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Abstract: The Earth’s revolution is modified by changes in inclination of its rotation axis. Its trajectory
is not closed and the equinoxes drift. Changes in polar motion and revolution are coupled through the
Liouville–Euler equations. Milanković (1920) argued that the shortest precession period of solstices
is 20,700 years: the summer solstice in one hemisphere takes place alternately every 11,000 year at
perihelion and at aphelion. Milanković assumed that the planetary distances to the Sun and the solar
ephemerids are constant. There are now observations that allow one to drop these assumptions. We
have submitted the time series for the Earth’s pole of rotation, global mean surface temperature and
ephemeris to iterative Singular Spectrum Analysis. iSSA extracts from each a trend a 1 year and a
60 year component. Both the apparent drift of solstices of Earth around the Sun and the global mean
temperature exhibit a strong 60 year oscillation. We monitor the precession of the Earth’s elliptical
orbit using the positions of the solstices as a function of Sun–Earth distance. The “fixed dates” of
solstices actually drift. Comparing the time evolution of the winter and summer solstices positions of
the rotation pole and the first iSSA component (trend) of the temperature allows one to recognize
some common features. A basic equation from Milankovic links the derivative of heat received
at a given location on Earth to solar insolation, known functions of the location coordinates, solar
declination and hour angle, with an inverse square dependence on the Sun–Earth distance. We have
translated the drift of solstices as a function of distance to the Sun into the geometrical insolation
theory of Milanković. Shifting the inverse square of the 60 year iSSA drift of solstices by 15 years with
respect to the first derivative of the 60 year iSSA trend of temperature, that is exactly a quadrature in
time, puts the two curves in quasi-exact superimposition. The probability of a chance coincidence
appears very low. Correlation does not imply causality when there is no accompanying model. Here,
Milankovic’s equation can be considered as a model that is widely accepted. This paper identifies a
case of agreement between observations and a mathematical formulation, a case in which an element
of global surface temperature could be caused by changes in the Earth’s rotation axis. It extends the
range of Milankovic cycles and resulting global temperature variations to shorter periods (1–100 year
range), with a major role for the 60-year oscillation).

Keywords: apparent solstice drift; mean global temperature; Milanković theory

1. Introduction

For over a century and a half, geological evidence has been put forward to argue
that Earth had undergone cyclical changes in climate [1]. Adhémar [2] described the long
periodicities associated with glacial and interglacial cycles that were explained sixty years
later by the mathematical theory of climate due to Milankovic [3]. A geometrical derivation
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shows that the insolation W received at a location with coordinates ϕ (latitude) and ψ
(longitude) is given by the (fundamental, yet simple) equation (Equation (20), p. 15, [3]):

dW
dt

=
I0

ρ2 [sin ϕ sin δ + cos ϕ cos δ cos(ω + ψ)] (1)

where ρ is the Sun-Earth distance, δ the Sun’s declination and ω its hour angle. It is
generally considered that the shortest Milanković cycle is the 19,000 year precession cycle
(e.g., [4,5]). The Earth’s eccentricity being quite small (e = 0.016), it is legitimate at first to
consider that, over such long durations, ρ and δ are constant. Thus, Ref. [3] assumes that
all climate variations arise because of movements of the rotation axis (i.e., of the pole).

These climate variations are recorded for instance by benthic marine sediments. Thus,
Lopes et al. [5] were able to extract from the δ18O series of Lisiecki and Raymo [6] all the
Milanković components calculated with the Laskar et al. [4] model, that is all variations in
insolation, eccentricity, precession and obliquity of the Earth’s rotation axis.

To first order, the rotation axis is perturbed by the conjugate effects of the Moon and
Sun (e.g., [7,8]), resulting for instance in the luni-solar tides (e.g., [9–12]). Over longer peri-
ods, the Jovian planets are the main source of perturbations of the rotation axis (cf. [4,13]),
giving rise to variations in precession, obliquity and eccentricity.

It has recently been shown, based on observations, that the Jovian planets exert
perturbations both on Earth and in the Sun at much shorter periods (centuries to years and
less) (e.g., [14–19]). These perturbations affect solar activity, therefore sunspots [15], as well
as the rotation axis [16], and therefore Earth’s climate. This could explain the links between
geomagnetism and climate (e.g., [20,21]).

Another source of perturbation of the Earth’s rotation axis is the precession of equinoxes,
associated with Kepler’s second law (conservation of areas). There are four sources of
precession of Earth’s equinoxes, that is rotation of the whole orbit (revolution).

(1) The first is associated with Kepler’s laws. In the case of a central field and an elliptical
orbit, for the orbit to be closed, it is necessary and sufficient that the orbit’s angular
change after n revolutions be of the form ∆ϕ = 2πm/n, where m is the number of full
revolutions necessary for the planet to recover its initial position. There are only two
central fields in which ∆ϕ is a rational fraction of 2π, ensuring closed orbits, that is
fields in r2 and 1/r, the latter being the case of our solar system (cf. [22]).

