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Abstract 8 

 9 

Solute transport models based on the resolution of the 3-D Advection-Dispersion (AD) 10 

equation are frequently plagued by several numerical problems, which add to the high 11 

computational cost. The hydrological model NIHM (Normally Integrated Hydrological 12 

Model) was recently proposed as a tool simulating the hydrological responses of watersheds 13 

with shallow saturated aquifers by coupling surface flow and a low-dimensional subsurface 14 

system, including the vadose zone. In this paper, we couple the low-dimensional flow model 15 

NIHM with a transport module solving the AD to propose an approach that enables to reduce 16 

the dimensionality of both the flow and transport problems. In NIHM, the low-dimensionality 17 

in the subsurface compartment results from an integration along the local direction normal to 18 

the bedrock of the aquifer. NIHM was previously evaluated and applied to actual 19 

hydrosystems—without addressing mass transfers—and it showed its ability to capture 20 

various hydrological responses even from complex systems. However, the relevance of a low-21 

dimensional approach to transport is not proven yet as the model reduction could also render 22 

approximated velocity fields inappropriate to mass transfer problems. The accuracy and 23 

computational efficiency of the proposed model have been thoroughly examined through 24 

various synthetic test cases under different hydrodynamic conditions to assess the influence of 25 
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the reduction of dimensionality on solute transport simulations. The findings of this study 26 

demonstrate that the reduction of dimension remains suited to predicting solute transport 27 

behaviors in shallow subsurface systems while providing an important gain in computation 28 

time. This might be promising for various applications dealing with groundwater quality. 29 

 30 

Keywords: subsurface solute transport, model reduction, low-dimensional model, advection-31 

dispersion equation, transport scheme 32 

 33 

 34 

 35 

 36 

1- Introduction 37 

 38 

Water resources are polluted and contaminated by different anthropogenic activities. 39 

Major sources of pollutants may include intensive farming practices, the pharmaceutical 40 

manufacturing industry, urbanization, population growth, and improper sewer systems (Burri 41 

et al., 2019). Contaminants transported in the groundwater may remain for decades, resulting 42 

in long-term water quality degradation and many other environmental issues. Contaminant 43 

residence times usually depend on the properties and characteristics of the aquifer, the overall 44 

hydrological conditions, and the physical-chemical characteristics of the contaminant itself. 45 

By ranging from weeks to several years, these residence times are able to threaten 46 

groundwater renewability and usability (Chapman and Parker, 2005; Moeck et al., 2017). 47 

Exposure to water pollution can generate severe problems and might become a serious 48 

concern to human health and the environment (Wakida and Lerner, 2005). Tackling these 49 

environmental challenges has shed light on the importance of effective groundwater 50 
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management tools for water quality assessment and prediction.  51 

Mathematical modeling of solute transport in different hydrological systems has 52 

received particular attention from the hydrological community for years. A tremendous 53 

number of studies have been specifically designed either in the theoretical or the applied 54 

domains with regard to groundwater contamination (Carnahan et al., 1969; Leij et al., 1991; 55 

Selim, 1992; Wu and Jeng, 2017). Several analytical approximations and numerical 56 

approaches have been developed to reproduce solute transport behaviors in porous media 57 

(Barry and Parker, 1987; Bosma and Van der Zee, 1992; Leij and Van Genuchten, 1995; Dou 58 

et al., 1997; Shan and Javandel, 1997). The migration of contaminant species associated with 59 

groundwater flow usually obeys elementary mechanisms such as advection, diffusion-60 

dispersion, and reaction. In many groundwater transport models, mass transport through 61 

porous media is described by the Advection-Dispersion (AD) equation (Bear, 1972; Barry, 62 

1992). This equation can be solved either by numerical or analytical methods. Analytical 63 

solutions to the AD are available for specific initial and boundary conditions, which mostly 64 

results in an applicability limited to simple geometries and homogeneous aquifers (Konikow 65 

et al., 1997; Tartakovsky, 2000; Rocha et al., 2007). Due to the complexity of actual natural 66 

systems, numerical methods for solving the AD have been developed and are considered 67 

today as the best tools to account for the effect of aquifer heterogeneities, various boundary 68 

conditions, and diverse transient source-sink terms in groundwater solute transport processes 69 

(e.g., Craig and Rabideau, 2006; Boso et al., 2013). For instance, the modular 3-D transport 70 

model MT3DMS (Zheng and Wang, 1999) was used for several applications to simulate 71 

changes over time and space in concentrations of groundwater contaminants (Zheng et al., 72 

2012; Colombo et al., 2019; Lyra et al., 2021). 73 

Physically-based models solving the AD with a full 3-D approach often face crucial 74 

problems, mainly associated with numerical approximations of the continuous AD (e.g., 75 
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numerical dispersion of many discrete schemes), the complexity of the discretization process, 76 

and the high demand in computational resources, etc. Fully physically-based models such as 77 

HydroGeoSphere (Therrien and Sudicky 1996; Graf and Therrien, 2005) and MODFLOW 78 

(McDonald and Harbaugh, 1988; Harbaugh et al., 2000) are capable of simulating the fate of 79 

contaminants in groundwater and have been commonly used for a wide variety of problems in 80 

hydrology. However, with the classical computation resources available for a majority of 81 

practitioners, but also researchers, these models may need several days for running a single 82 

transport scenario when applied to large systems. Therefore, large problems involving 83 

complex geometries and complicated systems render numerical solutions prohibitively 84 

expensive. 85 

Alternative numerical approaches have drawn the attention of both the hydrological 86 

and applied mathematics communities with the aim to reduce this computational burden and 87 

describe solute transport processes in a computationally efficient manner (e.g., Robinson et 88 

al., 2012; Rizzo et al., 2018). The main idea is to make simpler physically-based models in 89 

favor of faster computation and wider ranges of applications for groundwater management 90 

problems. One of the interesting outcomes of these investigations is the development of low-91 

dimensional hydrological models for flow, based on the reduction of the dimensionality of the 92 

problem (Troch et al., 2003; Pan et al., 2015; Delay and Ackerer, 2016; Kong et al., 2016; 93 

