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Abstract: We used the objective analysis method in conjunction with the successive correction method
to assimilate MODerate resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Depth (AOD)
data into the Chimère model in order to improve the modeling of fine particulate matter (PM2.5)
concentrations and AOD field over Europe. A data assimilation module was developed to adjust the
daily initial total column aerosol concentrations based on a forecast-analysis cycling scheme. The
model is then evaluated during one-month winter period to examine how such a data assimilation
technique pushes the model results closer to surface observations. This comparison showed that
the mean biases of both surface PM2.5 concentrations and the AOD field could be reduced from
−34 to −15% and from −45 to −27%. The assimilation, however, leads to false alarms because of
the difficulty in distributing AOD550 over different particle sizes. The impact of the influence radius
is found to be small and depends on the density of satellite data. This work, although preliminary,
is important in terms of near-real time air quality forecasting using the Chimère model and can be
further developed to improve modeled PM2.5 and ozone concentrations.

Keywords: PM2.5; Aerosol Optical Depth; data assimilation; MODIS; satellite data; objective analysis;
particulate matter forecasting; model validation

1. Introduction

Air pollution in Europe has become a serious issue in recent years with the recorded
concentrations of PM2.5 (particulate matter of aerodynamical diameter smaller than 2.5 µm) [1,2].
High concentrations of PM2.5 can cause detrimental human health problems. Daily PM2.5
concentrations are very useful for health studies and evaluations of regulations. Therefore,
their accurate prediction and modeling is of paramount importance.

Chemistry-Transport Models (CTMs) are numerical tools to predict PM2.5 concentra-
tions on different scales. However, these models are uncertain. For example, Van Loon et al. [3]
confronted the simulated aerosol concentrations over Europe against surface observa-
tions and found that the Root Mean Square Error (RMSE) between both of them is about
10 µg·m−3and that the correlation rarely exceeds 50%. Additionally, Majdi et al. [4] ex-
amined the uncertainties on air quality modeling, fire emissions parameters and PM2.5
concentrations threshold exceedances over the Euro-Mediterranean region during two
severe fire events in summer 2007 and revealed that the statistical dispersion for PM2.5
concentrations can be as high as 75% depending on the chemical mechanisms, the injection
heights of fire emissions and the model’s vertical resolution. He et al. [5] used GEOS-Chem
model to simulate Black Carbon (BC) over the Tibetan plateau and revealed that the model
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succeeded in capturing the seasonal variability of surface BC at rural sites, but the observed
wintertime peaks were not reproduced. Moreover, Prank et al. [6] evaluated four regions
using the measurements of PM chemical composition by the European Monitoring and
Evaluation Program (EMEP) network. This study showed that the four models underesti-
mate PM concentrations by 10–60% depending on the model and the simulation period
and stressed the necessity of improving models performances. These discrepancies are
due to the uncertainties related not only to meteorology [7–10], chemistry [4,11,12] and
emissions [4,7,13] but also initial conditions [14–17]. Different studies investigated the
improvement of CTMs performance through the improvement of emissions [4,7], mete-
orological conditions [11] and chemical mechanisms [4,7], but other studies focused on
improving the accuracy of the initial conditions for forecast applications [18–21].

Data assimilation (DA) is a powerful tool that exploits the available observations
including airborne, ground-based or remote sensing observations in order to reduce model
uncertainties on initial conditions. Several data assimilation approaches are available and
range from statistical methods, such as optimal interpolation [22], to variational [18,20,21]
and sequential such as Kalman filters and Ensemble Kalman Filters (EnKF) [23]. For exam-
ple, Liang et al. [20] showed by comparing the control experiment involving no DA and
an experiment involving DA of lidar Aerosol Extinction Coefficient (AEC) data that the
3-DVAR DA system was effective at assimilating lidar AEC data. While there were only
five lidars within the simulation region, assimilating AEC data alone was still found to
effectively improve the accuracy of the initial field, hence improving the forecast perfor-
mance for PM2.5 for more than 24 h. The lidar AEC DA can reduce the RMSE of the surface
PM2.5 mass concentration in the initial field of the model by 17.6%. Although variational
and sequential data assimilation techniques are advanced and complex, the Objective
Analysis (OA), known also as optimal interpolation is very straightforward and com-
putationally very portable [24–26]. Agudelo et al. [27] used both the objective analysis
and EnKF techniques to improve PM10 estimates of AURORA model with ground-based
measurements provided by IRCEL (the Belgian Interregional Environment Agency) over
Belgium, Luxembourg, Germany and the Netherlands. They found that the model perfor-
mances were more improved using the Optimal Interpolation (OI) than EnKF, as the mean
bias was reduced from −12.84 to 0.04 µg·m−3 using OI and to 0.75 µg·m−3 using EnKF.
In addition, Kumar et al. [26] also used the AURORA model to assimilate ground-level
ozone O3 and nitrogen dioxide NO2 concentrations over Belgium. The evaluation over
70 airbase stations showed that the correlation improved from 40 to 80% for O3 and from
30 to 60% for NO2, and the RMSE was reduced from 27.9 to 12.6 µg·m−3 for O3 and from
17.4 to 11.0 µg·m−3 for NO2 during the month of June. During December, both the spatial
correlation and the index of agreement of monthly means of both species’ concentrations
improved considerably.