(2) The second involves the joint effects of the Moon and Sun. Let us quote d’Alembert
([23], p. 14): “Enfin, l’inclinaison de l’axe terrestre au plan de l’ecliptique doit modifier aussi
l’action du Soleil; car selon que cet axe sera différemment incliné, il fera à chaque point de
l’ecliptique un angle différent avec la ligne qui joint les centres de la Terre et du Soleil; par
conséquent la quantité et la loi de l’action du Soleil, dépend de l’inclinaison de l’axe, et c’est
aussi ce que l’analyse apprend.”

As clearly stated by [7] and later [8], the planet’s revolution is modified by changes in
inclination of the rotation axis, principally due to the joint actions of the Moon (for 2/3rds)
and Sun (for 1/3rd). One is no longer in case 1: despite the fact that the field is a central
one, the trajectory is not closed anymore. d’Alembert ([23], p. 52) estimates the drift of the
equinoxes to be about 50” per year, that is a precession period of 25,920 year.

The two other processes are relativistic.

(3) The Sun containing 99% of the total mass of the solar system, [24] shows that the
planet’s revolution about the Sun produces an additional precession of about 3.8” per
century, or a period of some 33 million years.

(4) Because the Sun is actually a huge rotating mass, there is an additional relativistic
component of precession, with a period on the order of 5.8 million years [25].

For Newton, planetary bodies attract (or repel) the oceans (and atmospheres) and this
re-organization of masses modifies the rotation axis. For d’Alembert, Lagrange, Laplace and
Poincaré, changes in polar motion and revolution are coupled and involve the luni-solar
torques, as in a top. Re-organization of Earth’s fluid envelopes (e.g., tides) follows.
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As [3] writes, precession of the equinoxes is actually due to the joint attraction of
the Moon and Sun on the Earth’s equatorial bulge and its period is in theory 26,000
year. Because the Earth itself rotates, areolar velocities vary between perihelion and
aphelion (Kepler’s second law); because of centrifugal forces, a precession with a period
of 19,000 year appears. So the precession of equinoxes undergoes a double periodicity,
with a mean of 22,500 year (half period 11,250 year). Indeed, Milanković ([3], p. 221) writes
that the first precession of perihelion (for us solstices) is 20,700 Julian years and that the
consequence of this precession is that the Summer solstice in one hemisphere (when that
hemisphere receives maximum insolation) takes place alternately every 11,000 year at
perihelion (thus a warmer Summer) and aphelion (thus a cooler Summer). The difference
in insolation (energy received by Earth) between maximum and minimum is a function
of eccentricity.

The 26,000 year period of precession has first been determined in the frame of Newto-
nian physics by d’Alembert ([23]). It is rather close to the first precession cycle of 19,000 year
in Milanković ([3]) theory. When Milanković makes the assumption that the planetary
distances to the Sun and the solar ephemerids are constant, he can estimate climate maxima,
but not their smooth transitions between equinoxes and solstices. Today, we have access
to observations that allow one to drop the hypotheses that ρ, δ and ω in Equation (1) are
constant. Thus, we can evaluate the consequences of changes in the position of the rotation
axis on, for instance, atmospheric temperature, that is the main parameter in Milanković’s
theory of climate.

2. The Data: Temperature, Pole Motion, and Solar Ephemerids
2.1. Mean Global Temperatures

We have used the data series maintained by the Hadley Center for Climate Prediction
and Research under the name HadCrut. In order to have an idea of the reliability of the
data, we have selected five successive sets of HadCrut data: HadCrutv from 1870 to 2000
([26], https://crudata.uea.ac.uk/cru/data/crutem1, accessed on 2 June 2022); HadCrut2
from 1856 to 2006 ([27], https://crudata.uea.ac.uk/cru/data/crutem2, accessed on 2 June
2022); HadCrut3 from 1850 to 2014 ([28], https://crudata.uea.ac.uk/cru/data/crutem3,
accessed on 2 June 2022); HadCrut4 from 1850 to 2021 ([29], https://crudata.uea.ac.uk/
cru/data/crutem4/, accessed on 2 June 2022) and HadCrut5 from 1850 to 2022 ([30],
https://crudata.uea.ac.uk/cru/data/temperature/, accessed on 2 June 2022). Figure 1a
shows all the data, and Figure 1b their Fourier transforms. There are rather significant
differences between the data series, for instance between 1940 and 2020 in HadCrut3
(yellow curve) vs. HadCrut5 (blue curve). Differences become larger after 1950, to the point
that HadCrut3 has a plateau after 2000 when HadCrut5 grows linearly since 1960. We have
already worked on these data sets [31] and pointed out these differences [32], Figure 4.
These differences of course result in differences in the Fourier spectra of Figure 1. As a
result, the dominant spectral peak shifts from 60 to 80 year, a topic discussed in several
papers [32–35].

https://crudata.uea.ac.uk/cru/data/crutem1
https://crudata.uea.ac.uk/cru/data/crutem2
https://crudata.uea.ac.uk/cru/data/crutem3
https://crudata.uea.ac.uk/cru/data/crutem4/
https://crudata.uea.ac.uk/cru/data/crutem4/
https://crudata.uea.ac.uk/cru/data/temperature/
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(a)

(b)
Figure 1. The five HadCrut mean global temperatures since 1850. (a) The five mean global tempera-
ture data sets HadCrut1 to HadCrut5 from 1850 to the present maintained by the Hadley Center for
Climate Prediction and Research (see text). (b) The 5 Fourier spectra of the 5 data sets in Figure 1a.