Weill et al., 2017). However, only a few contributions assessed the effects of reduced 94 

dimensionality in simulating subsurface solute transport; most studies targeted the flow 95 

problem in watersheds.  96 

Regarding transport, the majority of recent low-dimensional models mentioned in the 97 

literature are based on the POD (proper orthogonal decomposition) method. This approach 98 

was introduced by Sirovich in 1987. As a first step, a collection of snapshots is stored by 99 

running the original fully-dimensional model. Then, as a second step, the POD technique is 100 
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applied with the resulting singular vectors used as a basis for projection onto a subspace of 101 

lower dimensionality than the original model (Robinson et al., 2012). Nevertheless, some 102 

non-linearities associated with many real-world groundwater systems may affect the 103 

correctness of the POD model. Another downside of the technique is the need for prior runs 104 

with a complete model, including the imperative representation of the complete system before 105 

proceeding with the dimensionality reduction. Stated differently, collecting beforehand an 106 

ensemble of reliable model responses for the fully dimensioned system is mandatory.  107 

Other approaches are now available. For example, a low-dimensional approach was 108 

recently proposed in the hydrological model NIHM (Normally Integrated Hydrological 109 

Model; Pan et al., 2015; Weill et al., 2017; Jeannot et al., 2018, 2019). This model couples a 110 

low-dimensional (2-D) subsurface model to a 2-D overland flow and 1-D river flow and was 111 

shown to be efficient in reproducing the flow response of various complex hydrological 112 

systems (Jeannot et al., 2018, 2019). Unlike simpler 2-D models (mainly aimed at simulating 113 

the behavior of the saturated zone under planar horizontal flow, that is, by following the so-114 

called Dupuit assumption), NIHM handles both the vadose and the saturated zones of the 115 

subsurface within a single 2-D compartment. Nevertheless, it is worth noting that NIHM was 116 

designed to mimic shallow subsurface systems. 117 

The integration of the flow equation along a direction normal to bedrock simplifies the 118 

infiltration process from the surface within the vadose zone (for details, see Jeannot et al., 119 

2018, 2019). In short, infiltration is simply viewed as a water transfer from the surface to the 120 

subsurface, which changes over time and space, the mean saturated hydraulic head evaluated 121 

along the direction of integration. With thick vadose zones, NIHM might render rough local 122 

evaluations of mean water fluxes that do not completely depict the local flow processes in the 123 

vadose zone compared to a complete 3-D resolution of the Richards equation. That being said, 124 

and especially regarding the present study, contamination problems of subsurface water are 125 
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all the more frequent when the aquifer is shallow. This feature justifies a study on the 126 

consequences of the dimensionality reduction for flow onto solute transport.  127 

The aim of the present contribution is to assess if the low-dimensional method 128 

implemented in NIHM can be extended to efficiently describe subsurface transport. An 129 

approach coupling the flow module of NIHM and a 2-D integrated advection-dispersion 130 

transport module based is proposed. This results in the so-called NIHM-T low dimensional 131 

flow and transport models. The evaluation of the approach is carried out through the 132 

comparison of results produced by NIHM-T and those produced by a fully dimensioned 133 

version of the code TRACES ((Siegel et al, 1997, Younes et al, 2010). The latter solves via 134 

advanced numerical methods a 3-D Richards equation for flow in the vadose and saturated 135 

zones, and a 3-D advection-dispersion equation for solute transport. It is worth noting that the 136 

model NIHM is only devoted to solving flow in the various compartments of a watershed.  137 

The “T” (for transport) module inherits from the experienced strategy and the numerical 138 

techniques of TRACES, in its two-dimensional version. The resulting transport module is 139 

employed for solving a 2-D integrated AD with velocity fields inherited from the calculations 140 

by NIHM for flow. This not only avoids the complete implementation of a transport module 141 

in NIHM but also facilitates the comparison between transport scenarios from a 2-D 142 

dimensionally reduced model and a full 3-D approach. Eventual discrepancies between both 143 

formalisms cannot be associated with eventual numerical differences by solving 2-D versus 3-144 

D transport with different numerical methods. The comparisons discussed hereafter are only 145 

the consequences of reducing the dimensionality of flow in a simplified subsurface model.    146 

The paper is structured as follows: We first introduce the physical and mathematical 147 

models for subsurface flow and solute transport in porous media. Then, the coupling 148 

algorithm between the models NIHM and the transport module (inheriting from TRACES in 149 

its 2-D version, for the coupling with NIHM - flow) will be outlined. Finally, the effects of 150 
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reducing the dimensionality of the flow problem for solute transport will be detailed through 151 

applications to different synthetic test cases.  152 

 153 

2. Low-dimensional modeling of flow and transport in the subsurface 154 

 155 

The following section is dedicated to the description of the low-dimensional flow and 156 

transport modeling approaches. The subsurface model NIHM is first briefly presented. The 157 

low-dimensional transport equation is then described. The resolution strategy—including a 158 

coupling between NIHM and the (2-D) transport module—is detailed before giving the 159 

indicators that allow for the comparison of 2-D integrated transport results and those from full 160 

3-D calculations. 161 

 162 

2-1- Low-dimensional subsurface flow model NIHM 163 

Subsurface flow modeling is carried out using the low-dimensional subsurface module 164 

of the integrated hydrological model NIHM (Pan et al., 2015; Jeannot et al., 2018). The 2-D 165 

subsurface equation is derived from the integration of the 3-D Richards equation (Richards, 166 

1931) along a direction normal to the bottom of the aquifer, within a local Eulerian coordinate 167 

system ( ), ,x y z  defined by directions ( ),x y  in the bedrock plane and ( )z  normal to the 168 

bedrock. The integration bounds are the bedrock elevation b
z and the soil surface elevation 169 

s
z  . After integration along direction z, the resulting low-dimensional (2-D) subsurface flow 170 

equation comes down to (e.g., Jeannot et al., 2018): 171 

( ) ( )( )θ
θ . θ

s s s

b b b

z z z

w w

z z z

h
Ss S dz h dz q dz

t t

∂ ∂ + + ∇ − ∇ = ∂ ∂ 
∫ ∫ ∫K                                                           172 

(1) 173 

 174 
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where θ [-] is the water content, w
S  [−] is the water saturation, Ss [L-1] is the specific storage 175 

capacity of the medium, K [LT-1] is the tensor of hydraulic conductivity, h [L] is the 176 

hydraulic head, and w
q [T-1] is a source-sink term. The unsaturated soil hydraulic functions 177 

describing the nonlinear relationships between saturation, water content, and hydraulic 178 

conductivity are modeled using the Mualem and Van Genuchten equations (Van Genuchten, 179 

1980). 180 

This low-dimensional approach assumes that the distribution of water pressure 181 

throughout the soil profile (from the bedrock to the soil surface) is simplified to evaluate the 182 

integral terms in Eq. (1) by calculating a single head value at each location ( ),x y  and thus 183 

resulting in a 2-D approach. For the sake of simplicity, it is assumed that the pressure 184 

distribution along the direction normal to the bedrock is hydrostatic, that is, the flow is mainly 185 

parallel to bedrock. 186 

As a consequence, the description of flow through the unsaturated zone is simplified. 187 