In meteorology, OA has been surpassed by 4D-Var or the EnKF [28], but it is still a
commonly used DA method in CTMs, as OA is simple to implement and is computationally
cheaper than other DA methods [16]. By contrast, 4D-Var assimilates observations over a
time window, which could yield better results [29] when the model is reliable. However, it
is more complex to implement because the adjoining of the model is required in the 4D-Var
method [30,31]. Refs. [23,32,33] compared two different DA methods, the OA and the EnKF
for aerosol forecasts. They reported that the EnKF delivers slightly better results than the
OA, but the cost of implementation of the EnKF is higher than that of the OA due to the
high number of required model simulations. The OA is then employed in this paper to
sequentially assimilate observations.

Therefore, by combining observations and model results, the OA can be used to
improve initial conditions of CTMs and hence improve PM predictions either directly using
surface concentrations or indirectly by comparing the Aerosol Optical Depth (AOD) with
the modeled one and make the correspondent adjustments [34,35]. In fact, Kaufman et al. [36]
showed, based on 7 years comparison that AOD from MODIS is highly correlated with
daily average AOD measured from Aerosol Robotic Network (AERONET) over more than
50 sites worldwide and even better correlated with hourly PM2.5 measurements.
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However, the indirect OI using observations from satellites is more relevant and
useful because surface and airborne observations are not only sparse but also spatially and
temporally limited. For example, Tombette et al. [25] assimilated particulate matter with a
diameter lower than 10 µm (PM10) data with the BDQA (Base de Donnees sur la Qualité
de lÁir: the French national data base for air quality that covers France) using optimal
interpolation implemented in the chemistry-transport model Polair3D of the air quality
modeling system Polyphemus and found that the statistics are not improved because
the effects of DA are overshadowed and the concentrations quickly become close to the
concentrations without DA.

Satellite data have proven to be effective in improving model-derived AOD over the
United States, Asia and the Indian ocean using the OA technique [34,37,38]. For example,
Tang et al. [34] assimilated the AOD in Community Multi-scale Air Quality (CMAQ)
modeling system and found that surface PM2.5 concentrations biases over the Contiguous
United States were reduced from−2.25 to 0.77 µg·m−3. In addition, Tang et al. [35] adjusted
the initial conditions of the CMAQ model to assimilate MODIS AOD using OI, and the
model showed a great improvement, as the bias of surface PM2.5 and ozone was reduced
from 7.14 to −0.11 µg·m−3 and from 2.54 ppbV to 1.06 ppbC, respectively.

The aim of this paper is to show how satellite retrievals can be assimilated in the
Chimère model using the OA technique. The model is then evaluated in terms of both
modeled PM2.5 concentrations and AOD improvements in order to quantify the spatio-
temporal impact of assimilating MODIS AOD data on model performance.

The paper is structured as follow: Section 2 describes the setups of the model and
the DA system. Section 3 discusses the results of different numerical experiments and the
findings of different sensitivity studies.

2. Method Overview and Model Setup
2.1. Development of the Forecast-Analysis Cycling Scheme

The default configuration of the model without DA consists of taking the initial
concentration of a given species i, given size section j and at a given time step from the
output concentration computed from the previous time step. The configuration with DA
suggested in this study is based on a “Forecast-Analysis Cycling Scheme” and consists of
using the model output AOD as the first guess and satellite AOD as input observations
to generate the analysis of AOD, with which the model’s output concentrations are
adjusted and fed back to the model as initial concentrations, instead of taking model output
concentrations as the initial conditions, as shown in Figure 1.

