
ty of the vacuum—as the reference for the magnetic field. In such
ontext, our system is controlled by four dimensionless parameters:
he Ekman number, the Rayleigh number, the Prandtl number and
he magnetic Prandtl number which are, respecti vel y, defined by 

Ek = 

ν

�d 2 
, Ra = 

αT g o �T d 3 

κν
, P r = 

ν

κ
, P m = 

ν

λ
, (1) 

here αT is the thermal expansion coefficient, g o = g ( r o ) is the
ravity at the outer boundary, and κ is the thermal dif fusi vity. Note
hat the magnetic Prandtl number can equally be thought of as
he ratio between the magnetic diffusion time τ λ and the viscous
iffusion time τ ν , that is Pm = τ λ/ τ ν . 

We further assume that the dynamics is well described by the
volution of the axial vorticity averaged in the z direction ω z , such
hat the dynamics is restricted to that in the equatorial plane of
he spherical shell ( e .g . Maffei et al. 2017 ). Thus, the horizontal
omponents of the velocity field u ⊥ , perpendicular to the rotation
xis, are assumed to be mostly invariant along the rotation axis,
hat is u ⊥ ∼ ( u s , u φ, 0) , where u s and u φ are, respecti vel y, the radial
nd azimuthal velocities. The axial velocity u z is considered as
 arying linearl y with z in the direction of the rotation axis, including
ass conservation at the spherical outer boundary, and the Ekman

umping contribution P (Schaeffer & Cardin 2005 ; Gastine 2019 ),
ields 

 z ( s, φ, z) = z 

[
βu s + 

Ek 

2 
P( Ek, u ⊥ , ω z ) 

]
, (2) 

here the Ekman pumping term P( Ek, u ⊥ , ω z ) is deduced from
reenspan’s formula (Greenspan et al. 1968 ) in a rigid sphere, that

s 

( Ek, u ⊥ , ω z ) = −
( s o 

Ek 

)1 / 2 1 

h 3 / 2 

[
ω z − β

2 
u φ + β

∂u s 
∂φ

− 5 s o 
2 h 

u s 

]
, (3) 

ith β = 

1 

h 

dh 

ds 
= − s 

h 

2 
, and h ≡ √ 

s 2 o − s 2 , the half-height of a

ylinder aligned with the rotation axis at a radius s . Note that the
ingularity of β at s = s o is not an issue since mechanical boundary
onditions enforce u = 0 there. 

In this framework, the continuity equation ∇ · u = 0 reads 

∂( su s ) 

∂s 
+ 

∂u φ

∂φ
+ βsu s = 0 , (4) 

rom which it follows that there is a stream function ψ , which
atisfies 

 s = 

1 

s 

∂ψ 

∂φ
, u φ = u φ − ∂ψ 

∂s 
− βψ , (5) 

hich accounts for the non-axisymmetric QG-velocity. u φ is the
emaining axisymmetric zonal flow component, with the overbar x 
enoting the azimuthal average of any quantity x , that is 

x ≡ 1 

2 π

∫ 2 π

0 
x dφ . (6) 

The dynamics of the non-axisymmetric motions are then de-
cribed by the time-evolution of the z -averaged axial vorticity
 z ≡ 〈 ( ∇ × u ) · e z 〉 , where the angular brackets 〈 x 〉 refer to the
xial average of any quantity x , such that 

 x〉 ≡ 1 

2 h 

∫ h 

−h 
x dz . (7) 

he axial vorticity can be expressed in our framework as 

 z = 

1 

s 

∂( s u φ) 

∂s 
− ∇ 

2 ψ − 1 

s 

∂( βsψ) 

∂s 
, (8) 
nd its time evolution reads 

∂ω z 

∂t 
+ ∇ ⊥ · ( u ⊥ ω z ) − 2 

Ek 
βu s = ∇ 

2 
⊥ ω z − Ra 

P r 

〈
1 

r o 

∂ϑ 3D 

∂φ3D 

〉
+ 

1 

Ek P m 

〈 ∇ × ( j × B ) · e z 〉 
+ P( Ek, u ⊥ , ω z ) , (9) 

here the subscript ⊥ corresponds to the horizontal part of the
perators and j ≡ ∇ × B . 

Compared to the classical QG axial vorticity model, we have
ere followed the hybrid approach of Guervilly & Cardin ( 2016 )
nd Barrois et al. ( 2022 ) and used the full 3-D temperature and
agnetic fields. The above eq. ( 9 ) is thus coupled with the 3-D

emperature equation 

∂ϑ 3D 

∂t 
+ u 3D · ∇ ϑ 3D + u r 

dT cond 
3D 

dr 
= 

1 

P r 
∇ 

2 ϑ 3D , (10) 

nd with the 3-D magnetic induction equation 

∂B 

∂t 
= ∇ × ( u 3D × B ) + 

1 

P m 

∇ 

2 B , (11) 

here u 3D = 

(
u r , u θ , u φ3D 

)
is the 3-D velocity in spherical coordi-

ates. 
In the above equations T cond 

3D is the conducting temperature profile,
 solution of ∇ 

2 T cond 
3D = 0 . For a fixed temperature contrast between

 i and r o without internal heating this takes the form 

T cond 
3D ( r ) = 

r o r i 
r 

− r i , 
dT cond 

3D 

dr 
= −r i r o 

r 2 
. (12) 

We reconstruct the 3-D velocity field u 3D from the QG velocity
eld u ⊥ using the conversion between cylindrical and spherical
oordinate systems, where the cylindrical quantities are cast onto
he 3-D grid using a bi-linear extrapolation (see Barrois et al. 2022 ,
ppendix D for more details), such that ⎧ ⎪ ⎨ ⎪ ⎩ 

u r ( r, θ, φ3D ) = sin θ u s ( s, φ) + cos θ u z ( s, φ, z) , 

u θ ( r, θ, φ3D ) = cos θ u s ( s, φ) − sin θ u z ( s, φ, z) , 

u φ3D ( r, θ, φ3D ) = u φ( s, φ) + T w ( r, θ ) , 

(13) 

here u z is obtained from eq. ( 2 ), and with an additional contribution
o the axisymmetric azimuthal motions u φ3D of the thermal wind,
 w ( r, θ ) , which satisfies the relation 

∂ u φ3D 

∂z 
= 

Ra Ek 

2 P r 

g( r ) 

r 

∂ ϑ 3D 

∂θ
, (14) 

nd is integrated between the position z and the height of the column
bove the equator h , that is 

 w ( r, θ ) = 

RaEk 

2 P r 

∫ z 

h 

g( r ) 

r 

∂ ϑ 3D 

∂θ
dz ′ , (15) 

here g ( r ) = r / r o is the dimensionless 3-D gravity field. Note that
nside the tangent cylinder, apart from the thermal wind contribu-
ion, the 3-D velocity components are set to zero and thus mainly
emperature or magnetic diffusion occurs in that region. 

Finally, the z -averaged axial vorticity eq. ( 9 ) has to be supple-
ented by an equation to account for the axisymmetric motions,

hat is 

∂ u φ

∂t 
+ u s 

∂u φ

∂s 
+ 

u s u φ

s 
= ∇ 

2 
⊥ u φ − 1 

s 2 
u φ

+ 

1 

Ek P m 

〈
( j × B ) · e φ

〉
−

( s o 
Ek 

)1 / 2 1 

h 

3 / 2 
u φ , (16) 
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where the last term of the right-hand side is the Ekman-pumping 
contribution to the axisymmetric motions. 