2.2. Solar Ephemerids

We have obtained the Sun’s ephemerids from 1846 to the present from Institut de Mé-
canique Céleste et du Calcul des Ephémérides (IMCCE, http://vo.imcce.fr/webservices/
miriade/?forms, accessed on 2 June 2022). We do not present a figure with the raw data: the
Earth orbit’s eccentricity is so small that an annual oscillation since 1846 would transform
into an unreadable quasi-sinus with 176 oscillations on the 15 cm (or so) width of the figure,
that is 14 oscillations per cm.

2.3. Rotation Pole and Length of Day

The motions of the rotation pole and variations in rotation velocity are available at
the International Earth Rotation Reference Systems Service (IERS, https://www.iers.org/
IERS/EN/DataProducts/EarthOrientationData/eop.html, accessed on 2 June 2022). They
consist in the couple of coordinates (m1, m2) of motion of the rotation pole PM (see [16,36])

http://vo.imcce.fr/webservices/miriade/?forms
http://vo.imcce.fr/webservices/miriade/?forms
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html 
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html 
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and the length of day lod (e.g., [12]). We have selected data set EOP C01 IAU19801.
Figure 2a,b respectively show the evolution of the couple (m1, m2) since 1946 and of lod
since 1962. We have used the semi-annual lod data provided by Stephenson and Morrison
([37]) for the period 1832–1997, combined with the IERS data, resulting in the mean curve
between 1832 and 2022 shown in Figure 2c (cf. [38]).

(a)

(b)
Figure 2. Cont.
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(c)
Figure 2. Pole motion and length of day from IERS data. (a) Evolution of the couple (m1, m2) since
1846 (IERS data). (b) Evolution of lod since 1962 (IERS data). (c) Black curve: lod semi-annual data
since 1832 (from [37]); gray: daily lod data since 1962 from IERS; red curve: The median of the trend
for these two combined data sets.

3. Extraction and Analysis of the Trends and Annual Oscillations
3.1. Methods: SSA

As in a number of previous papers, e.g., [16,39,40], we have submitted time series to
iterative Singular Spectrum Analysis (iSSA) and we will now do the same for the rotation,
temperature and ephemeris time series presented in the previous section. We refer the
reader to these papers and to the Golyandina and Zhigljavsky’s book ([41]) for the SSA
method, to [42] for properties of the Hankel and Toeplitz matrices that it uses, and to [43]
for the singular value decomposition algorithm SVD).

Following a suggestion by an anonymous reviewer, we now propose a short but more
detailed summary of the method.

Let us consider a discrete (non-zero) time series (XN) of length N (N>2): XN =
(x1, . . . , xN).

Step 1: embedding step

XN is divided into K segments of length segments of length L in order to build a
matrix X with dimension K× N where K = N − L + 1 will condition our decomposition.
This is the first “tuning knob”. Integrating X yields a Hankel matrix:

X =


x1 x2 x3 · · · xK
x2 x3 x4 · · · xK+1
x3 x4 x5 · · · xK+2
...

...
...
. . .

...
xL xL+1 xL+2 · · · xN

 (2)

Embedding, the first step in a SSA, consists in projecting the one-dimensional time
series in a multidimensional space of series XN such that vectors Xi = (xi, . . . , xi+L−1)

t

belong to RL where K = N − L + 1. The parameter that controls the embedding is L,
the size of the analyzing window, an integer between 2 and N − 1. The Hankel matrix
has a number of symmetry properties: its transpose Xt, called the trajectory matrix, has
dimension K. Embedding is a compulsory step in the analysis of non-linear series. It
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consists formally in the empirical evaluation of all pairs of distances between two offset
vectors, delayed (lagged) in order to calculate the correlation dimension of the series.

Step 2: Decomposition in singular values—SVD

SVD of non-zero trajectory matrix X (dimensions L× K) takes the shape:

X =
d

∑
i=1

√
λiUiVt

i (3)

where the eigenvalues λi (i = 1, . . . , L) of matrix S = XXT are arranged in order of
decreasing amplitudes. Eigenvectors Ui and Vi are given by:

Vi = XTUi/
√

λi (4)

The Vi form an orthonormal basis and are arranged in the same order as the λi. Let Xi
be a part of matrix X such that:

Xi =
√

λiUiVt
i . (5)

Embedding matrix X can then be represented as a simple linear sum of elementary
matrices Xi. If all eigenvalues are equal to 1, then decomposition of X into a sum of unitary
matrices is:

X = X1 + X2 + . . . + Xd (6)

d being the rank of X (d = rank X = max{i|λi > 0}) SVD allows one to write X as a
sum of d unitary matrices, defined in a univocal way.