Rainfall is directly applied as a recharge flux making the water table rise. Moisture in the 188 

unsaturated zone increases accordingly by following the hydrostatic (capillary) pressure 189 

hypothesis and the relationships between pressure and water saturation. Infiltration fronts and 190 

moisture storage in the unsaturated zone are not described the same way as would render a 191 

Richards-based approach. Furthermore, the time variation of the water content θ is null in the 192 

saturated zone (with w
S =1), and the term in Eq. (1), including the specific storage capacity Ss193 

, is usually negligible compared to the time variation of the water content within the 194 

unsaturated profile. 195 

Introducing the water table elevation w
z  as an integral bound and using the two 196 

previous assumptions, Eq. (1) is rewritten as: 197 
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( ). w

h
S h Q

tt

∂ +∇ − ∇
∂

∂θ + =
∂

T                                                                                                198 

(2) 199 

where  ( )
z

w

z

z

= z dzθ θ∫ , sat
S = Ss h ,  and ( )( )

s

w

z

sat xy

z

h z dz= + θ∫T K K . 200 

Note that in Eq. (2), h has become a mean hydraulic head along the direction normal to 201 

bedrock. satK  and sat
Ss  are the depth-averaged saturated hydraulic conductivity tensor and 202 

specific storage capacity in the saturated zone, respectively. Eq. (2) is solved over an irregular 203 

triangular mesh using a Crouzeix-Raviart finite element (CRFE) scheme (Crouzeix and 204 

Raviart, 1973), an implicit scheme in time, and a Newton-Raphson algorithm to handle 205 

nonlinearity. This approach has been tested in various hydrological configurations and 206 

successfully applied to several real-world systems (Pan et al., 2015; Weill et al., 2017, 207 

Jeannot et al., 2018). The results show that reducing dimensionality for flow preserves the 208 

main characteristics of the flow dynamics in a watershed while reducing the computation 209 

burden significantly.   210 

 211 

2-2-  Governing equation for low-dimensional subsurface transport 212 

The low-dimensional subsurface solute transport equation is derived using the same 213 

reduction approach as the one presented previously for subsurface flow in NIHM but applied 214 

to the classical advection-dispersion equation. This equation is widely used to describe 215 

transport of solute and can be written as: 216 

( ) ( )θ
. θ s

C
C C + q

t

∂
= ∇ ∇ −

∂
D q                                                                                         217 

(3) 218 

where C [ML-3] is the solute concentration, D  [L2T-1] is the dispersion/diffusion tensor 219 

(including hydrodynamic dispersion and molecular diffusion), q[LT-1] is the Darcy velocity 220 
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of water, θ [-] is the water content, and s
q [ML-3T-1] is the source-sink term. The 221 

dispersion/diffusion tensor is defined by (Zheng and Bennett, 2002): 222 

pm HD= +D I D                                                            (4) 223 

( )
, ,

-L T i j

H i j T ij

u u
D δ

α α
= α +u

u
  (5) 224 

.pm mD D τ=   (6) 225 

where L
α  [L] is the longitudinal dispersivity, T

α  [L] is the horizontal or vertical transverse 226 

dispersivity assumed identical, u [LT-1] is the mean pore velocity vector, ( )= θu q , D [L2T-1] 227 

is the dispersion tensor, I [-] is the identity matrix, pmD [L2T-1] is the molecular diffusion 228 

coefficient in the porous material, m
D [L2T-1] is the molecular diffusion coefficient in pure 229 

water, and τ  [-] is the tortuosity factor. 230 

In our approach, Eq. (3) is integrated along a direction normal to the bottom of the 231 

aquifer within the same local Eulerian coordinate system ( ), ,x y z  as defined for the low-232 

dimensional 2-D subsurface flow model. The integration bounds are the bedrock elevation b
z  233 

and the soil surface elevation s
z . Eq. (3) becomes: 234 

 
( ) ( ) ( ). .

s s s s

b b b b

z z z z

s

z z z z

C
dz C dz + C dz + q dz

t

∂ θ
= ∇ θ ∇ ∇ −

∂∫ ∫ ∫ ∫D q                                                   (7) 235 

Applying the Leibnitz rule to each integral in Eq. (7) would transform, for example,
b

a

f t dz∂ ∂∫  236 

into ( ) ( )
b

a

f dz f b b t f a a t
t

∂ − ∂ ∂ + ∂ ∂
∂ ∫

, with the same transform also valid for the divergent 237 

operator ∇ . With integration bounds b
z  and s

z  considered as constant over time and with 238 

negligible (local) gradient over space, Eq. (7) can be rewritten as: 239 
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( ) ( ) ( ). .

s s s

b b b

z z z

s

z z z

C dz C dz + C dz +Q
t

∂ θ = ∇ θ ∇ ∇ −
∂ ∫ ∫ ∫D q       (8) 240 

s
Q  being the local integral over z of the source-sink term s

q . 241 

The low-dimensional model assumes a hydrostatic head distribution in a direction 242 

normal to the bedrock, that is, a velocity parallel to the bedrock. With no flow components 243 

along the local direction z, the solute transport also becomes two-dimensional, handling mean 244 

concentration and transport parameters ( ), ,...q D  uniform over z.  By keeping the notation C 245 

as the mean concentration over z, and extracting it from the integrals over z (as it does not 246 

depend on z), Eq. (8) becomes:    247 

( ) ( ) ( ), , ,. .
s s s

b b b

z z z

x y x y x y s

z z z

C z dz C z dz C z dz +Q
t

     ∂ θ = ∇ ∇ θ −∇     
     ∂      
∫ ∫ ∫D q    (9) 248 

with ,x y∇  the divergent or the gradient operators limited to the directions ( ),x y . Simplifying 249 

the notation in Eq. (9) renders: 250 

( ) ( ), ,
. .

x y x y s

C
C C + Q

t

∂ θ
= ∇ θ ∇ −

∂
D q   (10) 251 

with (2-D) mean parameters: ( )
s

b

z

z

z dzθ = θ∫ , ( )
s

b

z

z

z dz= ∫q q , ( )
s

b

z

z

z dzθ = θ∫D D     252 

2-3- Solution strategy 253 

The implementation of the low-dimensional transport approach is based on the 254 

coupling of NIHM (flow) with a solute transport module (“T” module) inheriting from the 2-255 