2.2 Computation of the QG-Lorentz force 

As seen in eqs ( 9 ) and ( 16 ), our method requires that we compute the 
follo wing tw o quantities related to the 3-D Lorentz force averaged 
over axial direction 

F L , ω z = 

1 

Ek P m 

〈 ∇ × ( j × B ) · e z 〉 , (17) 

F L , u φ = 

1 

Ek P m 

〈
( j × B ) · e φ

〉
. (18) 

We can expand eq. ( 17 ) as 

F L , ω z = 

1 

Ek P m 

〈
1 

s 

(
∂ 

∂s 

[
s( j × B ) · e φ

] − ∂ 

∂φ
[ ( j × B ) · e s ] 

)〉
, 

(19)

and using the identity e s = sin θ e r + cos θ e θ this becomes 

F L , ω z = 

1 

Ek P m 

〈
1 

s 

(
∂ 

∂s 

[
s( j × B ) · e φ

]
− ∂ 

∂φ
[ sin θ ( j × B ) · e r + cos θ ( j × B ) · e θ ] 

)〉
. (20) 

Recalling that the s , φ and z components are orthogonal, that the 
z -averaging operator is linear so < u + v > = < u > + < v > , and
adopting the more compact notation f · e x ≡ f x for any field f and 
coordinate x , the Lorentz force terms become 

F L = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

Ek P m 

(
1 

s 

〈
∂ 

∂s 

[
s( j × B ) φ

]〉
−1 

s 

∂ 

∂φ
[ 〈 sin θ ( j × B ) r + cos θ ( j × B ) θ 〉 ] 

)
1 

Ek P m 

〈
( j × B ) φ

〉
. (21) 

Regarding practical implementation, we find it useful to make 
use of the Leibniz’s rule to switch the order of the s -deri v ati ve and 
z -integration steps in the first term of the curl in eq. ( 21 ), 

F L , ω z = 

1 

Ek P m 

(
1 

s 

[
∂ 

∂s 

[
s 
〈
( j × B ) φ

〉]
+ βs 

(〈
( j × B ) φ

〉 − 1 

2 

[
( j × B ) φ

]
( ±h ) 

)]
−1 

s 

∂ 

∂φ
[ 〈 sin θ ( j × B ) r + cos θ ( j × B ) θ 〉 ] 

)
, (22) 

where the surface term ( j × B ) φ( ± h ) cancels when B matches to a 
potential field at the outer boundary. This avoids the need to compute 
the s -deri v ati ve on the 3-D physical grid using a finite-dif ference 
scheme, before the z -averaging step. Appendix B1 presents valida- 
tion and benchmark tests that have been carried out to verify our 
computations of these QG-Lorentz force terms. 

2.3 Numerics 

The calculations presented in this study have been carried out us- 
ing an extension of the open-source pseudospectral spherical QG 

code pizza (Gastine 2019 ; Barrois et al. 2022 ), written in For- 
tran and freely available at https://github.org/magic-sph/pizza/tree/ 
hybrid QG-3D under the GNU GPL v3 license. The 2-D quantities 
are expanded in Fourier series up to the degree N m in the azimuthal 
direction and in Cheb yshe v pol ynomials up to degree N s in the radial 
direction. The 3-D fields are expanded in Spherical Harmonics up 
to the degree and order � max in the angular ( θ , φ3D ) directions and in 
Cheb yshe v pol ynomials with N r collocation gridpoints in the radial 
direction. The open-source SHTns 1 library is used to handle the 
Spherical Har monic Transfor ms (Schaeffer 2013 ). Parallelization 
of the hybrid QG-3D code relies on the Message Passing Interface 
( MPI ) library. 

The azimuthal (respecti vel y radial) e xpansion involv es adding 
zeros if m 3D > m ( N r > N s ) and truncating fields at m = m 3D = �

( N s = N r ) if m 3D < m ( N r < N s ). The same 3-D and QG grids have
been used w hen possib le but because we explored cases with both 
Pm < 1 and Pr < 1, on some occasions we allowed the grid size to 
vary between fields. In these cases, nothing in particular has been 
done to bridge the two grids although we have used hyperdiffusion 
to mitigate this closure problem (Schaeffer 2005 ). 

2.4 Hyperdiffusion 

We included in our implementation an option to use hyperdiffusion. 
Following the formalism of Nataf & Schaeffer ( 2015 ) and Aubert 
et al. ( 2017 ), the diffusion operators entering eqs ( 9 )–( 11 )–( 16 ) are 
multiplied b y hyperdif fusi vity functions that solel y depend on the 
azimuthal wavenumber m or on the spherical har monic deg ree � , 
such that 

f H,u ( m ) = 

{ 

1 for m < m H , 

q m −m H 
H,u for m ≥ m H , 

. (23) 

on the velocity field, and 

f H,B ( � ) = 

{ 

1 for � < � H , 

q � −� H 
H,B for � ≥ � H , 

. (24) 

on the magnetic field, where � H and m H are the cut-off degrees and 
azimuthal orders below which the hyperdiffusion has no effect. q H , u 
and q H , B are the strength of the hyperdif fusi ve ef fect on u ⊥ or B , 
respecti vel y and have been varied in the range 1.01 ≤ q H ≤ 1.08 
(we do not apply any hyperdiffusion to the temperature field). The 
values for m H and � H for the runs using hyperdiffusion on either u ⊥ 
or B are summarized in Table A1 . 

We have employed hyperdiffusion for two main reasons: (i) to 
mitigate closure issues when the 2-D and 3-D grids were different 
and (ii) to avoid the numerical problems in our most demanding 
runs—that is with the highest Rm —arising because of the tangent 
cylinder discontinuity and the approximations involved in the inter- 
polation schemes. We have successfully removed the hyperdiffusion 
in several cases without observing any significant changes in the av- 
erage properties. 

2.5 Diagnostics 

We now introduce the following notations for our various integral 
and average operators. For any quantity x , the hat ̂  x corresponds to 
its time average, that is 

 x ≡ 1 

τ

∫ t 0 + τ

t 0 

x dt , (25) 

where t 0 is chosen such that any transient has been passed and 
with τ the averaging time interval long enough to reach a statistical 

https://github.org/magic-sph/pizza/tree/hybrid_QG-3D
https://bitbucket.org/nschaeff/shtns
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quilibrium. The brackets { x } 3D corresponds to the full spherical
hell average, the brackets { x } S to a spherical surface average and
he brackets { x } QG to the average over the equatorial annulus, such
hat, respecti vel y 

{ x} 3D ≡ 1 

V 3D 

∫ 
V 3D 

x d V , { x} S ≡ 1 

4 π

∫ π

0 

∫ 2 π

0 
x sin θ d θ d φ3D , 

 x} QG ≡ 2 

V QG 

∫ 
V QG 

x h ( s) s ds dφ , (26) 

ith V 3D the volume of the full spherical shell and V QG the volume
utside of the tangent cylinder. 

