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Abstract: In this paper, two different computationally inexpensive methods for nowcasting/data
filling spatially varying meteorological variables (wind velocity components, specific humidity, and
virtual potential temperature) covering scales ranging from 100 m to 5 km in regions marked by
complex terrain are compared. Multivariable linear regression and artificial neural networks are used
to predict micrometeorological variables at eight locations using the measurements from three nearby
weather stations. The models are trained using data gathered from a system of eleven low-cost
automated weather stations that were deployed in the Cadarache Valley of southeastern France from
December 2016 to June 2017. The models are tested on two held-out periods of measurements of
thermally-driven flow and synoptically forced flow. It is found that the models have statistically sig-
nificant performance differences for the wind components during the synoptically driven flow period
(p = 6.6 × 10−3 and p = 2.0 × 10−2 for U and V, respectively), but perform the same otherwise. These
methods can be used to spatially fill gaps in micrometeorological datasets. Recommended future
work should include statistically interpreting the predictive models and testing their capabilities on
meteorological datasets from different locations.

Keywords: boundary layer; artificial neural networks; multiple linear regression; prediction

1. Introduction

To study meteorology in regions of complex terrains, such as urban or mountainous ar-
eas, researchers often conduct field experiments. During these experiments, large amounts
of data are typically collected with a wide variety of instruments, including tethered bal-
loons, radiosondes, manned and unmanned aircraft, remote sensing instruments (LIDAR,
SODAR, Radio Acoustic Sounding Systems, etc.), meteorological towers, and small, dis-
tributed weather stations [1]. Field experiments typically last from a few weeks [2] to a few
months [3,4], to even a few years [5]. The instrumentation is often removed after the field
experiment is completed, eliminating the ability to make more observations in that area.
However, in many cases, the field experiment is conducted in an area that has permanent
weather stations installed. For example, the MATERHORN experiment [6] at the U.S. Army
Dugway Proving Ground in Utah, the BLLAST experiment in southern France [7], and
the KASCADE experiment described herein were all field experiments where the scientific
equipment used supplemented permanent operational weather stations.
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In this work, we use artificial neural network and multiple linear regression methods
to predict the measurements at a fixed sensor station using the measurements from other
stations in the area. This type of modeling is motivated by the following needs:

1. Gap filling. If a sensor in an array becomes inoperative for some reason, the missing
values from that station can be filled by the other stations in the area.

2. Greater use of limited experimental resources. At the end of a field campaign, tem-
porarily deployed instruments are removed, while permanent weather stations remain.
The data from the permanent weather stations can be used to predict observations at
the locations where the stations were removed, increasing operational capacity and
the amount of data available for modeling and science. Increased data, especially in
complex terrain, where spatial variability is high over small length scales, can allow
for a better understanding of atmospheric physics and can improve forecasting ability
of phenomena that depend on weak-wind variability as well as small temperature
and humidity differences, such as dispersion [8,9] and frost or fog formation [10].

There are two key points that differentiate our work from related work, which are
described in Section 2. First, we demonstrate that these methods work on small temporal
and spatial scales in complex terrains, a regime where there are significant measurement
variabilities due to surface heterogeneity. Second, we demonstrate the effectiveness of mul-
tiple linear regression techniques, which are simple, easy to interpret, and computationally
inexpensive (so much that they can be run on low-powered stations themselves). The rest
of this paper is divided into the following sections: background, methods, experiments
and results, future work, and conclusions. In addition, an appendix is included where
supplemental tests are presented.

2. Background

There are numerous reasons for studying the meteorology of complex terrain, which
have been discussed previously [6,11–13]. The atmospheric physics associated with com-
plex terrain inherently violates many assumptions typically invoked in idealized theory.
For example, the Monin–Obukhov similarity theory and its assumptions are often violated
in complex terrains [14–16]. In addition, studying complex terrain is critical to improving
numerical weather prediction capabilities [12] to address issues that are critical to humans.
For example, over half of the world’s population lives in cities [17], and air pollution
is considered a serious human health risk [18]. Studying and understanding mountain-
meteorological phenomena such as cold air pools [19] and valley flows [20] is necessary
for developing air-pollution mitigation strategies as well as forecasting fog formation [21].
The nuclear energy community is required to consider the side-effects of a breach and how
the contaminants spread, which is affected by complex terrain [3,22,23]. Improved weather
prediction in complex terrain is also applicable to forecasting mountain waves [11] as well
as snow and ice storms [12]. Adams et al. [24] estimate that improved snow prediction in
the United States could potentially produce 1.3 billion US dollars of benefit annually, in
addition to the number of lives saved due to prevented accidents. In considering all of
these applications, it is clear that one of the features that complex the atmosphere terrain at-
mospheres exhibit is high spatial and temporal variability [25,26], which can make weather
prediction difficult from micro- to mesoscales. It is common to use statistical methods to
post-process weather data of all scales, and here we use two different methods to do so.

The two methods described in this paper are artificial neural networks and multiple
linear regression. As outlined in the book by Shalev-Shwartz and Ben-David [27], artificial
neural networks (ANNs) are a class of biologically-inspired algorithms that can be used for
regression or classification tasks. While there are many types of ANNs, the simplest is the
multilayer perceptron, also known as a standard feedforward neural network.

A feedforward neural network is a directed acyclic graph where the nodes are called
nodes (or neurons), and the edges are called connections. Each node has an associated bias
and activation function. Each connection has an associated weight. The graph is organized
into layers, where each layer contains a certain amount of nodes and is connected to the
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layer above and below it. The bottommost layer is called the input layer, and any gathered
data are passed into the nodes of the input layer. The input layer has as many nodes as
there are input variables. The topmost layer is called the output layer, and is the output of
the entire feedforward network. There can be multiple outputs, and the number of nodes
in the output layer is equal to the number of target variables. The layers in-between the
input layer and the output layer are called the hidden layers. Therefore, data are fed into
the input layer; its output is then fed into the first hidden layer, whose output goes into
the second hidden layer, and so on, until the output from the last is sent to the output
layer. The nodes in any given layer can be referred to by the layer name, e.g., the nodes in
the hidden layer can be called hidden nodes [28–30]. The output of any given node is the
weighted sum of all the nodes in the layer before it, passed through the activation function.
The values of the weights and biases are found by minimizing the network’s mean-squared
error, in a process known as backpropagation. The process of finding the mean-squared
error using known data is called training, while using the ANN to predict unknown values
is called testing. There are more complicated ANNs, known as deep neural networks, but
those will not be discussed in this work. More information can be found in Shalev-Shwartz
and Ben-David [27].