D numerical implementations in TRACES. NIHM is used to solve flow in two dimensions 256 

over the whole simulated period. The resulting water content and velocity fields required to 257 

solve the transport equation in Eq. (10) are stored at different time steps. These flow data are 258 

then used as input by the 2-D version of the transport module “T” at the corresponding time. 259 



12 

 

To avoid mapping the data from a flow mesh to the transport mesh, both numerical 260 

implementations share the same triangular mesh. 261 

By default, the NIHM solutions for flow are saved at each of the time steps. These 262 

time steps might be very small due to the non-linearity of the flow equation. To reduce the 263 

storage requirements and computer time necessary to solve the transport problem, the results 264 

from NIHM can be saved at selected time steps. The selection criterion used here to save the 265 

flow data or not is based on the local (i.e., at the element level) variation of the velocity 266 

between time steps. If the velocity difference between two successive time steps is greater 267 

than 1% in one element of the mesh, the flow data (water content and velocity fields) are 268 

saved. If not, flow data are averaged over n-1 successive time steps until the difference in 269 

local velocities (at the element scale) between the times 1t  and n
t  is greater than 1% in at least 270 

one element of the mesh.  271 

In the transport model, the resolution of the AD equation – both in 2-D and 3-D 272 

configurations – is performed using an operator splitting approach. The advective part is 273 

solved using the explicit Discontinuous Finite Elements technique, which is specifically 274 

designed to reduce numerical dispersion (Siegel et al., 1998). For its part, the diffusive term is 275 

solved using Mixed Hybrid Finite Elements, a technique well known as being conservative 276 

for diffusion problems, even at the scale of a single element (Younes et al., 2010). The time-277 

step strategies (initial time step, minimum/maximum time steps) are defined by the user and 278 

automatically adapted by the code to read the flow data at the corresponding times, and also 279 

to fulfill the Courant criterion. Consequently, global time steps are determined by the 280 

following constraint: 281 

1

2
min

i

nb
A

A

i

A
t

QΓ
=

 
 
 ∆ ≤
 
 
 
∑  

  (15) 282 



13 

 

where nb is the number of faces (3-D) or edges (2-D), A  is the volume (3-D) or area 283 

(2-D) of the element A , 
i

AQΓ  are water fluxes across each edge i
Γ . Fulfilling the Courant 284 

criterion avoids oscillations and contributes to the reduction of numerical diffusion. It is also 285 

worth noting that in all the simulated transport scenario the “element” longitudinal and 286 

transverse Peclet number have been kept to small values L
x α∆ ≈ 1/5, T

x α∆ ≈ 1/0.5 ( x∆ is 287 

the mean size of an element in the mesh). This features reduces the numerical dispersion 288 

(compared with actual dispersion) stemming from the eventual second-order truncation terms 289 

of the discrete advection term.  290 

 291 

3. Model performance evaluation 292 

3-1- Comparison strategy for models performance evaluation 293 

To assess the accuracy of the established low-dimensional model for solute transport, 294 

simulations performed with the low-dimensional model NIHM-T (2-D flow plus transport) 295 

are compared to fully 3-D simulations of saturated/unsaturated flow and transport performed 296 

with TRACES 3-D. The comparisons are based on local concentration values (breakthrough 297 

curves - BTC) and spatial moments of the concentration plume. As concentrations provided 298 

by the 2-D simulations are mean values over the z-direction, a fair comparison with 3-D 299 

results suggests that concentrations provided by the 3-D simulations are also slightly 300 

processed to provide averages along z. These depth-averaged concentration values from the 3-301 

D model are all weighted by the local fluxes for consistency with the 2-D transport model (see 302 

Eq. (10), which relies upon an averaged flux q). Assuming that the 3-D domain at a location 303 

( ),x y  is discretized in NL elements along the direction z, the depth averaged concentration 304 

EC  is given by:   305 
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1 1

L LN N

j j j

j j

E C Q QC =
= =
∑ ∑   (11) 306 

where jC [ML-3] is the subsurface solute concentration in element j of the 3-D mesh, and jQ307 

[ML-3] is related water flux. 308 

The zeroth- (total mass in the system), first- (center of mass), and second- (spread of 309 

mass) order spatial moments of the concentration in the system inform the shape of the solute 310 

plume. They are well suited to the comparison of different methods for solving transport (here 311 

2-D versus 3-D) as they do not target local pinpoint accuracy of a transport simulation but 312 

look at the overall behavior of the system. In many practical applications, local accuracy such 313 

as precise evaluation of concentration values cannot be compared with actual test cases, 314 

simply because the measurements do not exist. The first- and second-order spatial moments 315 

depend on the direction along which they are calculated. In the various test cases discussed 316 

below, these moments are only calculated along the x-direction corresponding to the main 317 

flow direction of all settings. Moments are computed according to the following expressions: 318 

0

1

NM

E E E
E

M C A
=

= ∑ θ    (12) 319 

1 1

0

NM

E E E gE

E
x

C x

M =
M

A
=
∑ θ

   (13) 320 

( )
2

2
2 11

0

NM

E E E gE

E
x x

C x

M = M
M

A
= −
∑ θ

 
  (14) 321 

where 0
M [M] is the zeroth-order moment, 

1

xM  [L] is the first-order moment in the x-322 

direction, and 
2

xM  
2[L ] is the second-order moment in the x-direction, E is the index of a 2-D 323 

or 3-D element of the grid, E
θ [-] is the average water content in element E, gEx  [L] is the  x-324 

coordinate of the center of E, E
A 3[L ] is the area/volume of element E, and NM is the total 325 
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number of elements in the domain. It is worth noting that the concentrations E
C  in the 326 

calculations of moments from 3-D simulations are not averaged along the z-direction. 327 

Comparing moments from 2-D versus 3-D approaches can show possible discrepancies 328 

associated with the distributions of concentrations (and velocities) along z in a 3-D 329 

configuration and not seen by the 2-D calculations. 330 

 331 

3-2- Synthetic test cases and scenarios 332 

It was shown that for flow, the reduction of the subsurface dimensionality rendered 333 

simplified velocity fields without resulting in noticeable errors both on heads in the 334 

subsurface and water fluxes collected at various scales of the system (from, e.g., exfiltration at 335 

a spring to the surface, flowrates at the outlet of the watershed, or leaks through a subsurface 336 

boundary condition; Pan et al., 2015; Jeannot et al., 2018, 2019). However, these 337 

dimensionally reduced velocity fields could result in biased estimates of solute 338 

concentrations. In 2-D, the solute spreading over diverse streamlines is not correctly 339 

mimicked by transport along the single streamline averaging the diverse lines (in 3-D) stacked 340 

along the direction (z) of the flow integration.  341 

For this paper, six scenarios were specifically designed to assess the ability of NIHM-342 