The dimensionless kinetic energy per unit volume E kin , is defined
y 

E kin = 

1 

2 
{ u 

2 
⊥ } QG . (27) 

e similarly define the dimensionless magnetic energy per unit
olume E mag , as 

E mag = 

1 

2 
{ B 

2 } 3D . (28) 

he magnetic to kinetic energy ratio is then 

 = 

̂ E mag ̂ E kin 

. (29) 

From these expressions, we define a diagnostic for the fluid ve-
ocity which characterizes the average flow speed, based on the
oot-mean-square (r.m.s.) of the velocity, and which is denoted by
he Reynolds number 

Re = 

̂ 

√ 

2 E kin . (30) 

hen the magnetic Reynolds number is simply Rm = P m Re and
e can finally define the Elsasser number, a non-dimensional mea-

ure of the magnetic field strength, which reads 

 = 

Ek 

P m 

Rm 

2 M = 2 Ek P m  ̂

 E mag . (31) 

 R E S U LT S  

e present here results of experiments conducted at control param-
ters of Ek = 3 × 10 −5 , Pr = 10 −1 , varying Pm , and focusing on a
egime well above the onset of convection, that is R a � 5 R a c . Time-
ntegrating the non-linear equations in absence of a magnetic field
Barrois et al. 2022 ), we estimated the critical Rayleigh number for
his configuration to be Ra c = 1.03 × 10 6 (which is thus the thermal
onvection critical value). In total 33 numerical simulations have
een carried out, a list of their key diagnostics is given in Table A1
n Appendix A . Our first successful dynamo case—at parameters
k = 3 × 10 −5 , Pr = 0.1, Pm = 0.9, Ra = 1 . 66 × 10 7 ∼ 16 Ra c —
as started from a motionless fluid with a strong axial dipole with
 ∼ O(1) and a random perturbation in temperature. Subsequent

xperiments were initialized starting from a pre viousl y converged
imulation. Attempts to restart the configurations with the largest
lsasser numbers from a strong axial dipole state were found to
gain yield the same final weak field multipolar solution. 

.1 Dynamo regime diagrams 

 dynamo regime diagram as a function of Pm and Ra / Ra c for all
ur runs conducted at Ek = 3 × 10 −5 , Pr = 0.1 is presented in
ig. 1 . The crosses correspond to simulations which failed to pro-
uce a self-sustained dynamo while the stars represent the growing
ynamos. Similar to the case for 3-D numerical dynamos we find
hat passing the onset for the dynamo action requires increasingly
arge Pm on decreasing supercriticality. The shape of the dynamo
hreshold found in this diagram is qualitati vel y similar to that found
y (Christensen & Aubert 2006 , see their fig. 1) despite the fact that
hey considered Pr = 1 while we consider Pr = 0.1. An important
ifference to note though is that we only find multipolar dynamos
ith the hybrid QG-3D formalism. 
All the dynamos w e ha ve found so far have a low magnetic to

inetic energy ratio M < 1 and most of them have M < 10 −1 

with the exception of some of the points, for example at Pm =
.0, Ra / Ra c ∼ 16.1 that reached a moderate M = 0 . 15 despite
aving the highest � = 8.02). They therefore fall into the weak-
eld dynamo regime, characterized by M 
 1 ( e.g. Schaeffer et al.
017 ; Aubert et al. 2017 ; Schwaiger et al. 2019 ). 

Plotting the magnetic Reynolds number Rm against the supercrit-
cality Ra / Ra c in Fig. 2 , we observe that the minimum Rm required
o obtain a self-sustained dynamo in this setup is at least 500, in
greement with previous QG magnetic studies ( e .g . Guervilly 2010 ).
his value is about one order of magnitude higher than that found

or 3-D simulations, with for example, a critical value of Rm c ∼ 50
eported by Petitdemange ( 2018 ). We found that � > 0.05 for all
he cases when a self-sustained dynamo was identified—with the
ighest value � ∼ 8 reached for the case at Ek = 3 × 10 −5 , Pr
 0.1, Pm = 2.0, Ra = 1 . 66 × 10 7 ∼ 16 . 1 Ra c —and we generally

bserve an increase of � with increasing Rm . 

.2 An example weak field dynamo 

o illustrate the typical features of our data set, we look at an exam-
le dynamo with parameters Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.9,

Ra = 1 . 66 × 10 7 ∼ 16 Ra c which was computed with a resolution
f ( N s , N m )/( N r , � max ) = (385, 768)/(149, 148) for approximately
5 τ ν = 4.5 τ λ. This case is rather close to the onset of the dynamo

ction and decreasing Pm by a factor 2 or decreasing Ra by a factor
.5 w as suf ficient to lose dynamo action (see Fig. 1 ). The average
agnetic Reynolds number of this simulation is Rm � 900 and
 = 0 . 04 . 
Fig. 3 displays the time-averaged magnetic and kinetic energy

pectra (a), a snapshot of the z -averaged axial vorticity ω z (b), a
eridional section of the longitudinally averaged azimuthal 3-D

elocity u φ3D (c), a snapshot of the radial magnetic field at the
uter boundary of the dynamo region B r ( r o ) (d), and a meridional
ection of the φ-averaged azimuthal magnetic field B φ (e). 

The power spectra shown in Fig. 3 (a) confirms that the dynamo
s multipolar (the magnetic field is dominated by the degree � = 2)
nd that the kinetic energy dominates over the magnetic energy at
he largest length-scales by about 2 orders of magnitude (both for �
nd m + 1 < 20, where m is here the QG azimuthal wavenumber).
dditionally, we can observe that the velocity field is dominated
y the azimuthal velocity at large length scales ( m < 8) and that
he magnetic field is strongly dominated by its toroidal part, this
atter component being greater than the poloidal field by one order
f magnitude at almost all degrees. This pre v alence of the kinetic
nergy over the magnetic energy and of the toroidal component
ver the poloidal component of the magnetic field (dominated by
he degree � = 2) is typical of all our dynamos. 

We can see in Figs 3 (b)–(c) that the vorticity field (b) and the
zimuthal velocity fields (c) are similar to what can be observed
or a non-magnetic simulation (see, e .g . figs 3 and 4 in Barrois
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Figure 1. Magnetic Prandtl number, Pm , as a function of the supercriticality, Ra / Ra c . Dynamo regime diagram computed for a series of cases at Ek = 3 ×
10 −5 and Pr = 0.1. Experiments that failed to produce a self-sustain dynamo are marked with a cross, those with a self-sustained multipolar dynamo are 
marked with a star and their symbol size is proportional to the Elsasser number, � . The different colors correspond to different Pm . The dashed line marks the 
tentative limit between failed and growing dynamos. 

Figure 2. Magnetic Reynolds Rm as a function of the supercriticality Ra / Ra c . The symbols and the line have the same signification as in Fig. 1 . 
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et al. 2022 ) with azimuthally elongated structures on the scale of 
the container in the case of the vorticity and with a strong zonal flow 

in the case of u φ3D . This suggests that the magnetic field does not 
strongly influence the velocity field, consistent with the low value 
of M for this case. 

Turning to the magnetic field components, we can see in Figs 3 (d) 
and (e) that B r ( r = r o ) (d) and B φ (e) have fairly low amplitude, and 
are mostly non-dipolar despite the clear equatorial anti-symmetry. 
B r is dominated by small length-scales and the location of the 
strongest azimuthal magnetic field suggests that dynamo action 
mostly occurs at mid-latitudes and in the outer third of the shell. 
One could suspect that Ekman pumping is an important contributor 
to dynamo action, since at Ek = 3 × 10 −5 it is expected to have 
some impact close to the outer boundary. Ho wever , although Ekman 
pumping has been shown to contribute to dynamo action close to 
the onset of dynamo (Busse 1975 ) it has been found in similar, but 
mechanically forced, QG-models that removing the Ekman pump- 
ing flow does not significantly modify the dynamo onset (Schaeffer 
& Cardin 2006 ). We investigated the role of Ekman pumping in this 
dynamo by removing the Ekman pumping contribution to u 3D —
second part of eq. ( 2 )—used in the magnetic induction equation, 
and did not observe any major modifications in the resulting fields. 
We also conducted a test removing the thermal wind contribution 
to u φ3D (see eq. 14 ) and again did not observe any major change in 
the dynamo action, in agreement with Guervilly ( 2010 ) who also 
found that the thermal wind does not seem to have a strong impact 
on the dynamo onset. Our results are therefore consistent with QG 

flows influenced by a β-effect in spherical geometry—the first term 

of eq. ( 2 )—being sufficient to sustain a dynamo, in agreement with 
the earlier findings of Schaeffer & Cardin ( 2006 ) and Guervilly 
( 2010 ). 