A multiple-linear-regression (MLR) model is a statistical tool where a set of explanatory
variables linearly models one or more target variables [27]. Linear regressions with a single
target variable take the form of y = β0 + β1x1 + β2x2 + · · ·+ βpxp, where y is the target
variable, xp are the explanatory variables, and βp are the regression coefficients. Since the
MLR model is considered a basic statistical tool, the general topic will not be explained
here any further. A more in-depth discussion of the method can be found in the book
by Shalev-Shwartz and Ben-David [27].

ANNs and MLR models are general techniques that can be applied to a wide variety
of topics. In our case, we are using them to perform predictions in space, though others
have used these methods to predict in time and space. Since predicting values in time or
space is an incredibly broad categorization, there are several terms that the literature uses
to describe this process. Here we review a few of these terms, methods, and literature.

One of these terms is nowcasting, which is a process that describes the current and
near-future (hourly scale) state of the atmosphere [31]. Nowcasting has been used in many
different areas of meteorology. It has been used to nowcast storms [32–34], ice [35], ice
fog [36], precipitation and flash floods [37,38], and tropical cyclones [39]. These examples,
however, are quite different from ours due to the time scales, spatial scales, and equipment
involved. Therefore, we will mostly review nowcasting systems in the literature that use
distributed sensor stations or wireless-sensor networks. (For a background on distributed
sensor stations, see Gunawardena et al. [40].)

Öztopal [41] used an ANN to predict the wind speed at one station, given the wind
speeds at nine different stations. While this is similar to the work presented herein,
Öztopal [41] did it on a much larger spatial scale. Their stations were distributed on
a scale of hundreds of kilometers. Philippopoulos and Deligiorgi [5] also used ANNs to
predict wind speeds, but on the spatial scale of tens of kilometers. They compared the
ANN’s performance on several spatial interpolation methods. In this paper, we compare
our ANN performance to a multiple linear regression performance, which they did not do.
In addition, we show that an ANN can predict variables other than wind speed on a much
shorter time scale.

Benvenuto and Marani [42] use an air quality monitoring network in Mestre, Italy, and
ANNs to nowcast pollution concentrations in the near future and to interpolate missing
data. While their work is similar to ours, there are some key differences. They nowcast the
near future (one hour ahead and three hours ahead), while we predict the present values.
Benvenuto et al. also interpolate missing data using an ANN that predicts forward in
time. Here, we show that the ANN does not have to predict forward in time to interpolate
missing data. Finally, Benvenuto et al. used data gathered in an urban area, whereas we
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used data gathered in a vegetated valley. Videnova et al. [43] also used an ANN to predict
air pollution in their work, and they also predicted forward in time.

Another term that is often used to describe the work we are doing herein is gap filling.
Gap filling is concerned with filling the gaps in data, often time series data. The simplest
and most common method of gap filling is simply linear interpolation between two non-
adjacent points in a time series. Gap filling has been used to increase environmental data in
several different studies [44,45], and is often used as an intermediate step when performing
complex analyses [46]. Moffat et al. [47] present an overview of many of these methods.
While some of these existing gap-filling methods can be used with data from a single
station, many of the same methods also require lookup tables or physical models, neither of
which are required by the methods we present here. Tardivo and Berti [48], Kemp et al. [49],
and Coutinho et al. [50] all present nowcasting methods that use data from multiple
stations, and are based on regression techniques. However, none of them show that the
methods work on a very small spatial and temporal scale, and Coutinho et al. [50] only
show successful predictions for maximum temperature and relative humidity. Furthermore,
the regression methods presented in Tardivo and Berti [48] are more complicated than the
ones we present herein, since they use adaptive regression methods.

Data assimilation is a field in which experimental data are incorporated into forecast
models to improve analyses [51]. There are many techniques used within data assimilation to
do gap filling. There are two big differences between the techniques used in data assimilation
and our methods. First, data assimilation methods are often very complicated, and rely on
an understanding of the underlying physics. Even a simple Kalman filter depends on an
underlying physical model to work properly [52]. Our methods are purely statistical, and
in the case of MLR, relatively easy to run. The second main difference is the application.
Our methods are meant to enhance and aid experimental data collection, while the methods
used for data assimilation are meant to enhance and aid analysis and prediction. While the
methods used for both applications can be generalized, they are still separate applications.

From a purely spatial point of view, one way to interpolate between stations is
known as kriging. This method has been used by both Asa [53] and Friedland et al. [54]
to spatially interpolate wind data. The name “kriging” is in fact somewhat unique to
geospatial statistics applications, and is more generally known as a Gaussian process [55].
Osborne et al. [56] used Gaussian processes to interpolate sensor readings. Hart et al. [57]
used sensor stations along with satellite imagery to spatially interpolate evapotranspiration
data. Finally, both Apaydin et al. [58] and Luo et al. [59] have written spatial interpola-
tion comparison papers, where they compare methods such as kriging, inverse distance
weighting, polynomial interpolation, splines, and more.

To reiterate, we use artificial neural network and multiple linear regression models to
predict data at a given micrometeorology station given the data at other, nearby stations
for a given time. Both of these techniques have been widely used in the past for various
applications, but our work is novel in showing that both methods work at this spatial scale.

3. Methods
3.1. Experiment Overview

The data used for this publication were gathered during the Katabatic winds and
Stability over Cadarache for Dispersion of Effluents (KASCADE) experiment of 2017.
KASCADE 2017 is a follow-on experiment to the KASCADE experiment conducted in
2013 [3,4] that was focused on understanding the vertical structure of the atmosphere in
the Cadarache Valley at night during stable atmospheric conditions. A brief description of
the KASCADE 2017 is given here, while more details may be found in Dupuy et al. [60].