T to describe flow and transport processes. Scenarios S1 to S5 rely upon the domain 343 

configuration given in Fig. 1, that is purposely set up to simplify the various interpretations 344 

that will be given when comparing 3-D and 2-D integrated transport results. The 345 

computational domain is a 100 m × 20 m × 10 m parallelepiped representing a synthetic 346 

unconfined aquifer. The bottom and top elevations of the domain are set to 0 m and 10 m, 347 

respectively. For the comparison with TRACES 3-D model, the whole domain is meshed via 348 

56,000 hexahedron elements of uniform size (1 m) over x and y directions. Along the vertical 349 

(z) direction, the mesh is refined in the first meter, close to the surface, to improve numerical 350 
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stability and provide accurate numerical solutions in the unsaturated infiltration area. As a 351 

consequence, the subsurface model is discretized into 28 horizontal layers of increasing 352 

thickness from 10 cm at the top to 50 cm at the bottom. Regarding the low-dimensional 2-D 353 

model, the grid composed of 4,000 triangular elements and 2,121 nodes is obtained by 354 

splitting in two the four-edge horizontal facets of the first layer of the 3-D mesh. For the 355 

BTCs comparisons, the “element” 2-D concentrations are the average of the two elements 356 

split from the 3-D grid (to match the 3-D horizontal grid), and the “element” 3-D 357 

concentrations are the depth averaged concentrations over the 28 layers.  358 

Flow and transport scenarios S1 to S5 were carried out in a heterogeneous block of 359 

hydraulic conductivity. The log10 hydraulic conductivities obey a spherical covariance 360 

function with a mean of -3.5, a variance of 1.0 (conductivities expressed in m.s-1), and a 361 

correlation length of 60 m and 15 m in the horizontal and vertical directions, respectively 362 

(Fig. 1). The field has been generated using a sequential Gaussian method described in 363 

GSLIB (Geostatistical Software Library, Deutsch and Journel, 1997). All the other flow and 364 

transport parameters are considered uniform over space. The porosity is set to φ = 0.15 and 365 

the specific storage to Ss  = 5×10-3 m-1. The parameters for the Mualem–Van Genuchten 366 

equations are set to α  = 1 m-1 and n = 2. For the transport problem, the longitudinal 367 

dispersivity coefficient is assigned L
α = 5 m, the horizontal and vertical (for 3-D) transverse 368 

dispersivity coefficients are taken as T
α = 0.5 m, and the molecular diffusion coefficient in the 369 

porous material is equal to 10-9 m2.s-1. For the 2-D domain, the hydraulic conductivities are 370 

integrated over depth, taking care to consider the different layer thicknesses. For flow, 371 

Dirichlet boundary conditions are prescribed on two opposite faces (at x = 0 and x = 100 m), 372 

while the other lateral faces and the bottom of the domain are considered as null-flux 373 

Neumann boundaries. Dirichlet head values are adjusted according to the targeted 374 

hydrological situations (fully saturated and partially saturated) described below. Using the 375 
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above-mentioned properties, different initial and boundary conditions for the flow and 376 

transport problems were defined in scenarios S1 to S5 under transient flow conditions, as 377 

summarized in Table 1. For the first scenario (S1), the domain is fully saturated. The initial 378 

hydraulic head is set at 10 m, and constant hydraulic heads are set to 12 m and 10 m at the 379 

Dirichlet boundaries, in x = 0 m and x = 100 m, respectively (Fig. 2). For the second scenario 380 

(S2), the domain is partially saturated with an initial water table located 3 m below the soil 381 

surface. The Dirichlet boundaries in x = 0 m and x = 100 m are set to H1 = 8 m and H2 = 7 m, 382 

respectively, as shown in Fig. 3. A uniform rainfall of 2×10-7 m.s-1 is applied during the first 5 383 

days at the surface of the domain. The third scenario (S3) is close to the second one, but the 384 

initial water table and Dirichlet boundary conditions are chosen to increase the unsaturated 385 

thickness and assess the effect of the hydrostatic pressure assumption for flow on the 386 

simulated transport. The initial hydraulic head is thus set to 5 m. The constant hydraulic head 387 

H1 = 6 m is imposed at x = 0 m and H2 = 5 m is prescribed at x = 100 m (see Fig. 3). For 388 

solute transport, in the three configurations S1, S2, and S3, the initial concentration is equal to 389 

0 except in a vertical column crossing the whole aquifer thickness and rectangular horizontal 390 

section extending within x = 26-32 m and y = 8-13 m (Fig. 2 and Fig. 3). At this location, the 391 

solute is injected through a source term evenly distributed over the 10 m depth of the system. 392 

The injected mass is set to 6×10-3 kg.s-1 for a duration of 3 days. All boundaries are set to zero 393 

solute dispersion flux. As contaminants can also reach groundwater from inlets at the land 394 

surface, additional scenarios (S4 and S5), only valid for the 3-D problem, limit the 395 

contaminant injection to a surface area, also located within x = 26-32 m, y = 8-13 m, but only 396 

over a thickness of 10 cm from the top of the domain, as shown in Fig. 4. In 2-D, S4 and S5 397 

come down to an injection over the whole thickness of the system as 2-D simulations do not 398 

distinguish the surface from the depth. The flow problem in scenarios S4 and S5 is very 399 

similar to that of scenario S2, but for S4, to diminish the thickness of the unsaturated zone, the 400 
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initial hydraulic head is set to 9 m and constant hydraulic heads H1 = 10 m and H2 = 9 m are 401 

imposed at x = 0 m and at x = 100 m, respectively (see Fig. 4). The simulated period is 16 402 

days, and a maximum time step length of 1 hr is prescribed for both the flow and transport 403 

simulations. 404 

Scenario 6 (S6) is designed to assess the quality of the modeling approach in a more 405 

complex configuration with a tilted and bumpy bottom of the aquifer, and more variable 406 

hydrological conditions. The domain consists of two triangular hillslopes connected to a 140 407 

m long and 6 m wide channel, presented in Fig. 5. The surface slopes in the x and y direction 408 

are of 0.05 and 0.02, respectively. The substratum (bottom) elevation of the aquifer is first 409 

defined by supposing it parallel to the surface with a thickness of the subsurface domain set to 410 