The magnetic field structure reported in Fig. 3 is typical of our 
results. All our simulations display similar equatorially antisym- 
metric, predominantly degree 2, magnetic fields strongest at mid- 
to-high latitudes in the outer part of the shell. Note that the symmetry 
(or more correctly the antisymmetry) of our magnetic field remains 
the same as that of our initial field, as there is, by construction, no 
ingredient to break the symmetry in our QG flows. 

art/ggad478_f1.eps
art/ggad478_f2.eps
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Figure 3. (a) T ime-a veraged magnetic and kinetic energy spectra. (b) Snapshot of the z -averaged vor ticity ω z . (c) Meridional section of the φ-averaged 
azimuthal 3-D velocity u φ3D . (d) Snapshot of the radial magnetic field at the outer boundary B r ( r o ). (e) Meridional section of the φ-averaged azimuthal 
magnetic field B φ . For a dynamo with control parameters Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.9, Ra = 1 . 66 × 10 7 ∼ 16 Ra c . 
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.3 Dynamo mechanism 

o illustrate the main mechanism underlying our dynamos, Fig. 4
hows, from left to right, respecti vel y, meridional sections of the
-averaged 3-D helicity H ≡ u 3D · ( ∇ × u 3D ) , the azimuthal com-
onent of the mean electromotive force ( u 

′ 
3D × B 

′ ) · e φ (here-
fter EMF) and an estimate of the (rescaled) mean α-effect
τc 

3 
B φ · ( u 

′ 
3D · ∇ × u 

′ 
3D ) for the same dynamo presented in the

revious section—where the prime x ′ denotes fluctuations about
he azimuthal average of any quantity x , that is x ′ ≡ x − x and,
here τ c is a typical conv ectiv e turnov er time (Brandenburg &
ubramanian 2005 ) which can be approximated by τc ∼ d/ { u 

′ 
3D } S 

ollo wing Bro wn et al. ( 2010 ) and Gastine et al. ( 2012 ). We find that
he mean helicity, often thought to be a key ingredient in the mag-
etic induction via the so-called α-effect ( e .g . Moffatt 1978 ; Jones
008 ), changes sign between the North and South hemispheres and
s stronger at mid latitudes and towards the outer boundary, where
oncentrations of B φ and strong zonal wind u φ3D have already been
bserved in the Fig. 3 . Most of the 3-D helicity is contained in its z -
omponent ( u z · ( ∇ × u 3D ) · e z ) with only weak contributions from
he s - and φ-components (not shown). There is clearly a strong cor-
elation between the mean EMF and the estimated α-effect despite
he discrepancy in amplitudes (Figs 4 b and c) with both quantities
ocated where the maximum helicity and toroidal field are found,
ndicating that (i) our model produces an α-effect sufficient to sup-
ort the dynamo action and (ii) kinetic helicity provides a reasonable
ean-field approximation of the actual EMF. 
Further insight into the dynamo mechanism at work in this dy-

amo is provided by Fig. 5 which displays a sequence of longitu-

inally averaged snapshots of the �-effect s B · ∇ 

(
u φ3D 

s 

)
( e .g .

oberts & King 2013 ) with superimposed toroidal field lines
top row) and of the azimuthal component of the mean EMF
 u 

′ 
3D × B 

′ ) · e φ with superimposed poloidal field lines (bottom row).
 strong correlation is found between both the �-effect and the

oroidal field lines and between the EMF and the poloidal field
ines, and both effects are concentrated in the same region localized
n the upper part of the shell. The �-effect is stronger than the
-ef fect b y 1-to-2 orders of magnitude and reaches its maxima in

he region near to the outer boundary where both strong zonal flow
nd helicity are found. This is not unexpected as strong zonal winds
ustained by Reynolds stresses—that is the correlations between
he azimuthal motions u 

′ 
φ3D and the cylindrically radial velocity

 

′ 
s —are expected to produce an important �-effect leading to mul-

ipolar dynamos dominated by the toroidal magnetic field. This has
een found in a number of previous studies: for classical Boussinesq
odels (Sheyko et al. 2016 ), models with stress-free boundary con-

itions (Grote & Busse 2000 ; Goudard & Dormy 2008 ; Schrinner

art/ggad478_f3.eps
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Figure 4. (a) Meridional section of the longitudinally averaged 3-D helicity u 3D · ∇ × u 3D . (b) Azimuthal component of the mean electromotive force 

( u ′ 3D × B 

′ ) · e φ . (c) Estimated mean α-effect − d 

3 { u ′ 3D } S 
B φ · ( u ′ 3D · ∇ × u ′ 3D ) . For the same case as in Fig. 3 . 

Figure 5. Temporal evolution of φ-averaged snapshots of the �-effect s B · ∇ 

(
u φ3D 

s 

)
with superimposed toroidal field lines (top row) and of the azimuthal 

component of the mean EMF ( u ′ 3D × B 

′ ) · e φ with poloidal field lines superimposed (bottom row) during half a cycle of a dynamo wave (from a to e). Note 
that the time difference between two snapshots is not constant and that time is expressed in units of the viscous diffusion time. 
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t al. 2012 ), models driven by strongly heterogeneous boundary heat
ux (Dietrich et al. 2013 ) and anelastic dynamo models (Gastine
t al. 2012 ). The main mechanism of our dynamos can thus be un-
erstood as powered by a strong �-effect—generated by the strong
hear of of the zonal flow—with the toroidal field being converted
nto a poloidal field via an α-effect (Parker 1955 ). Such multipo-
ar dynamos are often classified as α� or α2 � type, following the
ean field nomenclature of, for example Steenbeck et al. ( 1966 ),
teenbeck & Krause ( 1969 ) or Malkus & Proctor ( 1975 ). 

.4 Dynamo w av es 

ig. 5 also shows that within a small fraction of a viscous diffusion
ime the toroidal and poloidal field lines have been mostly pushed
owards the poles and replaced by field lines of the reversed polarity
hile deeper in the bulk the underl ying �-ef fect and the EMF have

hanged sign. This process is reminiscent of dynamo waves that
ave been found in a 3-D dynamo models with a range of different
eometries, boundary conditions and driving mechanisms (see, e .g .
oudard & Dormy 2008 ; Schrinner et al. 2011 ; Simitev & Busse
012 ; Sheyko et al. 2016 ) as well as in mechanically forced QG
ynamos (Schaeffer & Cardin 2006 ). 