Let us now discuss the nature and the characteristics of the embedding matrix. Its rows
and columns are sub-series of the original time series (or signal). The eigenvectors Ui and
Vi have a time structure, and they can be considered as a representation of temporal data.
Let X be a suite of L lagged parts of (X and X1, . . . , XK) the linear basis of its eigenvectors.
If we let:

Zi =
d

∑
i=1

√
λiVi (7)

with i = 1, . . . , d, then the relation (5) can be written:

X =
d

∑
i=1

UiZt
i (8)

that is for the jth elementary matrix:

Xj =
d

∑
i=1

zjiUi (9)

where zji is a component of vector Zi. This means that vector Zi is composed of the ith
components of vector Xj. In the same way, if we let:

Yi =
d

∑
i=1

√
λiUi (10)

we obtain for the transposed trajectory matrix:

Xt
j =

d

∑
i=1

UiYt
i (11)

that corresponds to a representation of the lagged vectors in the orthogonal basis (V1,. . . ,Vd).
One sees why SVD is a very good choice for the analysis of the embedding matrix, since it
provides two different geometrical descriptions.
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Step 3: reconstruction

As we have seen, Xi matrices are unit matrices, and one can “re-group” these matrices
into a physically homogeneous quantity. This is the second “tuning knob” of SSA. In order
to regroup the unit matrices, one divides the set of indices {i1,. . . ,id} into m disjoint subsets
of indices {I1, . . . , Im}.

Let I be the grouping of p indices of I = {i1, i2, . . . , ip}; because (6) is linear, then the
resulting matrix XI that regroups indices I can be written:

XI = XI1 + XI2 + . . . + XIm (12)

This step is called regrouping the eigen-triplets (λ, U and V). In the limit case m = d,
(12) becomes exactly (6), and we again find the unit matrices.

Next, how can one associate pairs of eigen-triplets? This means separating the additive
components of a time series. One must first consider the concept of separability.

Let χ be the sum of two time series χ(1) and χ(2) such that xi = x(1)i + x(2)i for
any i ∈ [1, N]. Let L be the analyzing window (with fixed length), X, X(1) and X(2) be
the embedding matrices of series χ, χ(1) and χ(2). These two sub-series are separable
(even weakly) in Equation (6) if there is a collection of indices I ⊂ {1, . . . , d} such that
X(1) = ∑i∈I Xi, respectively, if there is a collection of indices such that X(1) = ∑i 6∈I Xi.

In the case when separability does exist, the contribution of X(1) for instance corre-
sponds to the ratio of associated eigenvalues (∑i∈I λi) to total eigenvalues (∑d

i=1 λi).
So, regrouping SVD components can be summarized by the decomposition into

several elementary matrices, whose structure must be as close as possible to a Hankel
matrix of the initial trajectory matrix (this is true on paper only, in reality things are much
more difficult).
Step 4: the diagonal mean, also known as the hankelization step

The next, final step consists in going back to data space, that is to calculate time series
with length N associated with sub-matrices XI . Let Y be a matrix with dimension L ∗ K and
for each element yij we have 1 6 i 6 L and 1 6 j 6 K. Let L∗ be the minimum and K∗ be
the maximum. One always has N = L + K− 1. Finally, let y∗ij = yij if L < K and y∗ij = yji

otherwise. The diagonal average applied to kth index of time series y associated with matrix
Y gives:

yk =



1
k

k
∑

m=1
y∗m,k−m+1 1 6 k 6 L∗

1
L∗

L∗

∑
m=1

y∗m,k−m+1 L∗ 6 k 6 K∗

1
N−K+1

N−K∗+1
∑

m=k−K∗+1
y∗m,k−m+1 K∗ 6 k 6 N∗

(13)

The relation (13) corresponds to the mean of the element on the anti-diagonal i + j =
k + 1 of the matrix. For k = 1, y1 = y1,1. For k = 2,y2 = (y1,2 + y2,1)/2, etc.

As mentioned above, step 3 is the most difficult part. We have chosen one approach
among many others: iterative SSA (iSSA). Since the relation (6) is linear, we can iterate the
decomposition. We start with a small value of L (we are looking for the longest period)
that we increase until getting a quasi-Hankel matrix (step 1 and 2). We then extract the
corresponding lowest frequency component that it subtracted from the original signal. We
again increase the value of L to find the next component (shortest period). The algorithm
stops when no pseudo-cycle can be detected or extracted. In this way, we scan the series
from low to high frequencies.

Figure 3a shows the first oscillatory iSSA component of lod that has a period of 1 year.
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(a)

(b)
Figure 3. Extraction of oscillatory component by continues wavelet transform: an example. (a) Black
curve: annual component of lod extracted by the method of continuous wavelets; Red curve: annual
component of lod extracted by the iSSA method. (b) Scalogram of lod since 1962. The wavelet cone
of influence is symbolized by the gray area. The red dashed lines enclose the wavelet coefficients
corresponding to the 1 year period.