KASCADE 2017 was conducted in the Cadarache Valley of the Bouches-du-Rhône de-
partment in southeastern France from December 2016 through June 2017 (See Figure 1). The
Cadarache Valley contains the French Alternative Energies and Atomic Energy Commission
(CEA) research center, and the International Thermonuclear Experimental Reactor (ITER) is
located in the adjacent Durance Valley. The CEA performs various types of nuclear research,
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including the study of contaminant dispersion in the event of an accident. To better under-
stand and predict dispersion events, it is critical to have detailed knowledge of small-scale
winds and other atmospheric variables. Therefore, increasing our understanding of these
phenomena was the main objective of the experiment.

Figure 1. Map of France highlighting the Cadarache Valley experimental site (red star). © Open-
StreetMap contributors [61].

As illustrated in Figure 2, the Cadarache Valley is a small 6 km long by 1 km wide
valley. The elevation difference between the floor of the valley and the peaks is about 100 m.
The mouth of the valley is connected to the Durance Valley, which runs approximately
perpendicular to the Cadarache Valley [62]. The land cover and land use within the valley
are heterogeneous, with a combination of buildings, roads, grassy areas, and light forests.
A land-use map is presented in Figure 2.

During stably stratified periods, there are two main flow regimes present in the
Cadarache Valley: thermally driven and synoptically forced. During thermally driven flow
events, the winds blow down the valley with downslope flow components feeding into
it. During these periods, the winds are typically relatively light at 2 m. There are strong
diurnal patterns and spatial variability in temperature, humidity, and wind velocity. During
synoptically forced flow events, larger-scale weather systems drive the winds relatively
uniformly across the valley. Synoptically forced flows are typically stronger than thermally
driven flows. There are minimal diurnal patterns and spatial variability in temperature,
humidity, and wind velocity. A number of different synoptic situations are typical of the
area and are described in [60].
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Figure 2. On the (left) is a map of the Cadarache Valley and on the (right) is the equivalent land-use
map. Each contour level represents a 20 m change in elevation. On the land-use map, green shades
indicate vegetation, pink shades indicate buildings and roads, and blue indicates water. The letters
show the LEMS stations, which are described in Section 3. The map on the left is modified, and the
original is from https://www.geoportail.gouv.fr/carte, accessed on 9 October 2021. The land-use map
on the right is modified, and the original is from https://theia.cnes.fr, accessed on 9 October 2021.

For KASCADE 2017, the Cadarache Valley and the surrounding areas were heavily
instrumented. Included in the deployment were: four sonic anemometer stations, one
surface flux station, two SODAR stations, wind and temperature measurements from a
110 m tower, two general meteorological stations, and 12 Local energy-budget measure-
ment stations (LEMS) (described below). In addition to these continuous observations,
radiosondes were released every three hours during fourteen intensive observation periods
(IOPs). In this paper, we use a subset of all the data collected. Namely, we use data collected
by the LEMS from January through March 2017. Note that data from the KASCADE 2017
field campaign are available at https://kascade.sedoo.fr, accessed on 26 October 2021.

LEMS are small, low-cost meteorological stations that are capable of taking surface and
subsurface measurements. The LEMS used for this experiment are the second generation
of the instrument. The first generation was designed, built, and characterized in 2013 [40].
The second generation of the LEMS has a better radiation shield (the Socrima Multiplate
radiation shield outlined in van der Meulen and Brandsma [63]), a better processor, and
updated sensors. The LEMS are open source, and information and build instructions can
be found at https://github.com/madvoid/LEMSv2, accessed on 26 October 2021.

Each LEMS deployed during KASCADE 2017 measures the following variables at
approximately 2 m above ground: wind speed and direction, incoming shortwave ra-
diation, air temperature, and air relative humidity. Barometric pressure is measured at
approximately 1 m. In addition, LEMSs measure surface radiative temperature, as well
as soil moisture content and temperature at two different heights (≈5 and ≈25 cm) below
the surface. The heights of the sensors relative to the ground for each LEMS are approxi-
mately the same, and each LEMS has the same kind of sensor for each measurement. The
wind speed and direction measurements for each LEMS were made using a cup and vane
anemometer. Therefore, the data can be inaccurate at low-wind speeds, and may also
demonstrate overspeed problems, as observed in the literature [64,65]. The LEMS were

https://www.geoportail.gouv.fr/carte
https://theia.cnes.fr
https://kascade.sedoo.fr
https://github.com/madvoid/LEMSv2
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deployed at 12 different locations around the Cadarache Valley. The LEMS locations are
shown in Figure 2, and information about each LEMS location is presented in Table 1.

Table 1. Table of LEMS locations.

Name Latitude Longitude Elevation (m)

LEMS A 43.68483 5.76803 332
LEMS B 43.68568 5.76885 347
LEMS C 43.66839 5.76142 397
LEMS D 43.67518 5.78671 328
LEMS E 43.68263 5.76568 293
LEMS F 43.66871 5.77791 383
LEMS G 43.67848 5.75763 325
LEMS H 43.69141 5.74918 276
LEMS I 43.69300 5.76253 385
LEMS J 43.69548 5.74323 262
LEMS K 43.68038 5.76003 317
LEMS L 43.68879 5.77071 368

Each LEMS station gathered data with a sampling frequency of 0.1 Hz. The data were
quality controlled and averaged, with an averaging period of five minutes. These 5 min
averages were used for all methods described in this paper.

As an aside, the Cadarache Valley has been the subject of several studies designed to
better forecast local-scale winds. For example, Duine et al. [3] developed a simple method,
based on potential temperature differences routinely observed from a 110 m tower, to
nowcast the existence of down-valley winds. More recently, Dupuy et al. [60] used an ANN
to downscale weather research and forecasting (WRF, [66]) model forecasts. Instead of
using observational data as neural network inputs, Dupuy et al. [60] used low-resolution
WRF output as inputs to an ANN. Their work effectively demonstrates that ANNs can be
used to downscale physics-based weather models. In separate work, Dupuy et al. [62] used
an ANN to nowcast local-scale 2 m wind speeds and directions at a point in the Cadarache
Valley using the temperature gradient and velocity component data from an operational
nearby 110 m tower. Their work is similar to the work presented here, but they only use
one station and one variable. By using a valley-scale temperature gradient and ridge-top
wind information, they successfully downscale local valley winds to a point.