In Fig. 6 we show the temporal evolution of B φ( θ ) just beneath the
uter boundary at r ∼ 0 . 92 r o —a so-called ‘butterfly-diagram’—
or a case at Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.9, Ra = 1 . 66 × 10 7 ∼
6 Ra c with a Rm of 909 (a)—same dynamo as presented in Section
.2 —along with a more strongly driven case at Ek = 3 × 10 −5 , Pr
 0.1, Pm = 0.9, Ra = 3 . 0 × 10 7 ∼ 30 Ra c with a higher Rm of

284 (b). In both cases, we observe that the flux patches of the
oroidal magnetic field appear symmetrically in both hemispheres
t low-to-mid latitudes and move towards the poles until they reach
he tangent cylinder which inhibits further motions. This is similar
o what has been observed by, for example Schrinner et al. ( 2011 );
astine et al. ( 2012 ) and Dietrich et al. ( 2013 ). We find that the

ycle starts again after the flux patches ha ve tra velled all the way to
he tangent cylinder and we can also see that some of the toroidal
eld travels equatorwards and quickly vanishes. The direction of
igration (pole w ard or equatorw ard) of dynamo w aves is controlled

y gradients in the zonal flow (Yoshimura 1975 ). Waves are expected
o travel pole w ards when the zonal flow increases with cylindrical
adius ( e .g . She yko et al. 2016 ), consistent with the zonal flow
atterns in our dynamos (see Fig. 3 c). On increasing Rm between
ases (a) and (b) the cycles become less coherent and less periodic
ith an oscillation period of 1 cycle per 4.5 × 10 −3 τ λ and 1 cycle per
.7 × 10 −3 τ λ, respecti vel y. This is consistent with the expectation
hat the reversal frequency should increase with increasing forcing
r increasing field strength; we have increased Ra / Ra c leading to
n increase in both Rm and the magnetic field strength—between
ases (a) and (b). 

In order to better characterize these oscillations, we test the ap-
roximate dispersion relation for (Parker) dynamo w aves deri ved in
chrinner et al. ( 2011 ), which reads 

 ∼
(H 

′ 
Int 

2 r o 

Re z 
Re c 

)1 / 2 

, (32) 

ith R e z = 

√ 

{ u φ3D 
2 } 3D , R e c = 

√ { ( u 

′ 
3D ) 

2 } 3D and H 

′ 
Int = −1 

3 
{| u 

′ 
3D ·

 × u 

′ 
3D |} 3D . 

Fig. 7 presents the resulting comparison between the oscillation
eriods extracted from our dynamos and those predicted for the
arker dynamo wave frequencies (above expression). We find an
verall agreement similar to what has already been found in 3-
 dynamo studies (Busse & Simitev 2006 ; Schrinner et al. 2011 ;
astine et al. 2012 ) even though some of the individual retrieved

requencies can be offset by up to a factor two compared to the
heory. This is not unreasonable given all the approximations un-
erl ying the deri v ation of eq. ( 32 ) so we can conclude that the
bserved oscillations in our dynamos can indeed be attributed to
arker dynamo waves. 

.5 Comparison with 3-D dynamos 

n order to compare our results with more conventional 3-D simula-
ions, w e ha ve computed a series of cases varying Pm from Pm = 0.5
o Pm = 0.05 at Ek = 3 × 10 −5 , Pr = 10 −1 , Ra = 2 × 10 7 ∼ 20 Ra c 
sing a full 3-D method ( MagIC , Wicht 2002 ). Here we compare
hese results with a hybrid QG-3D case at Ek = 3 × 10 −5 , Pm =
.5, Pr = 10 −1 , Ra = 2 × 10 7 ∼ 20 Ra c . 

Fig. 8 displays results for one of these 3-D simulations, com-
uted at Pm = 0.1 (left-hand column) and for the hybrid QG-3D
imulation computed at Pm = 0.5 (right-hand column). Snapshots
f the z -averaged vorticity (panels a and e), meridional sections of
he φ-averaged azimuthal 3-D velocity (panels b and f), meridional
ections of the φ-averaged kinetic helicity u 3D · ∇ × u 3D (panels
 and g), and time series of the axisymmetric azimuthal magnetic
eld at r ∼ 0 . 92 r o (panels d and h) are presented for both the 3-D
nd hybrid cases. 

We stress that the comparison involves different Pm for both
etups. This is necessary because the onset for dynamo action hap-
ens at a lower Pm with the 3-D method (see e .g . Petitdemange
018 ). Hence, the chosen parameters compare results at a similar
evel of supercriticality with respect to the dynamo onset. If one
nstead considers 3-D and hybrid QG-3D results at the same con-
rol parameters, qualitative differences are found—the solution is
lready bi-stable in the 3-D case with a strong dipolar field, while a
ultipolar solution is only found when starting from a very small

eed magnetic field. 
Despite the difference in Pm , qualitatively similar solutions are

hen obtained when we are close to the onset of dynamo action for
oth configurations. Figs 8 (a)–(e) show conv ectiv e patterns that are
lose to a non-magnetic case with large length-scale and azimuthally
longated z -averaged vor ticity patter ns. Both the 3-D and hybrid
G-3D cases belong to the weak-field multipolar-branch dynamo
ith the kinetic energy that is greater than the magnetic energy,

nd the toroidal magnetic field that is much larger than the poloidal
agnetic field. 
Figs 8 (b)–(f) shows that the zonal flow patterns are similar in

he two simulations, with a comparable level of geostrophy and
imilar radial gradients outside of the tangent cylinder, although
he zonal flow is slightly stronger in the hybrid QG-3D case. The
argest differences between the two cases can be observed in their
espective helicities (Figs 8 c–g), with a maximum helicity that is
bout one order of magnitude lower in the hybrid QG-3D case and
 change of sign towards low latitudes at the outer boundary that is
ot visible in the 3-D case. The spatial distribution of the helicity
evertheless remains comparable in the two cases with a se gre gation
etween mostl y negati ve helicity in the nor ther n hemisphere and
ostl y positi ve helicity in the southern hemisphere, similar to results

re viousl y reported for 3-D simulations (see, for example Davidson
 Ranjan 2018 ). 
Finally, we can see in Figs 8 (d)–(h) that both the 3-D and hy-

rid QG-3D simulations display similar P arker-wav e oscillations
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Figure 6. Axisymmetric azimuthal magnetic field B φ( θ ) at r ∼ 0 . 92 r o as a function of time—expressed in viscous units τ ν—(so called butterfly diagram) 
for (a) dynamo with control parameters Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.9, Ra = 1.66 × 10 7 and (b) a second case, more strongly forced, with control 
parameters Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.9, Ra = 3.0 × 10 7 . In both panels, dashed lines mark the location of the tangent cylinder. 

Figure 7. Measured frequencies of oscillatory dynamos as a function of the frequency predicted by the Parker dynamo wave dispersion relation (eq. 32 ), for 
all of our dynamos. Different colors correspond to different magnetic Prandtl numbers and the dashed line corresponds to the expected relation (eq. 32 ). 
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although the magnetic field is equatorially symmetric rather than 
antisymmetric and contains more small scale features in the 3-D 

case. There is also much more magnetic energy in the 3-D case 

with max B 

3D 
φ > 10 × max B 

Hyb 
φ . A rough estimation of the Parker 

c ycles giv es an oscillation period of 1 cycle per 5 × 10 −3 τ ν for 
the 3-D case and 1 cycle per 8.3 × 10 −3 τ ν for the hybrid QG-3D 

case, consistent with the fact that Re c and Re z are similar in the two 
simulations but H 3D � H Hyb (see eq. 32 ). 
At Pm = 0.5, R a ∼ 20 R a c , w e ha ve computed the total rms
kinetic helicity—as a proxy of the amplitude of the α-effect—
for our weak field hybrid QG-3D case, as well as for a multipo- 
lar weak field 3-D case, and a dipolar strong field 3-D case (at 
these parameters the 3-D run is bi-stable). Both 3-D dynamos 
feature an average rms helicity roughly one order of magnitude 
larger than the hybrid QG-3D case (not shown). There is clearly 
a global lack of helicity in the hybrid QG-3D case compared with 

art/ggad478_f6.eps
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Figure 8. Comparison of results from a 3-D dynamo simulation computed at Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.1, Ra = 20 × Ra c (panels a to d) and a hybrid 
QG-3D case at Ek = 3 × 10 −5 , Pr = 0.1, Pm = 0.5, Ra = 20 × Ra c (panels e to h). Panels (a) and (e) show snapshot of the z -averaged vorticity, (b) and 
(f) meridional section of the φ-averaged azimuthal 3-D velocity, (c) and (g) meridional section of the φ-averaged 3-D helicity, (d) and (h) time series of the 
axisymmetric azimuthal magnetic field at r ∼ 0 . 92 r o . 
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he 3-D case, even if the spatial segregation of helicity remains as
xpected. 

