
HAL Id: insu-04471412
https://insu.hal.science/insu-04471412

Submitted on 21 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A New Approach for Adaptive GPR Diffraction Focusing
Hamdan Hamdan, Nikos Economou, Antonis Vafidis, Maksim Bano, Jose

Ortega-Ramirez

To cite this version:
Hamdan Hamdan, Nikos Economou, Antonis Vafidis, Maksim Bano, Jose Ortega-Ramirez. A New
Approach for Adaptive GPR Diffraction Focusing. Remote Sensing, 2022, 14, �10.3390/rs14112547�.
�insu-04471412�

https://insu.hal.science/insu-04471412
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Hamdan, H.;

Economou, N.; Vafidis, A.; Bano, M.;

Ortega-Ramirez, J. A New Approach

for Adaptive GPR Diffraction

Focusing. Remote Sens. 2022, 14, 2547.

https://doi.org/10.3390/rs14112547

Academic Editors: Pier Matteo

Barone, Raffaele Persico and

Salvatore Piro

Received: 10 April 2022

Accepted: 24 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A New Approach for Adaptive GPR Diffraction Focusing
Hamdan Hamdan 1,* , Nikos Economou 2,3, Antonis Vafidis 2, Maksim Bano 4 and Jose Ortega-Ramirez 5

1 Petroleum Geosciences and Remote Sensing Program, Department of Applied Physics and Astronomy,
University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

2 Applied Geophysics Lab, School of Mineral Resources Engineering, Technical University of Crete,
731 00 Chania, Greece; neconom@mred.tuc.gr (N.E.); vafidis@mred.tuc.gr (A.V.)

3 Earth Science Department, Sultan Qaboos University, Muscat 123, Oman
4 ITES UMR-7063, EOST, University of Strasbourg, F-67000 Strasbourg, France; maksim.bano@unistra.fr
5 Laboratorio de Geofísica, Instituto Nacional de Antropologia e Historia, Mexico City 06060, Mexico;

jorteg@gmail.com
* Correspondence: hhamdan@sharjah.ac.ae; Tel.: +971-525-441-108

Abstract: Several researchers have utilized multipath summation to manage the common problem
of scattered energy within GPR sections. Such energy results in degrading the lateral resolution
and continuity of reflectors. If detailed velocity models are known, then it is fairly easy to focus
the scattered energy by means of conventional migration methods. However, this is rarely the case
in GPR sections, as the common-offset antenna array is mostly used, and therefore cannot provide
velocity models. This gives an important advantage for the multipath summation method, which has
proved to be successful in focusing such diffractions, without the need to build a detailed migration
velocity field model. This multipath summation method is based on stacking (summation) of constant
velocity migrated sections (weighted or not) over a predefined velocity range. The main drawback
of this technique is the high computational cost and the need for user interference to select the
appropriate stacking weights. We developed an improved implementation of the weighted multipath
summation method that reduces both the computational cost, and the user interference in stacking
weights selections. This data adaptive methodology can expedite the migration process, suppress
the need for a detailed velocity model, and reduce the user subjectivity. Moreover, a data adaptive
spectral scaling scheme was developed. This is applied on the output of the multipath summation
process to reduce the expected blurriness in the resulting GPR sections.

Keywords: GPR migration; GPR diffraction focusing; multipath summation

1. Introduction

Ground penetrating radar (GPR) is becoming one of the most commonly used
geophysical methods among near-surface geophysicists and engineers. This is mainly
due to its high-resolution capability, wide range of applications, and relatively fast and
easy field data acquisition. In general, in GPR applications it is fairly easy to achieve
good vertical resolution, but it is often quite challenging to achieve the same level of
resolution laterally [1]. This is mainly because of the strong scattered energy often
dominating GPR sections, which degrades the lateral continuity of the reflectors. The
scattered energy is a result of the lateral heterogeneities within the subsurface, with
size that is near the effective wavelength of the electromagnetic (EM) waves [2,3]. Such
heterogeneities act as scatterers producing hyperbolas within the GPR sections, also
known as diffractions, which are useful in estimating the location of small or local buried
targets. However, they degrade the clearness of GPR images, making it more difficult
to estimate the exact depth, shape, and size of targets, in addition to depleting the
continuity of any observed reflectors.
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In order to overcome the effects of diffractions and improve the spatial resolution of
the GPR sections, we need to focus the scattered energy. Different researchers have utilized
a variety of approaches to focus the scattered energy [1]. Ozdemir et al. [1] evaluated
and compared the most common of these approaches, such as hyperbolic summation,
Kirchhoff migration, back-projection focusing, phase-shift migration, and ω-k migration.
Few researchers have based their approach on autofocusing metrics to estimate the migra-
tion velocity [4,5]. However, most of these approaches are based on migrating the GPR
data [6,7], a process that is also commonly employed in seismic data processing. Data
migration is mainly based on the backward solution of the wave equation to collapse the
diffraction hyperbolas into their actual spatial position. This requires good knowledge of
the subsurface velocity, which can be extracted by velocity picking over common midpoint
multioffset data [8–10]. GPR data acquisition, however, is mostly conducted using the
common-offset array, which saves considerable amount of time compared to the multi-
offset data acquisition mode, but restricts the ability of constructing a subsurface velocity
model [11].