3.2. Methods: Wavelets

In order to check the quality of iSSA, we have compared some of the iSSA results
with those obtained with the method of continuous wavelets, that is widely used in the
literature. Figure 3b shows the scalogram (i.e., the continuous wavelet transform) of
lod since 1962 (Figure 2b). We have selected a Morlet wavelet. Between the dashed red
lines are the ordinates of the wavelet coefficients associated with the 1 year oscillation.
Given the property of information redundancy of the wavelet kernels, one can extract
the ridge in the scales covered by the 1 year periodicity and reconstruct the signal [44].
The (wavelet) reconstructed annual component of lod is shown as the black curve in
Figure 3a. The comparison is good but not perfect: the modulation of the iSSA curve
(in red) is smoother than that of the wavelet reconstruction. The similarity of the two
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curves in Figure 3a together give us confidence that iSSA can correctly extract the annual
components of the three time series introduced in Section 2.

The continuous wavelet transform ([45]) of a signal s with respect to the analyzing
wavelet ψ, in the form of convolution product, follows the relationship,

W [ψ, s](t, a) ≡ [s ∗ ψ̃a](t) (14)

where ψ̃a ≡ a−1ψ∗(−t/a) with a > 0 s the dilatation parameter and ∗ the complex conjugate.
We are interested here in the analysis of oscillating signals and we shall use a complex
analyzing wavelets of the following form,

ψa(t) =
1
a

Aψ(
t
a
)exp[iϕψ(

t
a
)] (15)

where Aψ(t) is a real-valued envelope and ϕψ(t) is the phase term. Let us define Morlet’s
wavelets as follows, whose Fourier transform is given by,

ψ̂±a,M(u) =
√

8πσexp[−8π2σ2(au∓ 1
2
)2] (16)

(16) shows that a wavelet is typically a band-pass Gaussian-like filter with a central fre-

quency uc =
1
2a

. We may then consider that ψ+
a,M have a band-pass limited to positive

frequencies, while ψ−a,M have a band-pass restricted to negative frequencies. σ > 0 controls
the duration of the Gaussian envelope (i.e., the time resolution τ).

The wavelet Formula (14) can be inverted under certain conditions. Let us consider
the following operator,

M[χ, r](t) =
∫ +∞

−∞

∫ +∞

0
r(b, a)χa(t− b)

da
a

db

=
∫ +∞

0
[r(., a) ∗ χa(.)](t)

da
a

(17)

M maps a function r over the time-dilation half-space onto a function of time by
superimposing the wavelets χa(.,−b). M is called the wavelet synthesis. The following
relation holds for arbitrary ψ and χ functions,

M[χ,W(ψ, s)] = F−1{[m̂ψ,χ]Fs} (18)

and for u 6= 0,

m̂ψ,χ(u) =
∫ +∞

0
ψ̂∗(au)χ̂(au)

da
a

(19)

relations (18) and (19), in which F is the Fourier transform, ∗ the complex conjugate and
m̂ψ,χ acts as a multiplication operator. Note that because the oscillation of ψ, we have
ψ̂(0) = 0 and the integral is convergent. In particular, we may choose χ in such a way that,

m̂ψ,χ(u) = 1 (20)

A sufficient condition for such reconstruction χ to exist is,

0 < Cψ =
∫ +∞

0
|ψ̂(±a)|2 da

a
< ∞ (21)

in which case, ψ is called admissible. For an admissible ψ, a possible choice would be,

χ(t) =
1

Cψ
ψ(t) (22)
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and the reconstruction formula (cf. [45]) becomes,

s(t) =
1

Cψ

∫ +∞

0
[W(ψ, s)(., a) ∗ χa(.)](t)

da
a

(23)

One last concept needs to be clarified here: the notion of ridge function of oscillating
signals. There are two concepts of frequency associated with wavelet transform (14).
The first one is the instantaneous phase velocity of the wavelets coefficients,

dΦt,a

dt
=

d
dt

argW [ψ, s](t, a) (24)

and the second concept associates the scale a with the frequency
u0

a
, where u0 is the central

frequency of the undilated wavelet. The ridge is defined to be the set of points where both
concepts coincide,

dΦt,a

dt
=

π

as(t)
(25)

To give an example, for a monochromatic signal of the form s(t) = Asexp[2iπu0t],
the Morlet’s wavelet transform is,

W [ψ±M, s] =
√

8πσAs

a
exp[iΦt,a(t)]exp[−8π2σ2(aus ∓

1
2
)2] (26)

where Φt,a = 2πust is the phase of the wavelet transform, and in this case the ridge is the

line as(t) =
1

2us
.

A difficulty seen clearly in Figure 3b is that the signal’s energy can spread and diffuse
over several scales. The reconstruction could be optimized by applying correction methods,
such as the reassignment method (cf. [46]), but this would require an additional step that is
not necessary in the present study.