3.2. ANN Details

The ANNs used in this paper were implemented using MATLAB’s Neural Network
Toolbox [28]. The number of hidden layers and nodes in the network, as well as the number
of inputs and outputs, are presented in the results sections. The initial values for the
weights and biases of the neural networks were randomly generated, and were dependent
on the random seed. Since the random seed was varied across some experiments, they
are presented alongside the results. While many ANNs use stochastic gradient descent
(SGD) as their training algorithm [27], we use the Levenberg–Marquardt algorithm. The
Levenberg–Marquardt algorithm is used for training since it is recommended by MATLAB
as being the fastest converging training algorithm for a moderate amount of weights [67].
The Levenberg–Marquardt algorithm also produces the lowest mean squared error for many
types of problems when compared to alternative algorithms [68]. The transfer function for
the hidden layer is the hyperbolic tangent sigmoid function, while the transfer function
for the output layer is the linear transfer function. The ANN performance function is the
mean squared error (MSE), and normalization and regularization happens internally in
MATLAB. MATLAB can preprocess data within the Neural Network Toolbox. For this
application, MATLAB’s preprocessing consisted of removing constant inputs, and mapping
the minimum and maximum values of all inputs to −1 and +1, respectively. The inverse of
these preprocessing steps were taken for the output of the network. While we created our
own training and testing data for the experiments, it is important to note that MATLAB uses
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the dataset to create its own internal training, testing, and validation data partitions. For all
the experiments conducted, we set MATLAB to split the given training data into 75% internal
training data, 20% internal validation data, and 5% internal testing data. The 5% internal
testing data are only used by Matlab. The test sets we describe in Section 4 are completely
held out and separate from Matlab’s internal testing data. Alternate methods of determining
model performance (such as cross-validation) could have been used, but we chose the held-
out test sets for specific reasons, which will be explained further in Section 4. The training
and testing splits we created are presented alongside the results for each experiment. Since
the inputs and outputs for each experiment are different, they are also presented alongside
the results for each experiment. Finally, ensemble averaging was frequently implemented.
When ensemble averaging is utilized, multiple models with different initial weights are
trained, and their outputs averaged [69]. Ensemble models typically have better performance
than single models, and are less likely to show outlier performance [70]. In all the tests
presented here, the neural networks that were ensemble-averaged varied by their weight
initialization. We did not use ensemble-averaging with different inputs, outputs, or number
of hidden nodes. If ensemble-averaging is used, it is specified alongside the results. All code
can be accessed at https://doi.org/10.5281/zenodo.5921140, accessed on 31 January 2022.

3.3. MLR Details

As with the ANNs, the MLR models were implemented using MATLAB. In par-
ticular, the Statistics and Machine Learning Toolbox [71] was used. Since the inputs,
outputs, and training/testing splits are experiment dependent, they are presented along-
side the results. No extra preprocessing was done for any of the MLR models and none
of the explanatory variables were transformed. That is, all MLR models are of the form
y = β01 + β1x1 + β2x2 + · · ·+ βpxp. While ANNs have many hyperparameters, such as
batch size, learning rate, loss functions, weight initialization, etc., MLR models do not.
Therefore, the MLR models can be run without specifying many hyperparameters before-
hand. All code can be accessed at https://doi.org/10.5281/zenodo.5921140, accessed on
31 January 2022.

4. Experiment and Results

To test the effectiveness of the ANN and MLR models in nowcasting microclimate
parameters, a specific suite of tests were conducted. In these tests, virtual potential temper-
ature, specific humidity, or individual wind speed components were predicted for LEMS A,
B, D, E, F, G, H, or L using the measurements from LEMS I, J, and K. The measurements
from LEMS I, J, and K used were the U and V wind components (where positive U points
east and positive V points north), surface temperature, barometric pressure, and virtual
potential temperature. When predicting specific humidity, the virtual potential temperature
input was replaced by the specific humidity input because it worked better. These environ-
mental parameters were chosen as outputs because they are typically measured by or can
be derived from standard measurements made on other weather stations and are critical
for dispersion modeling. LEMS I, J, and K were used as the input stations because they
captured the different kinds of flows present in the Cadarache Valley: slope flows (LEMS K),
valley flows (LEMS J), and ridge flows (LEMS I). (This was determined from a pre-analysis
of the data [72].) Since these LEMSs represented the different flows present in the valley, we
hypothesized that they would be the strongest predictors. These LEMSs were also present
at different elevations so they would capture vertical stratification of the atmosphere, which
is important for wind prediction, as shown in Duine et al. [3], Dupuy et al. [60]. LEMS C
was not used in any of the tests because a complete dataset was not available. However,
LEMS C was used for some of the analyses in the appendix. For example, we tested other
sets of stations as inputs, and the analysis can be seen in Appendix C.

There are two “held-out” test periods for each variable (these are not Matlab’s inter-
nally used test periods that were described in Section 3.2). None of the statistical models
were trained on these two test periods. The test period starting 15 January 2017 at 00:00

https://doi.org/10.5281/zenodo.5921140
https://doi.org/10.5281/zenodo.5921140
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standard local time and ending 20 January 2017 00:00 was characterized by thermally
driven flows. The second test period, starting 27 January 2017 00:00 standard local time
and ending 1 February 2017 00:00, was synoptically-forced. Since synoptically-forced flows
break up thermally driven flows, these two test periods represent two extremes present
in the Cadarache Valley, and test the range of the statistical models. The training data are
identical for all runs: 5-min averages of the data from 16 December 2016 to 15 March 2017,
excluding the two test periods. This training period was chosen because it is the period
where there was a full deployment of sensors. Five-minute averages were chosen for the
input variables to smooth turbulent fluctuations. We also tested other averaging periods
(10 min, 15 min, 30 min, and 1 h), but the results are not displayed here. The models worked
similarly well for those averaging periods.

An ANN ensemble average consisted of five randomly initialized neural networks.
Each ANN within the ensemble-averaged model had 15 inputs (five parameters each from
three LEMS), a single hidden layer, and one output. Each ANN had fourteen hidden nodes
in the hidden layer, and each ensemble average was initialized using the same random seed.
ANNs have several hyperparameters that can be changed to affect the model performance.
While the details related to the testing of these hyperparameters can be seen in Appendix A,
the main conclusion that needs to be presented here is that the ANNs do not exhibit a large
change in performance when varying the number of hidden nodes.