GPR researchers have developed several techniques to build migration velocity models
without relying on multioffset measurements. Most of these techniques rely on using
average velocities for whole GPR sections [1,12], which can be estimated from known burial
depth structures, or existing borehole cores. Other researchers tried fitting representative
hyperbolas [13,14] to estimate an average velocity of the GPR section. Novais et al. [15]
developed a technique to build a laterally varying velocity model based on sequential Stolt’s
migrations. Their approach, however, requires the interpreter’s manual visual inspection of
migrated hyperbolas to choose the best migration velocity model. Other researchers [14,16]
based their techniques on the methodology proposed by Fomel et al. [17] for seismic data,
which utilizes the maximization of kurtosis as a focusing attribute. Another technique
for effective imaging is the path-summation approach, which focuses the diffractions by
summing constant velocity time-migrated sections [18–20].

The idea of the path-summation method is to apply constant velocity migration on
GPR data, within a set range of all possible migration velocities. The resulting migrated
images are then stacked to enhance the lateral continuity of reflections by superimposing the
migrated diffraction hyperbola’s apexes and collapsing their tails [19,21]. The main setback
of this approach is the high computational cost needed to calculate the time-migrated
images. Moreover, the wide range of migration velocities employed usually introduces
artifacts to the final image making it more “blurry” [19]. The migrated constant velocity
images can also be weighted before stacking, based on their corresponding velocities, to
improve the efficiency of this approach [22,23], which is commonly known as the double-
path summation approach.

Economou et al. [20] have proposed an approach that also employs a weighted path-
summation strategy, based on the standard deviation (STD) of the local slopes of the time-
migrated sections, to calculate the weights for the time-migrated images. Economou et al. [20]
used the “multipath-summation” expression to describe their approach of focusing diffrac-
tions within GPR sections. They generated the time-migrated sections using a constant
velocity step of 0.005 m/ns within a wide global range, 0.04–0.2 m/ns. To manage the ex-
pected contamination (blurriness) problem on the final image, they applied a post-multipath
summation spectral whitening scheme [24]. This also helps in decreasing the dominant
frequency due to both the migration process and the frequency-dependent attenuation
effects. Their approach manages to overcome several GPR migration issues, such as the
need to build a detailed velocity migration model [13–16,19], the subjectivity of velocity
picking [16], and the drawbacks of a Gaussian stacking weight [19]. Nonetheless, user
interference is still required for the appropriate stacking weights selection and the spectral
whitening parameters, not to mention the high computational cost for the wide range of
velocities employed.
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Here, we propose an alternative implementation of the weighted multipath summa-
tion approach presented by Economou et al. [20]. Our main scope is to reduce both the
computational cost of the multipath summation method and the user interference during
processing stages such as stacking weights selection and time-varying spectral whitening.
We demonstrate, using synthetic and real data, how our data adaptive methodology can
expedite the migration process for large GPR data sets (as in 3D GPR case). It also enables
the use of full batch processing schemes, as we reduce the user interference. Our proposed
adaptive methodology results in GPR sections that are comparable to the ones of a non-
adaptive processing scheme, but with reduced computational cost and human interference.
To achieve our scope we implemented the following innovations:

(1) Adaptive choice of the velocities range and the stacking weights used for the multipath
summation. We achieved this by employing a “divide and conquer” algorithm,
which does not require any user action. In addition, it significantly reduces the
computational cost by avoiding unnecessary migration velocity tests (with zero weight
in the stacking process).

(2) Adaptive spectral scaling for the time-varying spectral whitening, which is applied
on the output of the multipath summation process. The amplitude spectral scaling
used here whitens the amplitude spectrum within the passband of the traces. This
is based on the use of time-gated spectra of the signal in the t-f domain, without the
need for applying band pass filtering.

2. Methodology

The proposed methodology is based on the weighted multipath summation approach
presented by Economou et al. [20]. To achieve our objective of reducing both the computa-
tional cost and the user interference, we employed the following processing steps:

a. Apply constant time-migration velocity scan of the GPR data using five specific
velocity values covering the initial velocity range;

b. Apply a divide and conquer approach [25] to find the velocity values, which have
optimum contribution to the final summation of the migrated sections;

c. Reapply constant time-migration velocity of the GPR data by using the velocity
values not utilized in the previous steps [26];

d. Stack the weighted migration sections [20];
e. Apply adaptive spectrum scaling for time-varying spectral shaping of the multipath

summation GPR section.