Overall, we conclude that although the comparison of 3-
 and hybrid QG-3D dynamos is not straightforward, because

he y giv e different solutions when run at the same control pa-
ameters, the hybrid QG-3D and the 3-D methods do produce
ualitati vel y similar results when considered at the same dis-
ance from the onset of dynamo action, and provided the 3-D
ase is started from a weak seed. The major difference is that
he hybrid QG-3D model involves much lower levels of kinetic
eliticy. 
a  

b  
 D I S C U S S I O N  A N D  C O N C LU S I O N S  

he results above demonstrate that it is possible to obtain dynamo
ction in a hybrid QG-3D magnetohydrodynamic model of rapidly
otating convection in a spherical shell geometry, despite the strong
ssumptions described in Section 2 concerning the velocity field.
e have found several self-sustained multipolar dynamos in the

arameter range Ek = 3 × 10 −5 , Pr = 0.1 − 1, Ra ∼ (5 − 100) Ra c 
nd Pm = 0.1 − 2.0 and have performed a detailed benchmarking
f the Lorentz force in our setup as described in Appendix B . 

Focusing on simulations conducted at Ek = 3 × 10 −5 , Pr = 0.1
nd a range of Pm and Ra / Ra c , we found QG dynamos characterized
y a low magnetic to kinetic energy ratio M , a multipolar magnetic

art/ggad478_f8.eps
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field, dominated by a toroidal field that is produced by an �-effect 
sustained by strong zonal winds and with only a relati vel y weak 
poloidal field. We have presented evidence for time-dependence 
in the form of dynamo waves in these solutions, similar to 3-D 

models where the zonal flow plays an important role ( e .g . Schrinner 
et al. 2011 ; Simitev & Busse 2012 ; Dietrich et al. 2013 ; Sheyko 
et al. 2016 ). A similar weak multipolar dynamo branch has been 
found in 3-D models in a variety of set-ups ( e .g . Christensen & 

Aubert 2006 ; Schrinner et al. 2012 ) and it seems that it is difficult 
to have both a strong dipolar magnetic field and a strong zonal flow 

(Gastine et al. 2012 ; Duarte et al. 2013 ). Although, w e ha ve not 
conducted a thorough analysis of the parameter space at Pr = 1, for 
the cases tested we found similar results with weak and multipolar 
magnetic field solutions, suggesting that having Pr = 0.1 rather 
than 1 is not crucial to the form of the dynamos reported here. A 

more detailed study focused on systematically varying the Prandtl 
number would be needed to fully quantify its role in the dynamo 
mechanism. 

An initial moti v ation of this study was to test whether Earth-like 
dynamos could be achieved within a hybrid QG-3D convection- 
driven dynamo setup. We have found no examples of dipole- 
dominated dynamos. In contrast to 3-D dynamos the poloidal field 
in our dynamos al wa ys remains w eak compared with the toroidal 
field. This remains true, even at other values of Pr ( e .g . runs at Pr 
= 1, not shown), which suggests that our model may lack some 
impor tant ing redient in the field generation cycle that operates in 
dipole-dominated 3-D dynamos. Schaeffer et al. ( 2016 ) pre viousl y 
found it was necessary to add an extra source of induction (magnetic 
pumping) in order to produce kinematic dynamos from observation- 
based QG flows. We suspect that a lack of α-effect associated with 
the lower level of helicity found in our dynamos compared to the 3-D 

method is the main reason for their observed higher dynamo thresh- 
olds and possibly for the absence of a dipole-dominated branch 
in our configuration. On the contrary, we expect that if the zonal 
component of the flow was removed or damped, we would sim- 
ply lose the dynamo action because of the loss of �-effect due to 
the strong zonal flow in the hybrid QG-3D set-up. The absence of 
equatorially antisymmetric axial flows and the associated missing 
correlations between u z and the temperature T 3D have been shown 
to play a rather significant role in a lack of conv ectiv e power already 
observed in the non-magnetic configuration investigated in (Barrois 
et al. 2022 ). These components are likely to also play a role in the 
helicity production (Ranjan et al. 2020 ). 

A number of avenues can be envisaged for extending our model 
in order to enhance poloidal field generation. One obvious option 
is to add a simple α-effect term in the induction equation ( e .g . 
Chan et al. 2001 ), but such simple functional forms are difficult to 
justify in terms of the underlying convection. Another option would 
be to follow Schaeffer et al. ( 2016 ) and implement a magnetic 
pumping whereby the velocity field is modified such that its helicity 
is enhanced based on an assumed toroidal magnetic field geometry 
(Sreeni v asan & Jones 2011 ; Sreeni v asan & Kar 2018 ). Slow MAC 

or MC waves might also be an important source of helicity for 
producing a dipolar dynamo (Varma & Sreeni v asan 2022 ), but is 
unclear at the moment how best to parametrize their effect on the 
helicity, especially in the regions where the magnetic field is strong 
and heterogeneous. A final possibility could be to include a simple 
form of α-effect associated with helical waves propagating in the 
axial direction away from the equatorial plane where they are forced 
by turbulent convection. Davidson and coworkers have explored 
the hypothesis that such waves, forced by convection, can play 
a role in generating dipolar magnetic fields (for an overview see 
Davidson & Ranjan 2018 ). The axial averaging applied in our setup 
removes the dynamo action associated with such helical waves; 
Davidson & Ranjan ( 2015 ) set out how such an α-effect can be 
parametrized based on the kinetic energy of the flow in the equatorial 
plane. 

An advantage of our hybrid QG-3D approach for the low mag- 
netic Prandtl number regime of planetary cores is that it can treat 
the small scale velocity field ef ficientl y within a QG framework 
while retaining a correct description of the 3-D magnetic field and 
its boundary conditions. However further numerical work is needed 
before our model can be applied to this regime. So far, all our dy- 
namos involved relati vel y weak Lorentz force and the energy of 
the magnetic field is much less than that associated with the ve- 
locity field. Moreover, in the present implementation, because of 
challenges associated with the tangent cylinder discontinuity and 
because of the rather crude interpolation schemes used to move 
between the QG and the 3-D grids, a very large number of points 
was needed for accurate and stable computations. To take better 
advantage of the hybrid QG-3D approach with very different 3-D 

and QG grid sizes it may be necessary to more carefully account 
for the action of the large length-scale magnetic field on the small 
length-scale velocity field, for example along the lines suggested by 
Schaeffer & Cardin ( 2006 ). 