To summarize, a five-network ANN ensemble was trained for each of the four output
variables, for each of the eight target LEMSs, resulting in a total of 32 ANN ensemble
averages. In addition, an MLR model was trained for each of the eight target LEMS for
each of the four output variables, resulting in a total of 32 MLR models. The training data
are identical for all runs within a given test period: 5 min averages of the data from 16
December 2016 to 15 March 2017, excluding the test data. The test data consisted of the
periods from 15 January 2017 to 20 January 2017 and 27 January 2017 to 1 February 2017.
None of the models were trained on the test data.

Since it would be difficult to view the results for 64 individual tests, summary plots
were made for each of the two test periods. The results for the 15 January 2017–20 January
2017 period can be seen in Figure 3, and the results for the 27 January 2017–1 February
2017 can be seen in Figure 4. Each figure shows a box plot for each model for each variable
tested. Each box represents the eight target LEMS that were predicted by input LEMS I, J,
K. The abscissa shows the environmental variable predicted while the ordinate shows the
normalized root-mean-squared error (NRMSE) between the model and the experimental
data. The NRMSE is defined as:

NRMSE =

√
∑N

n=1(ŷn−yn)
2

N
max(y)− min(y)

, (1)

where ŷ is the model prediction and y is the experimental data.
For visualization purposes, time series plots for subsets of the two periods can be seen

in Figures 5 and 6. These figures also highlight the range of possibilities in the Cadarache
Valley. For example, the virtual potential temperature plot of the synoptic period (Figure 6),
shows the three stations having very similar virtual potential temperatures for the entire
time period. However, the same plot for the thermally-driven period (Figure 5) shows the
three stations having an approximately 7 ◦C virtual potential temperature difference at
points in the time period, which is quite large, especially for such a small domain.

A visualization of the flows for a single time within both periods can be seen in
Figure 7. The information presented in Figure 7 is also in Figures 5 and 6. Furthermore,
scatter plots for the 15 January 2017–20 January 2017 period for both models when predict-
ing virtual potential temperatures are shown in Appendix B.
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Figure 3. Summary of the performance of the 64 tests conducted for the 15 January 2017–20 January
2017 thermally-driven flow period. The abscissa represents the environmental variable being pre-
dicted, while the ordinate shows the normalized root-mean-squared error between the model and the
experimental data. Any result outside of 1.5 times the interquartile range was deemed an outlier and
is represented by a dot. The data represented by each “box” are the eight LEMS that were predicted
by input LEMS I, J, and K.

Figure 4. Same as Figure 3 but for the 27 January 2017–1 February 2017 period corresponding to
synoptically-forced flows. Note that the ordinate scale is different from Figure 3.
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Figure 5. Time series for 17 January 2017 to 19 January 2017 in local standard time, representing a subset of the thermally-driven flow period. The (left) column
of plots shows the ANN predictions compared to the data, and the (right) column of plots shows the MLR predictions compared to the data. The solid lines are
predictions, while the dotted lines are measurements. Blue is LEMS A, red is LEMS E, and yellow is LEMS F.
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Figure 6. The same as Figure 5 but for 27 January 2017 to 29 January 2017 local standard time, representing a subset of the synoptically-forced flow period.
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Figure 7. Measured and predicted flow visualization for a single time step in the respective period.
The LEMS locations are marked by bold letters. LEMS I, J, and K do not show arrows because they
were used for the training data, and LEMS C does not show arrows because it was excluded from
this analysis. The (top) half of the figure displays an example of a typical thermally driven flow in
the Cadarache Valley (17 January 2017 00:15:00 local standard time), and the (bottom) half of the
figure displays an example of typical synoptically-forced flow in the Cadarache Valley (27 January
2017 00:15:00 local time). These snapshots can also be seen in the time series Figures 5 and 6. Map is
modified, and the original is from https://www.geoportail.gouv.fr/carte, accessed on 9 October 2021.
[institut national de l’information geógraphique et forestier̀e (IGN)].

5. Discussion

Many interesting points of discussion resulted from this analysis. Figures 3 and 4
show that for both test periods, the mean NRMSE of the MLR predictions was close to the
mean NRMSE of the ANN predictions. The virtual potential temperature also displayed
the lowest prediction error, while the wind components had the highest prediction error.
Interestingly, the prediction of the V component of the wind velocity vector had a higher
inter-quartile range than the U component. It appears that for all variables, except for
specific humidity during the thermally driven test period, the ANN has a better mean
prediction than the MLR, though not by much. Finally, it is important to note that several of
the prediction sets have outliers, which are defined as any value that is outside 1.5 × IQR,
where IQR is the inter-quartile range.

https://www.geoportail.gouv.fr/carte
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To quantify the similarity between the ANN and MLR models, we statistically ana-
lyzed the data similar to Valavi et al. [73] and Shafizadeh-Moghadam et al. [74]. We used
Welch’s two-sample t-test to compare the mean NRMSE for all of the LEMSs between each
of the environmental variables for each of the two test periods. When conducting the
statistical test for a given test period and environmental variable, the null hypothesis was
that the two methods would perform the same, and the alternate hypothesis was that the
two methods would perform differently. As seen in Table 2, the only p-values below the 5%
significance level were for U and V for the 27 January 2017–1 February 2017 test period, and
only U was below the 1% significance level. This means that the null hypothesis could not
be rejected for all other tests. This evidence indicates that the two methods likely have the
same performance, with the exception of predicting U and V during synoptically-forced
flow periods, where the ANN probably (but not definitely) performs better.

Table 2. Table of p-values from conducting Welch’s two-sample t-test to compare the MLR and ANN
models.

Variable 15 January 2017–20 January 2017 27 January 2017–1 February 2017

Specific Humidity 0.29 0.68
Virtual Potential Temperature 0.82 0.47

U 0.71 6.6 × 10−3

V 0.75 2.0 × 10−2

A difference in performance between the thermally driven flow days (15 January 2017
to 20 January 2017) and the synoptically-forced flow days (27 January 2017 to 1 February
2017) for the wind-velocity components was apparent. For example, the mean NRMSE for
the U component prediction during the thermally driven period was between 0.10 and 0.12,
while the same statistic for the synoptically-forced period was between 0.05 and 0.06. As
expected, on thermally driven flow days, the wind velocity between stations was much less
correlated and behaved more independently. In contrast, on synoptically-forced flow days,
the wind velocity between stations was much more correlated, and the readings were very
similar. Hence, the models predict the wind velocity much better on synoptically-forced
flow days.