2.1. Evaluation of Constant Time-Migration Velocity Scan

As known, the success of migration relies on utilizing an appropriate velocity model. In
order to explain our first step and to emphasize the importance of constant time-migration
velocity scan, we exploited the same synthetic example adopted by Economou et al. [20].
This was based on the frequency–wavenumber modeling approach of Bitri and Grand-
jean [27]. It is a 1 m horizontal by 1 m depth model (Figure 1a–f) that consists of a
homogeneous medium with 0.1 m/ns EM velocity as background. The time and space
intervals of the synthetic data were set to 0.11 ns and 0.011 m, respectively. We inserted a
point diffractor in the middle of the model, and we used a dominant frequency of 1 GHz
for a Ricker wavelet. We also added random noise, normally distributed with zero mean
and standard deviation (STD) equal to 10% of a mean trace STD (Figure 1a). We utilized
Stolt’s f–k migration using five specific constant velocity values, ranging from 0.04 to
0.24 m/ns (Figure 1b–f). We can easily see the effect of under-migration (lower velocity
value—Figure 1b,c) or over-migration (higher velocity value—Figure 1e,f). Using the cor-
rect velocity value (0.1 m/ns), however, efficiently focuses the energy of the diffraction to
its apex. Nonetheless, the location of the apex of the hyperbola remains constant for all
velocities used, since we utilize time migration.
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Figure 1. Constant velocity migration of a simulated GPR section containing one diffractor into a 
homogeneous velocity background equal to 0.1 m/ns. (a) Simulated GPR data with additive white 
noise. Constant velocity migration of (a) by using a velocity value of (b) 0.04, (c) 0.07, (d) 0.1, (e) 
0.16, and (f) 0.24 m/ns. Adapted with permission from Ref. [20]. 
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Figure 1. Constant velocity migration of a simulated GPR section containing one diffractor into a
homogeneous velocity background equal to 0.1 m/ns. (a) Simulated GPR data with additive white
noise. Constant velocity migration of (a) by using a velocity value of (b) 0.04, (c) 0.07, (d) 0.1, (e) 0.16,
and (f) 0.24 m/ns. Adapted with permission from Ref. [20].

We can evaluate the performance of each of the five constant velocity migrations used
above by calculating their local slopes σ [20]. This can be accomplished using the local
plane-wave equation:

∂P
∂x

+ σ
∂P
∂t

= 0, (1)

where P is the wavefield and x and t are the space and time variables. Then, we utilized
Claerbout’s [28] approach in order to estimate the partial derivatives in x and t directions:

C =

[
−a− b a− b
−a + b a + b

]
∗ A, (2)

where A is the data array, C is the matrix containing the partial derivatives, and * denotes
2D convolution. This operation is a convolution operation on the data matrix input and a
2 × 2 matrix kernel. When a = 1 and b = 0 or when a = 0 and b = 1, the partial derivatives
in the x and t directions are calculated, respectively. In order to smooth the local slopes
estimated from Equation (2), we applied a triangle-smoothing scheme [17,28,29]. This can
be achieved by applying a 1D box smoothing twice. Repetition of this procedure makes
the filter’s response approach a Gaussian shape, if desired. We can describe the triangle
smoother mathematically using the following Z-transform notation, which is the result of
correlating two box filters [15]:
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Tk(Z) = Bk(1/Z)Bk(Z), (3)

with Bk(Z) being a box filter and k the filter length, we set the filter length for t direction
to one-third of the dominant wavelet duration in all of our examples here, following
Economou et al.’s [20] approach. One can also smooth the local slopes by Gaussian filtering
or by using other types of band pass filters [17]. To apply triangle smoothing on a 2D array,
one may apply triangle smoothing on both dimensions one by one. For the specific example
of Figure 1, we achieved this by utilizing triangle operator lengths of 1.1 ns for t direction
and 0.1 m for x direction, which corresponds to 10 samples for each direction. This gives us
one-third of the dominant wavelet duration (3.3 ns in our case). If Cx and Ct are the arrays
containing the partial derivatives in x and t directions, estimated by Equation (2), then we
can calculate the local slopes using the following equation:

σ = −C′xt∅C′tt, C′tt 6= 0, (4)

where ∅ denotes dot or Hadamard division [30]. This is an element-by-element operation
on two matrices of the same dimensions. C′xt and C′tt are the triangle-smoothed arrays
where Cxt and Ctt are calculated using the equations:

Cxt = Cx
◦ Ct, (5)

Ctt = Ct
◦ Ct, (6)

where o denotes dot or Hadamardproduct [31].
To maintain numerical stability in our calculations, we need to avoid values close

to zero for the denominator in Equation (4). Therefore, we do not account for values of
σ when the absolute value of the denominator is smaller than 10−6. The parameter σ is
estimated in (ns ∆t)/(m ∆x). Following Economou et al. [20], on all plotted images of local
slopes in the present work, the angle σd is used

σd = arctan(σ), (7)

which refers to the GPR image pixels (Figure 1d–f).
Once the local slopes are calculated (Figure 2a–f), we estimate the distribution of

their global STD values. Figure 3 shows the resulting STD distribution of the local slopes
estimated in Figure 2, which then can be used to evaluate the efficiency of velocity values
used in the constant velocity migration. Lower STD values sections depict efficiently
migrated sections (Figure 3d) while higher STD values are related to more unfocused
diffractions (Figure 3a–c,e,f) within GPR sections. Hence, we can use the reciprocal values
of calculated STDs to weight the contribution of the different velocities in stacking the
migrated images (weighted path summation approach). The weights for each velocity can
be normalized to their minimum and maximum values, as shown in Figure 4.