20 m. Then, the elevation of the substratum for each computation node is modified to render a 411 

bumped surface adding a perturbation randomly sampled with a +/- 1 m uniform distribution.  412 

For the TRACES 3-D model, the whole system is meshed using 123,368 hexahedron 413 

elements of uniform size (2 m) over x and y directions. The domain is discretized into 45 414 

layers of increasing thickness along the vertical (z) direction.  The computational mesh is 415 

refined close to the surface to better capture the infiltration dynamics. For sake of consistency, 416 

the integration in the flow model is performed using similar integration steps to evaluate the 417 

equivalent 2-D parameters. The mesh grid in NIHM-T is composed of 3,220 triangular 418 

elements generated as for the preceding applications by splitting in two the horizontal 2-D 419 

elements of the top layer of the 3-D mesh. 420 

The saturated hydraulic conductivity field is generated using the same technique as the 421 

one for the previous scenarios, with an anisotropic spherical covariance of 60 m correlation 422 

length in the horizontal directions and of 15 m in the vertical direction. The resulting 423 

statistical distribution of the log10 of conductivity values is Gaussian, of mean -4.56 and 424 

spans the range [-6.25, -2.95]. The heterogeneous conductivity field was first generated into a 425 
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parallelepiped – as shown in Fig. 6. – and then interpolated onto the computational meshes 426 

used for both NIHM-T and TRACES. The Van Genuchten parameters α and n in the 427 

relationships between saturation, water content and hydraulic conductivity are set to 1 m-1 and 428 

2, respectively.  429 

The lateral boundaries of the domain are considered as no-flow boundaries. Hydraulic 430 

heads of 19 m and 24.8 m are imposed to the downhill and top limits of the domain, 431 

respectively. The initial conditions are set using a linear interpolation between the boundary 432 

conditions at the down and top limits. The total time of simulation is 800 days. Rainfall is 433 

applied at the surface of the domain with a 2×10-7 m.s-1 rate for 20 days every 60 days, thus 434 

resulting in transient flow conditions over the whole simulation period. For transport, a source 435 

term of 1.6×10-4 kg.s-1 is imposed in the computational meshes located at the surface and 436 

presented in orange in Fig. 5, for a duration of 300 days. In the transport problem, the 437 

longitudinal dispersivity coefficient is assigned L
α = 5 m, the horizontal and vertical (for 3-D) 438 

transverse dispersivity coefficients are taken as T
α = 0.5 m, and the molecular diffusion 439 

coefficient in the porous material is equal to 10-9 m2.s-1. The evolutions over time of average 440 

concentrations and statistical moments are compared between NIHM-T and TRACES -3D at 441 

points #3 and #4, posted in Fig.5. 442 

 443 

4. Results and discussion 444 

 445 

Fig. 7 shows the evolution over time of the average concentrations in scenario S1 at 446 

two selected points P1 (x = 50 m, y = 10 m) and P2 (x = 70 m, y = 13 m) displayed in Fig. 2. 447 

The evolution of the first-order and second-order moments for the first scenario S1 are shown 448 

in Fig. 8. The results produced by the low-dimensional approach and TRACES 3-D are very 449 

close, with a maximum root mean square error (RMSE) for average concentrations of only 450 
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5.56×10-3 kg.m-3. The BTCs and the evolution of the zeroth-, first- and second-order moments 451 

demonstrate that in fully-saturated conditions, the low-dimensional model can accurately 452 

reproduce the spatial evolution of the plume and the transport processes in a heterogeneous 453 

saturated hydraulic conductivity field. This feature was expected in the absence of an 454 

unsaturated zone, a specific case in which the averaging (integration) technique is reliable for 455 

both flow and transport in heterogeneous porous media. 456 

The pairs (Fig. 9, Fig. 10) and (Fig. 11, Fig. 12) display the evolutions of the same 457 

variables, that is, BTCs in P1 and P2, and spatial moments for scenarios S2 and S3, 458 

respectively. In both cases, the shapes of the BTCs are similar but with a maximum value of 459 

concentrations higher for the 2-D approach and a maximum RMSE of 8.21×10-2 kg.m-3
 for 460 

average concentrations when the thickness of the unsaturated zone is the highest (S3, Fig. 11). 461 

The zeroth-order moments show that the solute plumes reach the downstream boundary after 462 

3 days (just when the solute injection has stopped), irrespective of the simulation S2 or S3 and 463 

the 2-D versus 3-D approaches. The first-order moments are close at the beginning of the 464 

simulation and become higher for the 2-D model. This observation goes with the fact that the 465 

3-D simulation with an explicit representation of the vadose zone, might trap solute mass in 466 

low velocity areas of the shallow subsurface. The mean location of the solute plume in 2-D 467 

moves slightly quicker and also goes slightly farther downstream than in 3-D. In relation with 468 

the eventual trapping of solute in the vadose zone of the 3-D model, the second-order 469 

moments, associated with the spreading of concentration over space, are slightly higher for 470 

the full model. 471 

These differences between models increase with the thickness of the unsaturated zone 472 

(compare Fig. 9 with Fig. 11, and Fig. 10 with Fig. 12) and could be the consequence of the 473 

simplifications in the 2-D model, where the unsaturated zone is described by hydrostatic 474 

heads only. The mean velocities along the z direction could not fully coincide with the mean 475 
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sampled by the 3-D model. The recharge in S2 and S3 also generates vertical velocities, 476 

which cannot be properly taken into account in the integrated model, as we already mentioned 477 

by stating that infiltration is only seen in NIHM as a variation of hydraulic heads. This is 478 

confirmed by the snapshots presented in Fig. 13 and Fig. 14. For very similar shapes of the 2-479 

D solute plume between scenarios S2 and S3, the vertical cross sections of the 3-D model 480 

clearly indicate that a thicker vadose zone increases the solute mass trapped just beneath the 481 

surface. As told earlier, in the fully 3-D simulations, solute remains trapped in the unsaturated 482 

zone where velocities are very low compared to the saturated zone. This trapping decreases 483 

the concentration peaks, reduces the average velocity sampled by the solute, and increases the 484 

dispersion of the contaminant in the 3-D configurations.  485 

When the solute is only injected at the top surface of the domain, the reduced model 486 

can underestimate the contaminant storage in the unsaturated zone. For the fourth scenario 487 