It is also important to discuss the physical reasons why wind-velocity components are
more difficult to predict than virtual potential temperature or specific humidity. First, both
virtual potential temperature and specific humidity are strongly correlated with the diurnal
cycle. The wind velocity components in the Cadarache Valley also have a diurnal cycle, but
the cycle is not powerful enough to overcome all the weak fluctuations and perturbations
that might be present. However, wind velocity is also difficult to predict for reasons other
than the underlying environmental physics. The LEMS measures wind velocity with a cup
and vane anemometer, which does not measure wind speeds or direction accurately, if at
all, at wind speeds less than 0.5 ms−1. Therefore, many of the low-magnitude readings
are likely incorrect. During these low wind speed periods, the models gave non-zero
values, while the data indicated zero speed, increasing the calculated error. In addition,
the anemometer “transfer function” had a discontinuity. The wind speed measurement
was zero and then quickly jumped to 0.5 ms−1 or above. These discontinuities can be
difficult to model accurately. To overcome these difficulties, it would be better to use a
sonic anemometer that measures low wind speeds more accurately.

When using these methods, the input LEMS must be chosen. We chose LEMS I, J,
and K because they were representative of the three types of flow in the Cadarache Valley.
However, we could have chosen any three LEMS as the inputs. The question that arises
is: does the choice of input LEMS affect the general prediction power of these methods?
To answer this, we conducted a test where all the possible combinations of three LEMS
were used to predict the values at the other LEMS. This ended up being 12!

3!(12−3)! = 220
combinations total. The details of this analysis can be seen in Appendix C. In short, the
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choice of LEMS does not matter for the types of predictions discussed here, i.e., any three
LEMS were as predictive as the next three.

We note that we originally did not intend to test MLR models on this dataset be-
cause we assumed that the relationship between the measurements of the different LEMSs
was highly non-linear. However, when conducting the ANN hidden node analysis (see
Appendix A), we noticed that a single-node ANN performed nearly as well as a multi-node
ANN. Since a single-node ANN is essentially a multiple linear regression whose output is
passed through a sigmoidal function, we decided to try an MLR as the nowcasting method.
Surprisingly, it worked well. While the governing equations of the flow and transport
processes being measured are non-linear, those non-linear effects seem to be secondary to
the overall forcing mechanisms (e.g., radiation processes, large-scale wind) that govern the
flow that the MLR is able to capture.

Since MLR models work on this dataset, there are two main reasons to use an MLR
instead of an ANN, if possible. The first is computational energy/runtime. Even though
the energy costs of training and running ANNs have dropped significantly in the last
several years, they are still more computationally intensive to operate than MLR models.
The exact timing varies, but on our laptop-class computers, the ANNs train on the order
of 10–100 s, while the MLR models train in less than a second. The training time is not
necessarily important for gap filling, but can be. If gap filling is to be done in situ on
low-powered hardware, then training time and computational complexity become more
important. The second is interpretability. ANNs tend to be black boxes that are difficult to
interpret, whereas MLR models and their associated coefficients are transparent and easier
to interpret. Since the performance of the two models is so similar, and because there is not
much room for improvement, we think the energy/time requirements of the MLR make it
a better model to use.

However, the biggest concern associated with using MLR models is the assumptions
that need to be met. According to Poole and O’Farrell [75], there are six critical assumptions
made when using an MLR successfully. One of these assumptions is that the independent
variables are linearly independent of each other. When they are not, collinearity exists, and
the precision of the regression coefficient decreases [76]. During our analysis, we noticed
that there were high variance inflation factors (VIFs) for many of the coefficients, implying
multicollinearity. This makes intuitive sense. For example, when the sun sets, all stations
will measure a radiation drop, and the air and surface temperature measurements will
correlate. It is important to note that linear regression models can predict perfectly well with
high VIFs, but the regression coefficients have high variance, and statistically interpreting
the models must be done with care [77,78]. To successfully interpret the models, one must
reduce the number of explanatory variables until multicollinearity is minimized. This can
also be done for the ANN, but due to the ANN’s inherent “black-box” nature, one should
be careful interpreting it regardless. Manually, multicollinearity can be minimized by
calculating correlation coefficients between all explanatory variables and removing highly
correlated ones. Removing correlated variables can also be done by running algorithms,
such as lasso or ridge regression [27], which automatically removes unneeded variables.
Using lasso regression will also quickly reveal which stations are most correlated with
others. While some preliminary work has been done with regard to this, it was not included
in this paper as we felt it was out of the scope. However, we have included a table of input
variable correlation coefficients along with the preliminary discussion in Appendix D for
reader reference.

Despite ANNs being more complicated to train than MLRs, a standard feedforward
ANN is easier to train than other models, such as deep-learning models [79]. Many
deep-learning models require desktop-class computers with powerful GPUs to train, and
frankly, are probably overkill for this problem given the performance of both the ANNs
and MLR models. For this paper, we wanted to test simple models that can be run
on limited computing resources, possibly even on the sensor stations themselves. This
is also one reason we did not test state-estimation methods. State-estimation methods



Atmosphere 2022, 13, 408 16 of 26

are also computationally expensive, and many of them require an underlying physical
model [52]. At the spatial scales present in this problem, they would require using Large-
Eddy Simulations (LES) [80].

6. Summary

The main purpose of this paper is to demonstrate that artificial neural networks and
multiple linear regression models can be used to nowcast environmental measurements
in complex-terrain boundary-layer meteorological applications. Specifically, we show
that these methods work in the Cadarache Valley located in southeastern France. The
valley, which is approximately 6 km long by 1 km wide, was instrumented with a dozen
low-cost weather stations (called LEMS) for a four-month-long field experiment. The
weather stations measured several different variables, but the variables predicted by the
models were wind-velocity components, virtual potential temperature, specific humidity,
and air temperature. The valley exhibited various types of flows, including nearly pure
thermally-driven flows and a wide range of synoptically-forced flows.