In the path-summation approach, we apply migration using a global velocity range
that covers all commonly possible migration velocities within the GPR data set used.
Usually a range of velocities between 0.04 and 0.24 m/ns with a step of 0.005 m/ns is
employed. As expected, the smaller the velocity step used, the more efficient this approach
will be in suppressing the hyperbolas tails to their apices. However, this will be on
account of the computational cost, as the migration of each constant velocity section is
time consuming. In order to reduce the time needed for this step, we propose using only
five constant velocities initially, distributed over the above range. Therefore, we start with
applying the constant velocity migration using the following starting constant velocities:
0.04, 0.09, 0.14, 0.19 and 0.24 m/ns.
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Figure 4. Comparison between (a) the constant velocity points and their estimated weights used for
stacking the migrated data in the path summation approach, and (b) the procedure of the “divide
and conquer” approach for the optimum velocity range for multipath summation.

2.2. Divide and Conquer Approach

The second processing step utilizes the “divide and conquer” approach. Here, we
exploit the relationship between the five initial chosen velocities and their assigned weights
using the methodology explained above (diamonds denoted with red numbers 1, 2, 3, 4,
and 5 in Figure 4b). We set our initial range of velocities (in which the maximum weight
should occur) between the two minima (minimum assigned weights) among the chosen
velocities. In our example in Figure 4b, the range is between 0.04 and 0.19 m/ns (diamonds
symbolized as R1a and R1b). We then find the mean velocity value of these two, in our case
this is 0.115 m/ns (denoted as R1m). We now need to further reduce the range of velocities,
using these three new points (R1a, R1m, R1b) by finding the two with the largest weights.
In our example, the new velocity range is between 0.04 and 0.115 m/ns (R2a and R2b).
We then divide our new velocity range again by finding the midpoint between R2a and
R2b, which is 0.075 m/ns (denoted as R2m in Figure 4b). We repeat the above procedure
by conquering a new velocity range, based on the two maximum weights. Consequently,
R2m (at 0.075 m/ns) becomes R3a and R2b (at 0.115 m/ns) becomes R3b. This “divide
and conquer” approach is repeated until the new conquered range has a gap less than or
equal to our velocity step (0.005 m/ns), which defines our final range of velocities in which
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the maximum weight exists. Here, the last points defining this narrow velocity range are
the points indicated as R5a and R5b, which correspond to velocity values of 0.095 and
0.105 m/ns, respectively. The maximum weight is assigned to the middle point R5m for
velocity value of 0.1 m/ns. Finally, this point’s position on the velocity axis indicates the
final velocity values range, which is used for multipath summation. We achieve this by
setting the lower velocity value as the initial minimum weight (0.04 m/ns in our case) and
estimating its symmetrical to the right, namely 0.16 m/ns if 0.1 m/ns is set as the center.
In our example, the final range of velocities has been significantly decreased compared
to the initial global range of constant velocities used in the path-summation approach,
reducing the computational cost of our proposed methodology. This procedure allows
the user to find the constant velocities with the maximum migration weights, without
the need to involve all velocities from the initial global range and without the need for
user interference.

2.3. Completing the Constant Time-Migration Velocity Scan

Once we have defined the range of constant velocities with the optimum migration
weights from the previous step, we need to perform the constant velocity migration on all
the velocities within this range (0.04–0.16 m/ns with 0.005 m/ns step in our example). Con-
sidering that we have already calculated the migration sections for some points (diamonds
in Figure 4b) in the previous divide and conquer step, here we complete the remaining
velocity points (denoted as black circles in Figure 4b) within our velocity range. By adopt-
ing this approach, we have applied migration on 27 velocity points in total, including the
25 points within our defined velocity range, [(0.16 − 0.04)/0.005 + 1], plus the two values
initially calculated outside the range (points 4 and 5). This results in significant saving of
computational time compared to the 41 migrations [(0.24 − 0.04)/0.005) + 1] needed in the
conventional path summation approach.

2.4. Stacking of Weighted Migration Sections

Now that we have performed the migration on all the constant velocity values within
our range, we need to stack the weighted migration sections in order to focus the diffractions
and enhance the lateral continuity. Let Ax,t be a GPR section and Ax,t,u the migrated GPR
section using a constant velocity value u. The edges of our velocity range start from u1 to
uN, where N is the number of the velocity values used. If Gu is a weighting function, then a
weighted multipath summation section Bw,x,t can be estimated by

Bw,x,t =
1

N
∑

i=1
Gui

N

∑
i=1

[Ax,t,ui Gui ], (8)

2.5. Applying Varying Spectral Shaping

The expected outcome of the previous stacking of the weighted migrated sections is a
GPR section with focused diffractions. Howbeit, the wide range of velocities used usually
ends in contaminating our final image, giving it a “blurry” texture. To overcome this issue
we propose an adaptive time-varying spectral shaping technique, which is a modification
of the Economou and Vafidis [32,33] and Economou et al. [20] approach. In this technique,
we attempt to shape the initial amplitude spectrum of the traces to an amplitude spectrum
with 1.5 times the peak frequency of the former. We achieve this by using time-gated
spectra of the signal in the t-f domain. To reduce the user interference in this step, we
propose a data adaptive scheme for the estimation of the reference amplitude spectrum
used in the spectral shaping. We accomplish this by employing 12th-degree polynomials
fitting through the Fourier transform (FT) of each time window. The inverse S-transform,
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which transforms the signal S(τ,f ) in the t-f domain to the signal u(t) in time domain, is
given by Stockwell et al. [34]:

u(t) =
∫ ∞

−∞

{∫ ∞

−∞
S(τ, f )dτ

}
ei2π f td f , (9)

where t is time, τ is time delay, and f is the frequency. The term in brackets is the FT of the
signal. The split analytic signal in n/2 time-windows in the t-f domain can be retrieved by:

ua(t) =
∫ fN

0

{∫ t2

t1

S(τ, f )dτ +
∫ t4

t3

S(τ, f )dτ . . .
∫ tn

tn−1

S(τ, f )dτ

}
ei2π f td f , (10)

where fN is the Nyquist frequency, t1 = 0, and tn is the total recorded time of the signal,
while integral term within the brackets corresponds to the FT of the specific duration, or
the specific portion, of the signal. By replacing the FT with H(f ) we obtain:

ua(t) =
∫ fN

0
{H1( f ) + H2( f ) . . . + Hk( f )}ei2π f td f , (11)

where Hk is the spectrum of a specific duration of the time series. Note that we work only
to the positive frequencies. If the same integral, with limits [−fN,0] and containing the
conjugates of H1 to Hk, is combined with Equation (11), we have the inverse FT of the
signal. Now, to apply spectral shaping for a portion of the time series, we use the following
equation [31]:

|Hb( f )| = {|H( f )| − F( f ) + max[|H( f )|]} Fr( f )
max[Fr( f )]

, (12)

where |H(f )| and |Hb(f )| are the input and output amplitude spectra of a time series (or
its portion). Fr(f ) is best-fit high-order polynomials for the reference amplitude spectrum.
F(f ) is the amplitude spectrum of the target signal. Equation (12) further requires that the
energy of |Hb(f )| must be modified to be equal to the energy of |H(f )| [30]. To develop a
more data adaptive scheme, we estimate the reference spectrum using the spectrum under
processing by the Fourier transform (FT) scaling law:

u(at)↔ 1
a

∣∣∣∣H( f
a

)∣∣∣∣eiϕ( f
α ), (13)

where u(t) is a time series, or portion of it, t is time, and f is frequency. The term
H(f ) = |H(f )|eiϕ(f ) is the time series spectrum while α is the scaling factor. If we use α > 1,
then the spectrum is shifted to a higher frequency band, increasing the time resolution.
If we use 0 < α < 1, then we have the opposite effects. We modify only the amplitude
spectrum, indicating a zero-phase procedure:

|Hs( f )| =


1
a1

∣∣∣H( f
a1

)∣∣∣, 0 ≤ f ≤ fp

1
a2

∣∣∣H( f
a2

)∣∣∣, f ≥ fp
, (14)

where |H(f )| is the amplitude spectrum of a portion of a time series in the t-f domain,
|Hs(f )| is the scaled amplitude spectrum, α1 = 1 and α2 = 1.5, while fp is the peak frequency.
In our case, Hs(f ) is the reference spectrum for the implementation of Equation (12). The
unity of the scaling factor α1, denotes that we simply keep the amplitude spectrum from
zero frequency up to the peak frequency. On the other hand, we use the initial amplitude
spectrum scaled 1.5 times its dominant frequency, for the peak frequency up to the Nyquist
frequency. The latter also shifts the initial peak frequency value toward higher frequency
values. This leaves a gap in between the lower frequencies amplitude spectrum and
the higher frequencies amplitude spectrum. We use linear interpolation to fill this gap,
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which results in a white amplitude spectrum in between these two peak frequencies, and a
naturally degrading spectrum at its edges. Afterward, we combine the amplitude spectrum
|Hb(f )| with the initial phase spectrum to generate the zero-phased whitened spectrum of
a portion of the time series. We then sum it with all of the time-portions-scaled spectra of
the trace results in the scaled spectrum of the trace, according to the inverse S-transform
relation (Equations (10) and (11)).

3. Synthetic Example

To evaluate our proposed approach, we used the Reflexw software version 9.1.3 [35]
to generate a 1 m wide and 0.5 m depth data set. We employed Ricker wavelet with
1200 MHz dominant frequency, and a finite difference grid of 0.005 ns × 0.0005 m for
time and scan directions, respectively. For the migration process, we obtained traces every
0.01 m and degraded the time interval to 0.05 ns, to simulate similar intervals used in
true data acquisition. The electromagnetic (EM) velocities we used varied vertically and
laterally from 0.1 to 0.15 m/ns, as shown in Figure 5a. The resulting synthetic GPR section
(Figure 6a) lacks reflectors, as they are masked by diffractions. We tried to improve the
lateral resolution by applying a constant velocity F-K migration using 0.12 m/ns velocity
(Figure 6b), and one with constant velocity of 0.15 m/ns (Figure 6c). As expected, the
former is more efficient at larger depths while the latter is focusing the diffracted energy
at relatively early times because of the migration velocity used. Afterward, we applied
Kirchhoff migration using the RMS velocities derived from the actual model (Figure 5b),
which focused efficiently most of the GPR section (Figure 6d). Kirchhoff migration using
the detailed known velocity model efficiently revealed the lateral nature of the reflectors
and their correct locations (Figure 6d), much better than the constant velocity migrated
sections (Figure 6b,c), but this is usually difficult to apply in real data since the actual
velocity model is rarely known.
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Figure 6. Simulation of GPR data: (a) simulated GPR data; (b) simulated GPR data after constant
velocity migration with 0.12 m/ns velocity and (c) 0.15 m/ns; (d) shows (a) after migration using the
velocity model depicted in Figure 5b.