Returning to the geophysical context, we conclude that our hy- 
brid QG-3D model seems incapable of producing Earth-like (strong- 
field, dipole-dominated) dynamos. This suggests, in agreement with 
the earlier findings of Schaeffer et al. ( 2016 ), that something impor- 
tant for geodynamo action is lost in moving between 3-D flows and 
the simplified QG flows considered here. If hybrid QG-3D models 
are to be used to study the long-term behaviour of the geodynamo 
it will be necessary to find a principled scheme for parametriz- 
ing these missing effects, which may be related to structures in 
the axial flow component and their helicity. Hybrid QG-3D mod- 
els could however already prove to be a valuable tool for studying 
the shor t-ter m behaviour of the geodynamo, on timescales shorter 
than the conv ectiv e timescales when the dynamics is dominated by 
QG hydromagnetic waves (Aubert 2018 ; Aubert et al. 2022 ; Gillet 
et al. 2022 ). On these timescales, the dynamo-generated field can 
be considered steady and could be imposed, for example, based on 
results from a 3-D simulation producing an Earth-like field ( e .g . 
Aubert 2023 ). The hybrid QG-3D model is capable of ef ficientl y 
representing both QG wave flows and related 3-D magnetic field 
perturbations and has the potential to be significantly faster than 
full 3-D simulations for studying such waves. 
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ATA  AVA I L A B I L I T Y  

ll our data are available upon reasonable request to the corre-
ponding author and some key parameters from our whole data-
et are already included in this paper. The codes used ( pizza ) is
reel y av ailable (at http://www.github.com/magic-sph/pizza/tree/hy
rid QG-3D ) under the GNU GPL v3 license. 
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A  S I M U L AT I O N S  

uted in this study at Ek = 3 × 10 −5 , Pr = 0.1, using η = r i / r o = 0.35. Ra is 
where Ra c is the thermal convection critical value), Pm is the magnetic Prandtl 
r, � is the Elsasser number, M = ̂

 E mag / ̂  E kin is the magnetic to kinetic energy 
atio, � H and m H are the cut-off degree and azimuthal wavenumber below which 
izes of the run. The simulations with a � symbol in the second column are the 

M f tor m H / � H ( N s , N m )/( N r , � max ) 

6 4.86 × 10 −7 0.81 −/ − (193, 192)/(145, 144) 
9 1.39 × 10 −9 0.79 144/ − (193, 192)/(145, 144) 
6 1.76 × 10 −7 0.82 144/ − (385, 768)/(149, 148) 
6 1.13 × 10 −7 0.77 144/ − (385, 768)/(149, 148) 
6 3.15 × 10 −7 0.89 144/ − (385, 768)/(149, 148) 
3 3.56 × 10 −4 0.97 144/ − (385, 768)/(149, 148) 
1 6.79 × 10 −3 0.98 −/ − (145, 144)/(145, 144) 
 4.28 × 10 −2 0.96 −/ − (129, 192)/(129, 192) 
7 3.48 × 10 −8 0.78 144/ − (385, 768)/(149, 148) 
5 3.18 × 10 −6 0.95 144/ − (385, 768)/(149, 148) 
 4.03 × 10 −2 0.96 144/ − (385, 768)/(149, 148) 
 7.55 × 10 −2 0.96 −/ − (145, 192)/(145, 192) 
 1.00 × 10 −1 0.96 −/ − (145, 192)/(145, 192) 
 1.51 × 10 −1 0.95 288/ − (289, 416)/(193, 288) 
9 5.67 × 10 −10 0.69 144/ − (385, 768)/(149, 148) 
6 4.32 × 10 −7 0.89 144/ − (385, 768)/(149, 148) 
2 2.35 × 10 −3 0.95 −/ − (97, 128)/(97, 128) 
 1.08 × 10 −1 0.95 144/ − (145, 180)/(145, 144) 
 1.42 × 10 −1 0.96 −/ − (145, 192)/(145, 192) 
7 3.15 × 10 −8 0.73 144/ − (385, 768)/(149, 148) 
7 1.04 × 10 −8 0.77 −/ − (385, 960)/(385, 320) 
2 2.74 × 10 −3 0.93 −/ − (97, 128/(97, 128) 
 9.58 × 10 −2 0.94 256/ − (433, 864)/(193, 256) 
 1.21 × 10 −1 0.92 224/224 (433, 480)/(193, 256) 
7 1.47 × 10 −8 0.79 −/ − (433, 800)/(149, 148) 
6 1.33 × 10 −7 0.84 816/ − (433, 864)/(149, 148) 
 4.91 × 10 −2 0.91 576/144 (481, 912)/(193, 256) 
7 1.60 × 10 −8 0.83 144/ − (577, 864)/(193, 192) 
4 1.10 × 10 −6 0.86 144/ − (577, 864)/(193, 192) 
 4.55 × 10 −2 0.92 192/ − (289, 384)/(193, 192) 
5 6.65 × 10 −7 0.84 768/ − (577, 864)/(193, 192) 
3 1.94 × 10 −4 0.94 768/ − (577, 912)/(193, 256) 
 4.92 × 10 −2 0.94 192/ − (289, 384)/(193, 192) 

A E N C H M A R K S  

B

T  ) which depends on ∇ × B and B . These quantities are computed using 
S y used in many codes. Given any fields ( B pol , B tor ) in spectral space, and 
t  θ , B φ) and ( j r , j θ , j φ) on the 3D-physical-g rid. The remaining par t of the 
p  ), and the z -averaging of ∂ s [ s ( j × B ) φ], ( j × B ) φ and ( j × B ) s which are 
c e spectral space using fft functions where the φ-deri v ati ve is performed 
b

2
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P P E N D I X  A :  R E S U LT S  O F  N U M E R I C A L

Table A1. Summary of the hybrid QG-3D numerical simulations comp
the Rayleigh number (the supercriticality Sc = Ra / Ra c is also provided, 
number, Nu is the Nusselt number, Rm is the magnetic Reynolds numbe
ratio, f tor = ̂

 E tor / ̂  E mag is the toroidal to the total magnetic field energy r
the hyperdiffusion has no effect, and ( N s , N m )/( N r , � max ) are the grid s
growing dynamos we found. 

Ra Sc Pm Nu Rm � 

5.00 × 10 6 4.9 0.9 1.19 334.0 2.08 × 10 −
5.00 × 10 6 4.9 1.3 1.19 482.9 8.61 × 10 −
5.00 × 10 6 4.9 2.0 1.19 740.4 1.66 × 10 −
1.00 × 10 7 9.7 0.5 1.32 374.7 1.09 × 10 −
1.00 × 10 7 9.7 0.9 1.32 670.9 5.41 × 10 −
1.00 × 10 7 9.7 1.3 1.32 976.1 8.97 × 10 −
1.00 × 10 7 9.7 � 2.0 1.32 1456.4 2.48 × 10 −
1.65 × 10 7 16.0 � 0.9 1.40 894.3 1.31 × 10 0

1.66 × 10 7 16.1 0.3 1.42 347.0 4.80 × 10 −
1.66 × 10 7 16.1 0.5 1.42 578.2 7.31 × 10 −
1.66 × 10 7 16.1 � 0.9 1.41 909.1 1.27 × 10 0

1.66 × 10 7 16.1 � 1.1 1.41 1029.7 2.51 × 10 0

1.66 × 10 7 16.1 � 1.3 1.41 1174.0 3.68 × 10 0

1.66 × 10 7 16.1 � 2.0 1.40 1747.4 8.02 × 10 0

2.00 × 10 7 19.4 0.1 1.46 135.6 3.58 × 10 −
2.00 × 10 7 19.4 0.3 1.46 407.1 8.20 × 10 −
2.00 × 10 7 19.4 � 0.5 1.45 665.8 7.15 × 10 −
2.00 × 10 7 19.4 � 0.9 1.44 913.0 3.46 × 10 0