(S4), where the vadose zone is thin (approximately one meter over the whole system), the 488 

results in Fig. 15 and Fig. 16 clearly indicate that the low-dimensional model reproduces 489 

fairly well the 3-D model results, with a maximum RMSE of 5.51 
2 310 kg.m− −

 for average 490 

concentrations (Fig. 15). When the unsaturated zone is thicker (S5), its effects on solute 491 

transport are amplified compared to those seen for the column-type concentration source. The 492 

solute which was initially only concentrated in the upper part of the unsaturated zone, remains 493 

trapped in areas of weak velocities. Only a little mass experiences the higher velocities of the 494 

saturated zone beneath. Therefore, the overall transport is retarded, renders lower solute peak 495 

values (Fig. 17 and 18) and increased spreading (Fig. 18). This is confirmed by the evolution 496 

of the zeroth-order moments, which illustrate a faster reduction in contaminant mass from day 497 

three in the reduced model. 498 

The results presented in Fig. 19 and Fig. 20. for scenario S6 (whose geometrical and 499 

hydrological conditions are more complex) show the same overall trend for both average 500 
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concentration and statistical moments evolutions. As the unsaturated zone is deeper at point 501 

#3 than at point #4 (due to the initial conditions) the difference between the average 502 

concentrations produced by NIHM-T and TRACES 3-D is more pronounced at point #3. At 503 

both locations, the reduced model performs well and is able to capture the transport dynamics. 504 

The evolution over time of the zeroth-, first-, and second-order moments plot in Fig. 20 also 505 

show that NIHM-T captures the spatial evolution of the plume, even if the geometrical 506 

configuration of the domain and the history of flow and transport are more complex.  507 

Regarding the computational cost, CPU times are recorded and compared for each 508 

model. Both models NIHM-T and TRACES 3-D are calculated on a standard desktop 509 

computer and the calculation time is related to the simulation period (Scenarios S1 to S5: 16 510 

days; Scenario S6: 800 days). The gain in computation time using the integrated model NIHM 511 

is notable when reproducing subsurface flow and solute transport. Table 2 lists CPU times by 512 

distinguishing them between solving flow or transport. As expected, the low-dimensional 513 

approach significantly reduces CPU times. This is linked to the number of unknowns 514 

(Scenarios S1 to S5: 12,240 in 2-D, and 346,720 in 3-D; Scenario S6: 9,886 in 2-D, and 515 

768,912 in 3-D) and non-linear flow conditions in the unsaturated zone. We recall here that 516 

flow in the unsaturated zone is solved explicitly in 3-D and described by hydrostatic 517 

conditions in the low-dimensional model.  518 

 519 

5. Conclusions 520 

A low-dimensional model has been proposed to describe the non-reactive transport 521 

behavior of contaminants in the subsurface. This investigation shows that the advection-522 

dispersion equation can be expressed with a reduced dimensionality by relying upon the low-523 

dimensional hydrological model NIHM which calculates averaged water fluxes considering 524 

both the unsaturated and saturated zones of a shallow subsurface system. The proposed 525 
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approach has been tested on different heterogeneous synthetic test cases via a comparison 526 

with a full 3-D approach for both flow and transport.  527 

The results indicate that the reduced model NIHM-T for both coupled flow and 528 

transport performs well under saturated-flow conditions, even in heterogeneous systems. 529 

When applied to partially saturated heterogeneous aquifers, the presence of a vadose zone can 530 

add further complexity because of the non-negligible three-directional components of water 531 

fluxes and their variations over time and space in the subsurface. As the low-dimensional 532 

model neglects the vertical components of flow, assuming hydrostatic conditions, the 533 

resulting mean water velocity fields can be partially flawed. The main impact on transport 534 

comes from the relative thickness of the unsaturated zone compared with that of the saturated 535 

zone. In the 2-D approach (with flow integrated normal to bedrock), the hydrostatic 536 

assumption needed for building an averaged 2-D field of mean velocities may overlook the 537 

variability of hydraulic conductivities due to variable saturations. 538 

The direct result is a raw evaluation of water velocities in the system which directly 539 

impacts solute transport. The 3-D configurations with sources of concentrations uniformly 540 

distributed over the whole thickness of the system can be correctly reproduced by a 2-D 541 

calculation, simply because an injection at the surface in 2-D is equivalent to a uniform 542 

injection over depth in 3-D. For the 3-D problems where the injection plug is limited to the 543 

first top layers of the domain, the 3-D calculations will account for variable injection 544 

conditions over depth according to infiltration and vertical flow components. 545 

For its part, the 2-D approach will still consider that the concentration at the injection 546 

plug is uniform over depth. In such applications, the results reveal that the approximations 547 

associated with the integration of flow in 2-D (NIHM) increase discrepancies between 2-D 548 

and 3-D as the thickness of the unsaturated zone increases, and infiltration and time-varying 549 

vertical water velocities become key features of the hydrological system. 550 
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However, and notwithstanding its basic assumptions, the reduced model is found to be 551 

practical for simulating solute transport in porous media for shallow aquifers. In addition to 552 

simplifying mass transfer modeling, it is worth mentioning that the CPU time required for the 553 

reduced model is significantly less compared to a full 3-D calculation. Overall, in this study, 554 

the low-dimensional model is highlighted as an alternative for simulating water quality. With 555 

this aim in mind, further works would couple surface and subsurface solute transport 556 

processes to investigate actual complex watersheds and their questions relative to water 557 

quality challenges. 558 
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Figure and table captions 698 

 699 

Fig.1. Model geometry and the associated hydraulic conductivity field in the subsurface. 700 

 701 

Fig.2. Horizontal cut view of boundary conditions for the saturated test case. Stars indicate 702 

locations used to compare breakthrough curves from transport simulation results. 703 

 704 

Fig.3. Vertical cross section of the domain with top, bottom, and lateral (prescribed heads H1 705 

and H2) boundary conditions for simulating unsaturated flow and solute transport– scenarios 706 

S2 and S3. 707 

 708 

Fig.4. Vertical cross section of the domain with top, bottom, and lateral (prescribed heads H1 709 

and H2) boundary conditions for simulating unsaturated flow and solute transport – scenarios 710 

S4 and S5. 711 

 712 

Fig.5. Geometrical settings of the irregular domain. 713 

 714 

Fig.6. Hydraulic conductivity field in the subsurface populating the irregular domain (black 715 

triangle as the trace at the surface of the domain). 716 

 717 

 718 

Fig.7. Comparison of the evolutions over time of the average concentrations at the locations 719 

P1 and P2 - scenario S1. 720 

 721 

Fig.8. Comparison of the evolutions over time of the zeroth-, first-, and second-order 722 

moments - scenario S1. 723 

 724 

Fig.9. Comparison of the evolutions over time of the average concentrations at the locations 725 