To apply the weighted multipath summation approach, we needed to estimate the
local slopes required for stacking weights. We utilized triangle operator of 1 ns length
for t direction and 0.2 m length for x direction, which corresponds to 20 samples for each
direction. This gives us one-third of the dominant wavelet duration (3 ns in our data) as
explained in Equation (3). Figure 7a shows the estimated weights, based on the local slopes,
for a global range of velocities (0.04 m/ns to 0.24 m/ns) with 0.005 m/ns step, as per the
approach proposed by Economou et al. [18].
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Figure 7. Construction of a data-dependent weighting function and multipath summation: (a) stack-
ing weights using the reciprocal values of local slopes STD values from each of the constant velocity
migrated data, employing velocities within the range 0.04 to 0.24 m/ns and step 0.005 m/ns; (b) shows
(a) after detrend (circles) and the initial velocity values chosen for the divide and conquer approach
(diamonds); (c) estimated optimum weights for constant velocity migrated sections stacking and
(d) is the output of stacking.

We observed that a linear detrend of the weights is needed in most cases to smooth
our data (Figure 7a). For our modified weighted multipath approach, we chose five distinct
velocities among the global range: 0.04, 0.09, 0.14, 0.19, and 0.24 m/ns, to initialize the
divide and conquer approach (Figure 7b, diamonds). Figure 7b depicts the weights after
linear detrending the five velocities, shown with diamonds, but also the weight of all
velocity values of Figure 7a for comparison (circles). By applying the proposed divide
and conquer approach, we estimated the optimum velocity range (Figure 7c). We then
applied the weighted migration on all velocities within the optimum velocity range and
stacked them, resulting in the section presented in Figure 7d. It is clear that our proposed
approach focused most of the diffracted energy and produced comparable results with that
of the Kirchhoff migration, in terms of their lateral resolution. The resulting section shows
accurately the location and continuity of the two reflectors with the possible exception of
the first 20 cm of the second reflector, probably due to its steep slope. Still, our resulting
section gives much better results than the conventional f–k migration results (Figure 6b,c)
and similar information as shown in Figure 6d. The resolution of our section was degraded,
however, because of the blurriness caused by stacking the migrated sections.
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4. Real Data

We applied our proposed approach of data adaptive weighted multipath summation
on two case studies of real GPR data sets. We chose one data set that is characterized by
reflections and one data set with much diffraction, to better evaluate the efficiency of our
approach on real complex data. For both case studies, we set a velocity range of 0.04 to
0.24 m/ns, in order to cover all the possible migration velocities, from saturated soils
to dry sand. We kept the velocity interval to 0.005 m/ns as it proved efficient from the
synthetic example.

4.1. GPR Data Dominated by Reflections

The first data set comes from a utility detection survey, which also revealed the
stratigraphy of the subsurface. The site is located in Abu Dhabi, UAE, where the main
objective was to verify layout/routing of any existing underground utilities. The surface
is flat and the subsurface formation consists mainly of silty sand. This data set was
acquired using a GSSI 800 MHz antenna, where time and space intervals were set to
0.059 ns and 0.02 m, respectively. The initial processing included de-wow, band-pass filter,
and time-varying gain (Figure 8a). Afterward, we estimated the local slopes employing
a window operator of 20 × 20 size (time samples × number of traces), corresponding
to 1.18 ns × 0.4 m, respectively. Based on the STD of the local slopes distribution, the
weighted velocity range was set between 0.04 and 0.185 m/ns (Figure 9).
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Figure 8. Real example dominated by reflections: (a) GPR data obtained using a 800 MHz GSSI
shielded antenna over silty sand; (b) weighted multipath summation using the local slopes distri-
bution as a weighting function (Figure 9); (c) shows (b) after spectral whitening using the method
presented by Economou and Vafidis [31,32]; and (d) shows (b) after spectral whitening using the
proposed methodology of time-varying spectral scaling.
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Weighted multipath summation focused most of the diffractions and adaptive spectral
shaping technique managed to improve the resulting weighted multipath image resolution
revealing the detailed subsurface stratigraphy (Figure 8b). The noise is suppressed and
the diffractions are almost eliminated, even though the image resolution was degraded
(blurriness) because of the migration velocities stacking. We manage to improve the image
resolution significantly by applying the method of Economou and Vafidis [14] (Figure 8c).
Still, this method needed the estimation of a reference amplitude spectrum, parameters
regarding the effective frequency range for the application of the method, and a final band-
pass to the output. The application of the proposed adaptive spectral shaping technique
produced a similar output with increased resolution (Figure 8d). Both outcomes reveal the
detailed subsurface stratigraphy, with good lateral resolution where most of the diffractions
were eliminated.