4. The Lissajous Diagrams

The main points in space that can be used to monitor the precession of an elliptical
orbit are the solstices and equinoxes. The fixed dates of their occurrences are 21 December
for the Winter solstice, 21 March for the Spring equinox, 21 June for the Summer solstice,
and 23 September for the Fall equinox. Since the legal and astronomical calendars are not
exactly the same, this entails an error on their positions that can be estimated. The variations
of these positions are actually very small: the perimeter of the Earth’s orbit being close to
6.28 astronomical units (a.u.), the 21 December positions are at a distance of 0.98412 ± 3.46
× 10−5 a.u., that is an error of 5.5 × 10−4 between 1844 and 2022. The error is 5.8 × 10−4

for the other solstice and close to 7.9 × 10−4 and 8.7 × 10−4 for the two equinoxes.
To built our Lissajous diagrams, we first extracted the annual component of pole

motion. In Figure 4 we show this forced component.
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(a)

(b)
Figure 4. Annual components extracted from pole path and lod. (a) The annual couple (m1 , m2) of
polar motion coordinates extracted by iSSA. (b) The annual component of lod extracted by iSSA.

Figure 5a shows the evolution of the trajectories of Figure 4a as a function of Sun–Earth
distance (ephemerids), that is in other words as a function of time. We call these by analogy
to Lissajous orbits in astronomy “Lissajous diagrams”. The Lissajous diagram of (m1, m2)
is shown in two perspectives in order to gain some insight on its topology. The locations of
the four remarkable points (equinoxes and solstices) are shown in four different colors (the
same are used throughout of the paper). We can see that the closer the Earth is to the Sun,
the more the rotation axis straightens; the farther it is, the larger the amplitudes of motions
and the flatter the rotation axis, i.e., the larger its declination (see also Figure 5b). Note that
the “fixed dates” of equinoxes and solstices appear to drift as a function of time.
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(a)

(b)
Figure 5. Drift of equinoxes and solstices since 1846. (a) Lissajous diagram for the couple of rotation
pole motion coordinates (m1 , m2) as they vary with Sun–Earth distance, i.e., as a function of time.
(b) Projection of the drift of equinoxes and solstices from 1846 to the present in the (m1 , m2) plane.
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The conservation of momentum of the orbiting planet implies that its areolar velocity
is constant (the areolar velocity is the area spanned by the vector radius—the Sun to Earth
vector-per unit time). As a consequence of this “law of areas”, the orbital velocity varies
from a maximum of 30.29 km/s at perihelion to a minimum of 29.29 km/s at aphelion.
As explicitly stated by [7,8,47,48] long ago, and recently re-emphasized by [5,38,49], the iSSA
annual component of polar motion (m1, m2) is controlled by variations in Sun–Earth
distance dSE.

In order to emphasize the relative amplitudes of the drift and the butterfly-like shape
of the diagram, we have actually multiplied (m1, m2) by the centered value d∗SE = dSE −
mean(dSE). This also makes it clear that the drift of solstices is larger than that of equinoxes.
Figure 6a shows the Lissajous diagram equivalent to that in Figure 5a for the couple (m∗1 ,m∗2).
The Lissajous diagrams of Figure 6a represent the geodesic evolution of Kepler areas.

(a)

(b)
Figure 6. Drift of equinoxes and solstices since 1846 with the new parameters m∗1 and m∗2 . (a) Lissajous
diagram for the couple of coordinates (m∗1 , m∗2) as they vary with Sun-Earth distance, i.e., as a function
of time. (b) Projection of the drift of equinoxes and solstices from 1846 to the present in the (m∗1 , m∗2)
plane.
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One sees clearly in Figure 6a that polar motion reaches a minimum at the equinoxes
(red and orange dots) when solar attraction is the weakest, and a maximum at the solstices
(green and blue dots) when the Sun, Earth and focus of the ellipse are aligned. We shall see
below that the same applies to lod.

These results actually require another small correction, in relation with Kepler’s second
law. The conservation of momentum of the orbiting planet implies that its areolar velocity
is constant (the areolar velocity is the area spanned by the vector radius—the Sun to Earth
vector—per unit time). As a consequence of this “law of areas”, the orbital velocity varies
from a maximum of 30.29 km/s at perihelion to a minimum of 29.29 km/s at aphelion. We
introduce new more physical variables by multiplying the polar motion coordinates by the
Sun–Earth distance dSE:

m∗1 = m1 × dSE, m∗2 = m2 × dSE

We display the drift of the four reference points (solstices and equinoxes) in the (m∗1 ,
m∗2 .) plane in Figure 6b. The time evolution of the separate coordinates m∗1 and m∗2 for the
solstices are shown in Figure 7a,b.

(a)

(b)
Figure 7. Time evolution of winter and summer solstices. (a) Time evolution of winter and summer
solstices for component m∗1 . (b) Time evolution of winter and summer solstices for component m∗2 .