In general, both the ANN and MLR models performed similarly well on the test
data. Two test periods were used. The test period from 15 January 2017 to 20 January
2017 represents mostly thermally driven slope- and valley-flow, while the test period from
27 January 2017 to 1 February 2017 represents mostly synoptically-forced flow. Both models
performed better on synoptically-forced flow periods over thermally-driven flow periods
because variability amongst the stations was smaller during synoptically-forced periods.
Both models predicted specific humidity and virtual potential temperature better than
the wind components, likely because the wind components are much more sensitive to
small perturbations that are not overcome by the diurnal cycle. These promising results
indicate that ANN models, and at times MLR models can be used for data filling after a field
experiment has been completed. This provides substantial spatial information in regions of
complex terrain where thermodynamic and dynamic variables are highly variable in space.

Despite these tests, there are still many tests that can be run, and future work to be
done. The purpose of this paper was to present promising results from some preliminary
tests of these methods, not to be an exhaustive reference on the methods’ capabilities.
In addition, some of these tests have virtually limitless configurations that can be run,
meaning we had to limit the scope of the tests. For example, we ran the hidden node tests
(presented in Appendix A) using a single input environmental variable (for 11 LEMS). We
could have run it using two environmental variables for 11 LEMSs, or three environmental
variables. etc. Mainly, we chose tests that we felt exposed the behavior of each model well
without trying to infinitely optimize parameters and hyperparameters. Especially for the
ANN, we felt that many of the possible tests we could have done were out of the scope of
this particular paper since we showed that (a) MLR models work, and (b) the number of
hidden nodes does not affect output performance very much.

Along these lines, we could exhaustively test a completely different model such as
random forest regression. Random forest regression is a powerful method that has been
used for atmospheric science applications in the past [81]. We did some preliminary testing
with a random forest regression model, and it worked almost as well as the MLR and ANN
models (See Appendix E for preliminary results). With hyperparameter tuning, we believe
random forest regression can work similarly well. We decided not to pursue the random
forest regression model in-depth for this paper because we believed that the MLR and
ANN models showed sufficient performance.

Hence, there are many topics that we would consider as possibilities for future work.
For example, for both ANN and MLR models, the environmental variables or stations
could be added one by one, in different orders to see how results are affected, similar
to Dupuy et al. [62]. The amount of training/testing data could be changed to determine
the minimum amount of data required to create a successful nowcasting tool. Data from
different locations with different spatial/temporal scales or weather events (e.g., precip-
itation events) could be used. One could test scientific hypotheses about the flow using
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the MLR models. Testing scientific hypotheses this way would also reveal the importance
of the variables used. Finally, one could test time-series-specific regression and neural
network-based models, such as ARIMA or LSTM.

With the completion of these and other tasks, we conclude that both artificial neural
networks and multiple linear regression show promise in becoming successful nowcasting
tools in micrometeorology.
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Appendix A. Artificial Neural Network Sensitivity Tests

All neural networks have a number of hyperparameters (parameters not part of the
training process) that can be tuned to change model performance [79]. In this section, we
investigate sensitivity of the model results to some of these hyperparameters. Since the
MATLAB Neural Network Toolbox was used for implementation, many of the default
parameters of the toolbox are used, and not expanded upon here. Some example hyper-
parameters that are not discussed are the hidden node activation function, the training
algorithm, and the training batch size. Exploration of the variation of these hyperparam-
eters is presented in various sources in the literature (e.g., [82]). We also do not explore
the number of hidden layers used in the ANNs, as there is often no practical reason to
have more than one hidden layer for standard feedforward neural networks [83]. Note that
LEMS C is included in these results, even though it was excluded from the main text.

One of the more important hyperparameters that can be tuned is the number of hidden
nodes in the hidden layer. To study this effect, we varied the number of nodes in the ANN

https://doi.org/10.5281/zenodo.5921140
https://doi.org/10.5281/zenodo.5921140
https://www.openstreetmap.org
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to see how the performance changed. Four tests were conducted where the hidden nodes
were varied. In each of the four tests, a single environmental variable from LEMS A,
B, C, D, F, G, H, I, J, K, and L was used to predict the same environmental variable at
LEMS E. The four environmental variables used were specific humidity, virtual potential
temperature, wind velocity U component, and wind velocity V component. Note that
each test only uses one environmental variable as the input, whereas the tests described in
Section 4 used the wind components, virtual potential temperature, surface temperature,
and barometric pressure as inputs. This was done because we thought that a simpler test
would better illustrate the effect of changing the hidden nodes. The testing data for each
ANN were from 15 January 2017 to 20 January 2017. This testing period was used because
it was studied extensively for this experiment elsewhere [60]. The training data were from
16 December 2016 to 15 March 2017, excluding the testing data period. The number of
nodes was incremented by one from 1 node to 30 nodes. For each number of nodes, an
ensemble average of five neural networks was used to calculate the performance. The
output of this ensemble average was used to determine the performance of any given
number of nodes. An ensemble average was used here to prevent any outlier ANNs from
skewing the results. The NRMSE was used as the error metric to compare variables.

As shown in Figure A1, the ANN performance is relatively independent of the number
of hidden nodes for all environmental variables predicted. Interestingly, increasing or
decreasing the number of hidden nodes does not significantly change the performance
of the ANN. Even more interestingly, for all variables except specific humidity, a one-
hidden-node ANN performs as well as, or better than “more powerful” ANNs. Even for
specific humidity, the one hidden node network has a low NRMSE, but not as low as the
higher-node networks. In fact, this result is what motivated us to use linear regression
to predict these environmental variables as a single node neural network is essentially
the linear regression equation passed through an activation function. This also explains
why we used 14 hidden nodes for the tests conducted in Section 4; we could have used
most values between 2 and 30 and it would not have made a very large difference in the
results. The fact that a multiple linear regression can perform a task essentially as well as
an artificial neural network means that an ANN is unnecessarily powerful for this specific
task, and that hyperparameter tuning will only yield marginal gains.
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Figure A1. Illustration of the impact of incrementally adding hidden nodes to the base ANN described
in Appendix A on model performance as quantified by normalized RMSE.

Another hyperparameter that is relevant to our application of ANNs is the number
of output nodes. ANNs are not limited to one output; they can have several outputs for
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any number of inputs. To produce the results of Section 4, eight different ANNs were
trained with one output each. We repeated the tests from Section 4 identically, except we
trained a single ANN with eight outputs. We found no discernible or systematic difference
between the results of the two approaches. Hence, we have not presented any plots from
the multiple-output test. However, we did notice that the time to train one multiple-output
neural network was longer than training eight separate single-output networks.