To explain the effect of both methodologies, we plotted the amplitude spectra of two
distinct events at 16 m from the origin of the data sections: the early arrival at 2.5 ns and the
next strong event at 6.5 ns (Figure 8b). The amplitude spectra of these events are depicted
in Figure 10a,d, respectively. An initial observation is the lower dominant frequency and
spectrum width of the latter. The application of the method from Economou and Vafidis [14]
adopts the scope of both increasing the resolution and restoring the dominant frequency
stationarity, implemented as shown in Figure 10b,e, which are the corresponding amplitude
spectra after spectral whitening. A reference wavelet was chosen from a shallower part
of the section. Using the proposed methodology, spectral shaping the initial amplitude
spectra, depicted in Figure 10a,d, increased the dominant frequency by also shifting the
peak frequencies to almost 1.5 times the initial ones, but did not produce similar spectra,
which would indicate dominant frequency stationarity. Still, the latter is fully adaptive
and the output is similar to the conventional approach if one compares Figure 8c,d, which
proves the similarity of the adaptive scheme output with the conventional scheme.
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Figure 10. Representative amplitude spectra of selected events: (a) amplitude spectra of a distinct
event at 16 m and 2.5 ns, shown in Figure 8b; (b) corresponding amplitude spectra of (a) after spectral
whitening; (c) corresponding amplitude spectra of (a) after using our approach; (d) amplitude spectra
of a distinct event at 16 m and 6.5 ns, shown in Figure 8b; (e) corresponding amplitude spectra of
(d) after spectral whitening; (f) corresponding amplitude spectra of (a) after using our approach.

4.2. GPR Data Dominated by Diffractions

The second case study consists of a set of parallel GPR lines dominated by diffractions.
The survey took place in the archeological site of Xochicalco in Mexico [36], where fractures
and caverns are potential sources of the degradation of the archeological remains. The
objective was to image weak zones in carbonates which may affect the stability of the walls
remaining in Quetzalcoatl Temple. The subsurface consists mainly of pelagic limestones
and breccias of the Xochicalco Formation [37] (Ruiz-Violante and Basañez-Loyola, 1994),
where dissolution and cavern formation is expected. This case study helps us evaluate
the applicability and efficiency of our proposed methodology on large data sets. The GPR
survey was performed using a SIR-3000 system (GSSI) equipped with a shielded 400 MHz
antenna. The GPR measurements were conducted in front of Quetzalcoatl Temple on a
surface of 34 m × 20 m, involving 81 parallel study lines with lateral spacing of 0.25 m.
The time interval was set to 0.1957 ns and the space interval to 0.02 m. Initial processing
included time-zero shift, de-wow, and background removal filter of 200 traces, together
with band-pass filtering 200–600 MHz and inverse exponential amplitude gain. A sample
of the processed lines is presented in Figure 11a.

The data section after weighted multipath summation and spectral whitening is de-
picted in Figure 11b,c, respectively. The time-varying spectral whitening procedure reveals
the detail of the lateral continuity of reflectors around 30 ns and 50 ns (Figure 11c). The
windowing operator size for the local slopes estimation was set to (time samples × number
of traces) = 20 × 20 corresponding to 3.9 ns × 0.4 m. The velocity range used for constant
velocity migration and the evaluation of the STD of the local slopes distribution indicated
a weighting function focusing to almost 0.075 m/ns (Figure 11d). The slope-dependent
weighting function in Figure 11d underwent the proposed methodology for the adap-
tive estimation of the weights to be used for stacking and the weights within the range
0.04 to 0.15 m/ns was chosen. In Figures 11d and 12, we show the whole range of ve-
locities for the reader to see all the weights that would be estimated if the methodology
of Economou et al. [20] was utilized. Economou et al. [36] utilized the methodology of
Economou et al. [20] to extract depth slices from the specific data set. Namely, they esti-
mated summation weights for the whole velocity range 0.04 to 0.24 m/ns and visually
inspected the most appropriate weights to be further used for stacking constant velocity
migration sections (Figures 11d and 12).
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Figure 12. Stacking weights estimated for representative GPR lines of a 3D acquisition (parallel study
lines) over an area of 34 × 20 m. From (a–d), corresponding GPR study lines located at 1, 6, 16
and 19 m.

Here, we applied the proposed methodology and adaptively estimated the same
ranges of velocity values, without the need of user interference. These are representative
results, while for all the other lines, the adaptive choice of weights was applied. This gave
estimated ranges of 0.04–0.145, 0.04–0.125, 0.04–0.14, and 0.04–0.155 m/ns for Figure 12a–d,
respectively. Note, except for the varying velocity ranges, the different peak values and
the different shapes of the weighting functions. Similar variability but different values of
velocity ranges and weights were chosen for each line of the whole 81 line data set, which
demonstrates the need of the weights choice adaptiveness for such cases.

Horizontal time slices of the mean envelope of 31–36 ns (Figure 13a) and 37–42 ns
(Figure 13d) were extracted, corresponding to approximately 1.65 and 1.87 m depths,
respectively, for a mean velocity of 0.095 m/ns. The same time slices after multipath
summation, except the focused energy, also indicate the increased blurriness (Figure 13b,e),
which is avoided by the proposed spectral whitening method (Figure 13c,f).
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corresponds to the mean amplitude of 31 to 36 ns, or approximately at 1.65 m depth of (a) the initially 
processed data, (b) the multipath summation data, and (c) the spectral whitened data of (b). The 
second row of images (d–f) depicts the same information as above for the mean amplitude of 37 to 
42 ns or approximately at depth 1.87 m. 