P1 and P2 – scenario S2. 726 

 727 

Fig.10. Comparison of the evolutions over time of the zeroth-, first-, and second-order 728 

moments - scenario S2. 729 

 730 



30 

 

Fig. 11. Comparison of the evolutions over time of the average concentrations at the locations 731 

P1 and P2 – scenario S3. 732 

 733 

Fig.12. Comparison of the evolutions over time of the zeroth-, first-, and second-order 734 

moments - scenario S3. 735 

 736 

Fig.13. (a)-Horizontal views of the 2-D solute plume simulated by the reduced model NIHM. 737 

(b)- Vertical cross sections through the 3-D solute plume simulated by the full model 738 

TRACES 3-D – scenario S2. 739 

 740 

Fig.14. (a)-Horizontal views of the 2-D solute plume simulated by the reduced model NIHM. 741 

(b)- Vertical cross sections through the 3-D solute plume simulated by the full model 742 

TRACES 3-D – scenario S3. 743 

 744 

Fig.15. Comparison of the evolutions over time of the average concentrations at the locations 745 

P1 and P2 – scenario S4. 746 

 747 

Fig.14. Comparison of the evolutions over time of the zeroth-, first-, and second-order 748 

moments - scenario S4. 749 

 750 

Fig.17. Comparison of the evolutions over time of the average concentrations at the locations 751 

P1 and P2 – scenario S5. 752 

 753 

Fig.18. Comparison of the evolutions over time of the zeroth-, first-, and second-order 754 

moments - scenario S5. 755 

 756 

Table.1. Flow and solute transport conditions for the 6  transport scenarios. 757 

 758 

Table.2. Comparison of the values of CPU time in minutes recorded for the simulation of flow 759 

and solute transport for the 6 scenarios. 760 

 761 



 

 

Fig.1. Model geometry and the associated hydraulic conductivity field in the subsurface. 

 

 

 

 

 

 

Fig.2. Horizontal cut view of boundary conditions for the saturated test case. Stars indicate 

locations used to compare breakthrough curves from transport simulation results. 

 

 

 

 

 

Fig.3. Vertical cross section of the domain with top, bottom, and lateral (prescribed heads H1 

and H2) boundary conditions for simulating unsaturated flow and solute transport– scenarios 

S2 and S3. 



 

 

Fig.4. Vertical cross section of the domain with top, bottom, and lateral (prescribed heads H1 

and H2) boundary conditions for simulating unsaturated flow and solute transport – scenarios 

S4 and S5. 

 

 

 

Fig.5. Geometrical settings of the irregular domain 

 

 

 

 

 



 

Fig.6. Hydraulic conductivity field in the subsurface populating the irregular domain (black 

triangle as the trace at the surface of the domain) 

 

 

Table.1. Flow and solute transport conditions for the 6 scenarios. 

Scenario  S1 S2 S3 S4 S5 S6 

Sat: Saturated System 

Unsat: Unsaturated System 

Sat Unsat Unsat Unsat Unsat Unsat 

Flow Model       

Initial hydraulic head (m) 10 7 5 9 7 19-24.8 

Rainfall intensity (m.s-1 ) - 2×10-7 2×10-7 2×10-7 2×10-7 2×10-7 

Rainfall duration (d) - 5 5 5 5 20 (×12) 

Transport Model       

Initial concentration (kg.m-3) 0 0 0 0 0 0 

Injected mass (kg.s-1 ) 6×10-3 6×10-3 6×10-3 6×10-3 6×10-3 1.6×10-4 

Injection duration (d) 3 3 3 3 3 300 

Injection zone thickness (m) 10 10 10 0.1 0.1 0.1 

 

 

 

 

 

 

 



 

 

 

 

Fig.7. Comparison of the evolutions over time of the average concentrations at the locations 

P1 and P2 - scenario S1. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig.8. Comparison of the evolutions over time of the zeroth-, first-, and second-order moments 

- scenario S1. 

 

 

 

 

 

 

 

 

 

 



 

Fig.9. Comparison of the evolutions over time of the average concentrations at the locations P1 

and P2 – scenario S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig.10. Comparison of the evolutions over time of the zeroth-, first-, and second-order moments 

- scenario S2. 

 

 

 

 

Fig.11. Comparison of the evolutions over time of the average concentrations at the locations 

P1 and P2 – scenario S3. 

 

 

 



 

 

 

 

 

 

 

 

 

Fig.12. Comparison of the evolutions over time of the zeroth-, first-, and second-order 

moments - scenario S3. 

 

 

 

 

 

 

 

 

 



 

 

Fig.13. (a)-Horizontal views of the 2-D solute plume simulated by the reduced model NIHM. 

(b)- Vertical cross sections through the 3-D solute plume simulated by the full model TRACES 

3-D – scenario S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Fig.14. (a)-Horizontal views of the 2-D solute plume simulated by the reduced model NIHM. 

(b)- Vertical cross sections through the 3-D solute plume simulated by the full model 

TRACES 3-D – scenario S3. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.15. Comparison of the evolutions over time of the average concentrations at the locations 

P1 and P2 – scenario S4. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.16. Comparison of the evolutions over time of the zeroth-, first-, and second-order 

moments - scenario S4. 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.17. Comparison of the evolutions over time of the average concentrations at the locations 

P1 and P2 – scenario S5. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.18. Comparison of the evolutions over time of the zeroth-, first-, and second-order moments 

- scenario S5. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Fig.19. Comparison of the evolutions over time of the average concentrations at the locations 

P3 and P4 – scenario S6. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.20. Comparison of the evolutions over time of the zeroth-, first-, and second-order moments 

- scenario S6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table.2. Comparison of the values of CPU time in minutes recorded for the simulation of flow 

and solute transport for the 6 scenarios. 

 

 3-D 

flow 

3-D 

transport 

3-D full 

model 

2-D 

integrated 

flow  

2-D 

integrated 

transport  

2-D 

integrated 

full model 

CPU ratio 

(3-D/2-D) 

S1 131.43 154.93 286.36 5.28 1.12 6.40 44.74 

S2 98.22 171.96 270.18 6.92 1.06 7.98 33.86 

S3 93.93 175.06 268.99 5.53 0.98 6.51 41.32 

S4 104.75 178.76 283.51 4.97 0.94 5.91 47.97 

S5 98.03 171.75 269.78 6.92 1.06 7.98 33.81 

S6 5224.79     5405.98      10630.77 70.88 53.94 124.82 85.17 

 

 

 

 