On a more practical note, a hyperparameter that is important when using MATLAB’s
Neural Network Toolbox is the train/test/validate data split percentage. When training
the ANN, MATLAB internally splits the data into a training subset, a testing subset, and
a validation subset. By default, MATLAB uses 70% of the original data as training data,
15% as validation data, and 15% as test data. The test data are only there so the user can
view the performance of the neural network. The ANN performance on validation data,
however, is often used by MATLAB as a training stopping condition. Therefore, in this
instance, having a small test split will not affect us very much, as we have our own separate
test data that the ANN has never “seen” before. However, having more training data will
increase neural network performance (and avoid overtraining), and having more validation
data will improve generalization. This is why all ANNs presented in this paper have a
train/validation/test split of 75%/20%/5%.

Appendix B. Paired in Space and Time ANN and MLR Evaluations

While Figures 3 and 4 show the summaries of 64 different tests, here, we present
additional base results of some of these tests. The ANN and MLR scatter plots for the
prediction of virtual potential temperature for the 15 January 2017 to 20 January 2017 period
are shown in Figures A2 and A3.
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Figure A2. Scatter plots for the ANN prediction of virtual potential temperature for the 15 January
2017–20 January 2017 experimental period. LEMS I, J, and K are the inputs, and the units are in Kelvin.
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Figure A3. Scatter plots for the MLR prediction of virtual potential temperature for the 15 January
2017–20 January 2017 experimental period. LEMS I, J, and K are the inputs, and the units are in Kelvin.

Appendix C. Multiple Linear Regression Location Sensitivity

The last test we performed was an investigation of the MLR model’s sensitivity to
inputs. The results presented in Section 4 always used data from the same three LEMS as
inputs: LEMS I, J, and K. These LEMS were chosen to be the inputs because their locations
were spread across the measurement area (both horizontally and vertically) and captured
many phenomena associated with thermal circulation in complex terrain (e.g., cold pools,
slope/valley flows). A priori, one might assume that the good performance exhibited
by the MLRs is due to the locations of the input LEMS, and not because of the inherent
power of the prediction algorithm. To test this, a combinatorial analysis was performed,
where every possible combination of three LEMSs was used to predict values at the other
nine LEMSs. The inputs were identical to those from the tests in Section 4. Specifically,
the inputs were: wind velocity components, surface temperature, barometric pressure,
and virtual potential temperature from three LEMSs. The output was the virtual potential
temperature of the other nine LEMSs. The prediction algorithm used was MLR. While
LEMS C was excluded from the tests in Section 4, it was included here to truly explore the
spatial relationship between the LEMSs.

The testing data were taken from 15 January 2017 to 20 January 2017. The training
data were from 12 January 2017 to 15 March 2017, excluding the testing data period (LEMS
C was available from 12 January on). There are 12!

3!(12−3)! = 220 different combinations of
input LEMSs. Throughout this document, when we refer to the “combination number”, we
mean a specific combination out of the 220 combinations. For example, combination “1”
would have LEMS A, B, and C as input LEMS, and the rest as output LEMS. The metric we
use for evaluating the performance was R2, also known as the coefficient of determination.
R2 is defined as R2 ≡ 1 − (∑N

n (yn − ŷn)
2) · (∑N

n (yn − y)2)−1, and measures how well the
model performs compared to the dataset mean. Since nine different MLR models were
trained for each combination, there were nine R2 values associated with each combination;
each R2 value was computed with the difference between the MLR model prediction and
the experimental data.

Figure A4 shows the results of the combinatorial analysis for prediction of the vir-
tual potential temperature. The figure shows the mean and range of R2 values for each
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combination. Most combinations have a mean R2 value above 0.95, and most R2 ranges
were above 0.90. This shows that the choice of input LEMSs was not very important when
making predictions. The combination with an unusually low R2 range was combination
177, which had LEMS E, H, and J as input LEMSs. These LEMSs are highly correlated since
they are aligned with the valley and therefore have a hard time predicting the other LEMSs.
Regardless, the worst case prediction for this combination had an R2 value of about 0.77,
which is still good. The fact that the most combinations had high R2 values also justifies
the choice of LEMS I, J, K for the tests conducted in Section 4.

Figure A4. Example of combinatorial analysis for the virtual potential temperature predictions from
MLR for 15 January 2017 through 20 January 2017. For every combination of three input and nine
output LEMSs, the minimum, maximum, and mean R2 value was calculated. The range of the R2

values are shown in light blue and the mean R2 value is shown in red. As is evident from the plot, all
combinations of input LEMSs perform similarly. We use these statistics because they are a good way
to summarize multiple time series.

Appendix D. Input Variable Correlations

Figure A5 shows the Pearson’s R correlation coefficients between all input variables
when predicting specific humidity. As expected, like variables between stations were highly
correlated. However, correlations between unlike variables were very poorly correlated,
even showing no correlations. If statistical inference were to be done on the results pre-
sented here, work would need to be done to remove highly correlated variables while
maintaining predictive power. This would likely lower the variance inflation factors that
were referenced in the main text.
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Figure A5. Pearson’s R correlation coefficients between the input variables when predicting specific
humidity. Further discussion can be found in Appendix D.

Appendix E. Random Forest Preliminary Results

In addition to MLR and ANN tests, we performed preliminary testing with a random
forest regression (RFR) model. As stated in Section 6, we chose not to pursue this further
because we believed that the other two models performed sufficiently. However, the results
may be of interest to the reader so we have included them here.

We used Matlab’s Statistics and Machine Learning Toolbox’s implementation of
boosted random trees with default settings. The toolbox fit 100 boosted regression trees to
the data. We used identical parameters and training sizes as the MLR and ANN models.
Figures A6 and A7 below show the results in the same format as Figures 3 and 4.

It is evident from Figures A6 and A7 that the RFR model performs about as well as
the other two models at best, and significantly worse than the other two models at worst.
However, we believe that hyperparameter tuning will increase the performance of the RFR
model. We do not believe that it is able to perform significantly better than the other two
models though, as the other two models already perform quite well.
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Figure A6. Same as Figure 3 but including the random forest model.

Figure A7. Same as Figure 4 but including the random forest model.
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