5. Discussion

Milanković [3] knew that eccentricity, precession and obliquity evolve slowly in time
leading to a transition from a warmer to a cooler climate every 11,000 year (the period of
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precession of equinoxes being the shortest). Figures 5–7 show that one cannot consider that
either the Sun–Earth distance or the hour angle, or the declination, or the daily variation
are constant, contrary to what was done by [3]. Both polar motions and length of day are
affected by their position on the elliptical orbit, on rather short periods on the order of less
than 10 year up to 1 century or more. The data shown in the present paper demonstrate
that parameters in Equation (1) evolve in time over these shorter time scales. They may,
therefore, imply some forcing of climate on these same time scales.

Figure 1a illustrates the differences between five data sets that were supposed when
they were compiled to represent the same physical (or quasi-physical) datum, that is mean
global surface temperature anomaly. Figure 8a displays the iSSA trends (component 1)
of the five HadCrut temperature data sets introduced in Section 2.1. The median of the
five curves is shown as an inset in Figure 8a. Figure 8b,c represent the two other major
iSSA components of global mean temperature anomaly, the annual and 60 year oscillations.
The frequencies of the five series are consistent except for the modulated amplitudes of the
annual components (Figure 8b), which is puzzling.

(a)

(b)
Figure 8. Cont.
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(c)
Figure 8. Trend, one year and sixty years components extracted from HadCrut curves. (a) The first
iSSA components (trends) of the five HadCrut Center temperature series introduced in Section 2.1,
and their median shown in black among the 5 trends and alone above as an inset. (b) Annual iSSA
components of the same series as in Figure 8a. (c) Sixty year iSSA components of the same series as
in Figure 8a.

In Figure 9, we superimpose the time evolution of the winter (blue) and summer
(green) solstices for component m∗1 from Figure 7a and the first iSSA component (trend) of
the median of the five HadCrut Center temperature series (red) from Figure 8a (note: We
have simplified the discussion by using only the m1 polar motion component, the one most
clearly linked to the pole’s inclination). With some familiarity with global temperature
curves, one can recognize some common features with the evolution of the solstices [31].
Based on the annual oscillations of the full polar motion (m1, m2 and lod), we have seen
that the celestial positions of solstices moved significantly in the past 180 years. To our
knowledge, this is the first time one evidences in the observational data what [23] called the
apparent precession of solstices (that is seen from Earth) and that Milanković (part 2, chapter
2) worked on, but on much longer time periods of millions of years. We recalled in the
introduction the basic equation from Milanković’s thesis (1920) that links time variations of
heat received at a given location on Earth to solar insolation, known functions of the location
coordinates, solar declination and hour angle, with an inverse square dependence on the
Sun–Earth distance. We can let W play the role of the heat/energy term in Equation (1).
The goal is to translate the drift of solstices as a function of distance to the Sun into the
geometrical insolation theory of [3].
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Figure 9. Superposition of the time evolution of the winter (blue curve) and summer (green curve)
solstices for component m∗1 from Figure 7a and the first iSSA component (trend) of the median of the
five HadCrut Center temperature series from Figure 8a (red curve).

6. Conclusions

The Earth’s revolution is modified by changes in inclination of its rotation axis, princi-
pally due to the actions of the Moon and Sun. Despite the fact that the gravity field is central,
the Earth’s trajectory is not closed and the equinoxes drift (by a little less than one minute
of arc per year, that is a precession period of some 26,000 year—[23]). For d’Alembert,
Lagrange, Laplace and Poincaré, who based their reasoning on the action of torques, as in
a top, changes in polar motion and revolution are coupled (through the Liouville–Euler
system of equations). Re-organization of Earth’s fluid envelopes follows. For Newton, who
gives a central role to the inertia tensor, planetary bodies attract (or repel) the oceans (and
atmospheres) and this re-organization of masses modifies the rotation axis.

Milanković (cf. [3], p. 221) argued that the shortest precession period of perihelion (for
us solstices) is 20,700 Julian years and that the consequence of this precession is that the
summer solstice in one hemisphere takes place alternately every 11,000 year at perihelion
(a warmer summer) and at aphelion (a cooler summer). The difference in insolation
between maximum and minimum is a function of eccentricity. Milanković assumed that
the planetary distances to the Sun and the solar ephemerids are constant. There are now
observations that allow one to drop the hypothesis that Sun–Earth distance, the Sun’s
declination and hourly angle (Equation (1)) are constant. Thus, we can evaluate whether
changes in the position of the rotation axis affect, for instance, atmospheric temperature,
that is the main parameter in Milanković theory of climate.

Both the apparent drift of solstices of Earth around the Sun and the global mean
temperature exhibit a strong 60 year oscillation. In the present paper, we have confirmed
the finding of a strong iSSA component with 60 year period in global temperatures and
in the drift of solstices (Figures 8c and 10), hence the rotation axis, that has already been
encountered in [33–35,50–59].

In pursuit of this goal, we obtained the Sun’s ephemerids from 1846 to the present from
Institut de Mécanique Céleste et du Calcul des Ephémérides (data set EOP C01 IAU1980).
The motions of the rotation pole and variations in rotation velocity were taken from the
International Earth Rotation Reference Systems Service. They consist in the couple of
coordinates (m1, m2) of motion of the rotation pole PM and the length of day lod. We used
the semi-annual lod data provided by [37] for the period 1832–1997, combined with the
IERS data, resulting in a mean curve between 1832 and 2022 (Figure 2c). For the mean
global temperatures, we used five HadCrut data series from the Hadley Center for Climate
Prediction and Research in order to estimate the consistence of the data. There are rather
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significant differences between the five data series, resulting in differences in the dominant
spectral peak that shifts from 60 to 80 year.