2.00 × 10 7 19.4 � 1.3 1.45 1274.1 6.14 × 10 0

3.00 × 10 7 29.1 0.1 1.55 188.9 3.86 × 10 −
2.99 × 10 7 29.0 0.2 1.54 375.3 2.51 × 10 −
3.00 × 10 7 29.1 � 0.3 1.54 557.8 9.75 × 10 −
3.00 × 10 7 29.1 � 0.5 1.52 691.2 3.16 × 10 0

3.00 × 10 7 29.1 � 0.9 1.57 1283.8 7.61 × 10 0

5.00 × 10 7 48.5 0.1 1.66 275.7 3.84 × 10 −
5.00 × 10 7 48.5 0.2 1.66 550.9 6.91 × 10 −
4.99 × 10 7 48.4 � 0.3 1.62 640.5 2.31 × 10 0

8.00 × 10 7 77.7 0.1 1.73 376.5 7.80 × 10 −
8.00 × 10 7 77.7 0.2 1.73 754.4 1.07 × 10 −
8.00 × 10 7 77.7 � 0.3 1.66 836.0 3.65 × 10 0

1.03 × 10 8 100 0.1 1.76 439.9 4.42 × 10 −
1.03 × 10 8 100 0.2 1.74 861.7 9.89 × 10 −
1.03 × 10 8 100 � 0.3 1.69 982.1 5.44 × 10 0

P P E N D I X  B :  C O D E  VA L I DAT I O N  A N D  B

1 Benchmark of the Lorentz force computation 

he determination of eq. ( 21 ) relies on the computation of ( j × B
HTns 2 functions, already validated in (Schaeffer 2013 ) and widel
heir radial-deri v ati ves, the SHTns routines directl y provide ( B r , B
rocess involves the computation of the non-linear products ( j × B
omputed on the physical grid. These quantities are then sent to th
efore assembling all the terms to obtain eq. ( 21 ). 
 https://bitbucket.org/nschaeff /shtns 

https://bitbucket.org/nschaeff/shtns
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n 

rentz force are presented in the following steps 

physical grid 

 r , e θ , e φ) ; non-linear products , 

→ ( j × B ) s ; linear operation , 

 

∂ 

∂s 

[
s( j × B ) φ

]
; s -deri v ati ve , 

 ) φ → 

〈
( j × B ) φ

〉
 ) s → 〈 ( j × B ) s 〉 

 

〈
∂ s 

[
s( j × B ) φ

]〉 ; z -averages , 

physical-to-spectral space 

˜ ( j × B ) φ
〉

˜ 

 ( j × B ) s 〉 
 

 j × B ) φ
]〉 ; Fourier transforms , 

spectral space 

 i m 

˜ 〈 ( j × B ) s 〉 ; φ-deri v ati ve , 

ntz force for the zonal-flow eq. , 

 ) φ
]〉 − i m 

s 
˜ 〈 ( j × B ) s 〉 

)
= 

˜ F L , ω z 

rentz force for the vorticity eq. , 

(B1) 

ity x , that is the quantity x in the spectral space. 

routines and simpl y involve a linear product, we anal yticall y v alidate our 
 s , easily integrated in z , periodic in φ, cancels at the outer boundary, but 
ly artificial field, that reads )

(B2) 

s i ) h 

2 

. (B3) 

 schemes, we define a relative error estimate, e rel , as 

(B4) 

over the annulus as in eq. ( 26 ). 
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B1.1 Summary of the steps involved in the Lorentz force computatio

As a summary, the steps involved in our computation of the QG-Lo

1 ) ( B r , B θ , B φ) × ( j r , j θ , j φ) → ( j × B ) · ( e

2 ) ( j × B ) r , ( j × B ) θ

3 ) ( j × B ) φ →

4 ) 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

( j × B

( j × B

∂ 

∂s 

[
s( j × B ) φ

] →

5 ) 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

〈
( j × B ) φ

〉 → 

〈
〈 ( j × B ) s 〉 → 〈〈

∂ s 
[
s( j × B ) φ

]〉 → 

˜

〈
∂ s 

[
s(

6 ) ˜ 〈 ( j × B ) s 〉 →

7 ) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˜ 

〈
( j × B ) φ

〉 → 

1 

Ek P m 

˜ 

〈
( j × B ) φ

〉
m = 0 = 

˜ F L , u φ ; assemble Lore

( ˜ 

〈
∂ s 

[
s( j × B ) φ

]〉
, i m 

˜ 〈 ( j × B ) s 〉 ) → 

1 

Ek P m 

(
1 

s 
˜ 

〈
∂ s 

[
s( j × B

assemble Lo

where the wide tildes ̃  x refers to the Fourier transform of any quant

B1.2 Analytical benchmark from an artificial j × B field 

As steps ( 1 ) and ( 2 ) in eq. ( B1 ) are respecti vel y handled b y SHTns 
method from step 3 ). We need a field that is easily differentiable in
is not trivial. Following these constraints, we thus chose a complete⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

( j × B ) ref 
φ ( r, θ, φ) = −

(
1 

2 
+ cos φ + sin (4 φ) 

)
π h 

3 

s 
cos 

(
π

z 

2 h 

( j × B ) ref 
s ( r, θ, φ) = sin 2 φ s ( s o − s )( s − s i ) z 

2 

( j × B ) ref 
z ( r, θ, φ) = sin 2 φ s ( s o − s )( s − s i ) z 

leading to 

F 

ref 
L = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[ 1 / 2 + cos φ + sin (4 φ) ] 8 hs − 2 

3 
cos φ sin φ ( s o − s)( s −

− h 

3 

s 

B1.3 Relative error definition 

In order to discuss the validation and the accuracy of our numerical

e rel ( f ) = 

[ 

{
( f ref − f ) 2 

}
QG {

f 2 ref 

}
QG 

] 1 / 2 

, 

where the brackets in the above equation correspond to an average 
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Figure B1. Convergence of the relative error of the Lorentz force terms tested against an analytical solution. 

B

F force terms as a function of the resolution. We can see that the computation 
o rve)—that only involves a z -averaging of ( j × B ) φ—has an accuracy of 
o on steps w e ha ve used in this work a Simpson rule of integration, with an 
o n. On the other hand, we find a global accuracy of order 3 for the Lorentz 
f ves additional operations (a φ- and s -deri v ati ves). 

B

W g on both the z -averaged vorticity and the zonal-flow equations starting 
f rified that these results were consistent with an independent method (not 
s

mited by a number of interpolating schemes, that is a s -deri v ati ve scheme, 
a  converging toward an av erage relativ e error of 10 −16 (compared with an 
a w equation. And we find a global accuracy of order 3 converging towards 
a tion) for the Lorentz force term acting on the vorticity equation. We thus 
c

D
ow
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2 Results 

ig. B1 displays the convergence of the relative error for the Lorentz 
f the Lorentz force term acting on the zonal flow F L , u φ (green cu
rder 4. Compared with Barrois et al. ( 2022 ), for all the z -integrati
rder 4 accuracy, and we satisfactorily retrieve the expected precisio
orce term acting on the vorticity F L , ω z (yellow curve) which invol

3 Conclusion 

e have been able to retrieve the correct Lorentz force terms actin
rom an imposed artificial ( j × B )-field and we have additionally ve
hown). 

The overall accuracy of the computation of the Lorentz force is li
 z -averaging scheme, and an ifft . We find an accuracy of order 4
nalytical solution) for the Lorentz force term acting on the zonal flo
n average relative error of 10 −6 (compared with an analytical solu
onsider the computation of eq. ( 21 ) in our code to be validated. 
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