  

Figure 13. Horizontal depth slices of the 3D data acquisition example. The first row of images
corresponds to the mean amplitude of 31 to 36 ns, or approximately at 1.65 m depth of (a) the initially
processed data, (b) the multipath summation data, and (c) the spectral whitened data of (b). The
second row of images (d–f) depicts the same information as above for the mean amplitude of 37 to
42 ns or approximately at depth 1.87 m.

5. Discussion

The weighted multipath summation method has been utilized by several researchers [18–20]
to improve the lateral resolution of GPR sections by focusing the diffracted energy. The key
word for the efficiency of the multipath summation is stacking. By stacking the different
migrated sections using different velocities, the apices of the hyperbolas are enhanced
against the moving tails of the over- or under-migrated parts of the constant velocity
migrated sections. Therefore, after stacking the different migration sections, using the
same range of constant velocity migration, this approach focuses most of diffracted energy
despite spatial velocity variation. However, multipath summation images may suffer
incomplete cancellation of the hyperbola tails due to not equally focused diffractions [19].
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This is because the output of this methodology corresponds to an optimum combination of
the existing migration velocities within the data, which produces an average focusing of
all diffractions [19,20]. This is clear in Figures 8 and 11 where some of the diffractions are
not efficiently focused. Therefore, the main advantage of this approach is that it manages
to focus most of the diffracted energy without requiring the knowledge or selection of a
velocity model. Here, we presented a fully adaptive version of our previous approach of
the weighted multipath summation method [20], with the scope to have a similar output,
but with reduced computational and human intervention time.

We applied our proposed data adaptive approach on synthetic data dominated by
diffractions, which masked the continuity of horizontal reflectors. Our approach managed
to focus most of the diffracted energy and produced comparable results with that of the
Kirchhoff migration, in terms of their lateral resolution, but without the need to build a
velocity model. This was achieved with a significantly reduced number of constant velocity
migrations compared to that of Economou et al.’s [20] approach and without the need
of user intervention for finding the optimum weights. It is worth mentioning that the
outcome of our proposed approach (Figure 7d) is closer to the real model than the ones
of constant velocity migration (Figure 6b,c), but not as close as the outcome of the full
velocity model migration (Figure 6d). The latter images also over-migrate artifacts due
to the diffraction summation procedure of the Kirchhoff algorithm. Still, this outcome
images the model in large details. The multipath summation outcome can be considered
as a smoothed version of the Kirchhoff migrated section, which, although avoiding the
migration procedure artifacts, it also lacks imaging detail. Finally, it should be noted that
the high-dipping deeper reflector at a distance from almost 0.2 m to around 0.3 m is not
imaged by any migration output as it is probably not recorded by the receiver; the reflected
energy is transmitted further than the receiver’s position.

Encouraging results were also achieved when applying our approach on two different
real data sets. The first was dominated by reflections while the second was dominated
by diffractions. Our approach successfully suppressed most of the diffracted energy, im-
proving the lateral resolution and emphasizing the accurate location of any reflectors.
The expected degradation of the image resolution due to the introduced blurriness was
remediated by the data-adaptive spectral whitening approach, with limited user interfer-
ence. It was demonstrated that the adaptive scheme produces similar results as those with
the conventional one, which is one of the main challenges for adaptive signal processing
methods. Our approach was especially effective in reducing the computational time when
applied to parallel GPR sections, as in the second real case study.

The interval of the study lines did not permit 3D migration, as aliasing would have oc-
curred due to the large distance in comparison to the expected wavelength. Future research
will focus on the implementation of a fully 3D approach. More effort will also be given in
the direction of using our proposed focusing criteria for local focusing, which may lead to
a migration velocity model to be used either for migration or for interpretational reasons.

6. Conclusions

We presented a strategy for adaptive diffraction focusing on zero-offset GPR data
without the need to explicitly build a migration velocity model. We propose an improve-
ment in the multipath summation method in order to reduce the user intervention in its
implementation, and provide an alternative implementation of the local slopes estimation
stage. We employed a “divide and conquer technique” for estimating the range of velocities
to be used in the constant velocity migration in order to reduce the migrations needed
and, subsequently, the implementation time. The alternative approach for estimating the
local slopes presented here does not involve abstract vectors as in Economou et al. [20],
but rather the x and t partial derivatives in data matrices. We also introduced a modified
spectral scaling scheme for the spectral whitening of the results in migrated GPR sections.
This method effectively restores the blurriness introduced by constant velocity migrated
sections stacking and the migrations themselves, without the need to estimate a reference
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wavelet or other parameters for whitening stability, as well as a final band-pass to the
output. The final output of applying our proposed data adaptive methodology managed to
improve the lateral continuity of GPR sections, similar to our previous methodology. The
need for a detailed velocity model is suppressed, and the user’s involvement is restricted
to specifying a range of trial velocity values instead of applying velocity analysis, which
usually requires multioffset GPR data. This velocity range can be wide enough to include
velocity values that characterize the formations of the area under investigation.
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