Figure 10. (top) In red, the derivative of the iSSA trend of temperature; in green and blue, the inverse
square of the drift of solstices. (bottom) A phase quadrature has been applied to the solstices curves
above, that is a backward translation of 15 year (=60 years/4).

We have submitted the time series for the rotation, temperature and ephemeris to
iterative Singular Spectrum Analysis (iSSA), a method which we have used extensively
in a number of recent studies ([12,31,39]). We have checked that the results obtained with
iSSA match those obtained with the more common method of continuous wavelets that is
widely used in the literature.

The main points in space that can be used to monitor the precession of an elliptical
orbit are the solstices and equinoxes. The legal and astronomical calendars not being
exactly the same, this entails a very small error on their positions (relative variations of
their positions between 5 and 9 × 10−4) between 1844 and 2022.

Figure 5a shows the evolution of the locations of the equinoxes and solstices trajectories
as a function of Sun–Earth distance (we call these “Lissajous diagrams”). The closer the
Earth is to the Sun, the more the rotation axis straightens; the farther it is, the larger the
amplitudes of motions and the flatter the rotation axis. The “fixed dates” of equinoxes and
solstices actually drift as a function of time. In order to emphasize the relative amplitudes of
the drift and the butterfly-like shape of the Lissajous diagram, we have actually multiplied
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(m1, m2) by the centered value d∗SE = dSE˘mean(dSE), yielding (m∗1 , m∗2). This also makes
it clear that the drift of solstices is larger than that of equinoxes. Polar motion reaches a
minimum at the equinoxes when solar attraction is the weakest, and a maximum at the
solstices when the Sun, Earth and focus of the ellipse are aligned.

Both polar motions and length of day are affected by their position on the elliptical
orbit, on rather short periods on the order of less than 10 year up to 1 to a few centuries.
The parameters in Equation (1) evolve over these time scales. Some forcing of climate on
these same time scales may be expected.

Despite differences between the five HadCrut temperature data sets, the median of the
first iSSA component (trend) appears to be representative (Figure 8a). The two other major
iSSA components of the five global mean temperature anomaly series, the annual and
60 year oscillations, are consistent; the modulated amplitudes of the annual components
do not agree as well (Figure 8b).

We have superimposed the time evolution of the winter and summer solstices for
component m∗1 and the first iSSA component (trend) of the median of the five HadCrut
Center temperature series (Figure 9). Based on the annual oscillations of the full polar
motion (m1, m2 and lod), we have shown that the celestial positions of solstices moved
significantly in the past 180 years. To our knowledge, this is the first time one evidences in
the observational data what d’Alembert (1749) called the apparent precession of solstices
(that is seen from Earth) and that Milanković ([3]), part 2, chapter 2) worked on, but on
much longer time periods of millions of years.

One can recognize in Figure 9 some common features between the evolution of the
solstices and the trend of temperatures. We recalled in the introduction the basic equation
from Milanković’s thesis ([3]) that links time variations of heat W received at a given location
on Earth to solar insolation, known functions of the location coordinates, solar declination and
hour angle, with an inverse square dependence on the Sun–Earth distance. We translate the
drift of solstices as a function of distance to the Sun into the geometrical insolation theory of
Milankovic (1920). Both the apparent drift of solstices of Earth around the Sun and the global
mean temperature exhibit a strong 60 year oscillation (Figures 8c and 10).

It may seem that we navigate between two pitfalls: remembering that correlation
does not imply causality at the risk of discounting a potentially interesting relationship or
accepting the causality when it does not exist, at the risk of pursuing a non existent theory.
We do acknowledge that one should not jump too fast to conclusions, yet the probability of
a chance coincidence in Figure 10 appears very low. Correlation certainly does not imply
causality when there is no accompanying model. But in the case studied in this paper,
Equation (1) can be considered as a model that is widely accepted. Equation (1) links the
time derivative of insolation with the inverse square of the Sun–Earth distance. In Figure 10,
shifting the inverse square of the 60 year iSSA drift of solstices by 15 years with respect to
the first derivative of the 60 year iSSA trend of temperature, that is exactly a quadrature in
time, puts the two curves in quasi-exact agreement. This is a case of agreement between
observations and a mathematical formulation. This new finding joins a host of recent results
that argue in the same direction [17]; the hypothesis proposes that a forcing by the giant
Jovian planets is exerted on a vast number of solar and terrestrial phenomena, including,
as shown in this paper, global surface temperature. This forcing induces a number of
responses from the Earth’s rotation axis, hence on climate at many time scales. This is a
sort of extension of the Milankovic theory of climate to a range of periods that are much
shorter than the ∼20,000 year minimum often associated with this theory.
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