The data assimilation system developed here is illustrated in Figure 1 and can be
summarized in a set of three steps:

1 The AOD was computed from the modeled aerosol concentrations and taken as a first
guess AODChim at 00 UTC every day.

2 The analysis of AOD field AODana was computed at 00 UTC from AODChim and the
retrieved AODobs covering Europe during the prior day using the OI described in
Section 2.2.

3 The concentrations CChim
i,j that refer to the concentration of each chemical component

i of PM2.5 at each size size bin j were updated at 00 UTC using an adjustment ratio
(AODana/AODChim) shown in Section 2.2, and the analysis of concentrations were
computed Cana

i,j , which refer to the analysis of the concentration of each component i
of PM2.5 at each size bin j.

For each daily job run, the data assimilation covered the hours during which the
satellite observations were available.
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Figure 1. Illustration of the developed Analysis-Forecast cycling scheme. The blue arrow show the
forecast step. The black arrows refer to the basic configuration of the model. The red arrows refer to
the developed data assimilation module.

2.2. Objective Analysis of Satellite-Derived AOD

The Analysis-Forecast cycling scheme is based on adjusting the modeled concentra-
tions with the ratio of the AOD analysis AODana to modeled AODChim as described by
Equation (1). The fraction AODana

AODchim is considered the same for all concentrations in the
vertical column volume:

Cana
i,j = Cchim

i,j × AODana

AODchim (1)

The objective analysis of AOD at a grid point m was performed by successive cor-
rections using Equation (2). The successive correction method used in this work was the
Creesman scheme, which uses satellite observations within a prescribed radius of influence
as shown in Figure 2, and observations outside the influence radius were not used to
assimilate the AOD field:

AODana
m,0 = AODChim

m

AODana
m,n+1 = AODana

m,n +
∑

k=Km,n
k=1 αn

m,k(AODobs
k −AODana

k,n )

∑k=Kn
k=1 αn

m,k+E2

(2)

where AODobs
k is the kth observation surrounding the grid point m, AODChim

m is the mod-
eled AOD using Chimère (background) at the grid point m, AODana

m,n is the nth iteration
estimation of AODana at the grid point m and AODana

k,n is the nth estimate of AODana eval-
uated at the observation point k. Km,n refers to the index of the farthest cell within the
influence circle of radius equal to the influence radius and centered on the grid point m.
E2 is an estimate of the ratio of the observation error to the first guess field error. This
value was assumed to be 10%. αn

m,k is a weight function which depends on how far the
observation m is from the grid point k, as shown Equation (3), where rm,k is the distance
between an observation point k and a grid point m. The radius of influence Rn was allowed
to vary with the iteration by a constant factor R2

n+1 = γ R2
n. The factor γ was set to be less

than 1 to reproduce the details in the observations field in the analysis field. Here, multiple
values of the γ factor of 0.8, 0.5 and 0.3 were tested and are equal to 0.3, so the observation
minus analysis increments (O-A) were located over the observation locations.

In this approach, selecting the proper values of the radius of influence was some-
what empirical and depended upon the data spacing and the desired level of smoothing.
Thiébaux and Pedder [39] showed that a radius of influence is approximately twice the
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average spacing of the observations in a time when Tombette et al. [25] used an influence
radius of one mesh cell. These values tend to be a reasonable compromise between under-
smoothing and over-smoothing. A radius of influence of one grid spacing was used as
default, and a sensitivity study to the radius of influence using a radius of one grid cell and
two grid cells was conducted in Section 4:

αn
m,k =


R2

n−r2
m,k

R2
n+r2

m,k
r2

m,k < R2
n

0 r2
m,k ≥ R2

n

(3)

Using these types of functions, the grid point values reflected the observations in areas
of high observation density, while in low-density areas, the grid values were closer to the
first guess (modeled AOD).

Figure 2. Objective analysis of satellite observation (red diamonds) onto a regulate grid shown in
black using a circular influence (blue circle) as used in the Creesman scheme. R0 is the radius of
influence at the first iteration, and Ri is the distance between the observation point and the grid point.

2.3. Chimère Model Setup

The Chimère model (Menut et al. [40]; http://www.lmd.polytechnique.fr/chimere,
accessed on 28 April 2022) was run to simulate the concentrations of particles and their
composition in 2013 over Europe. The domain covered the area from 14◦ W to 25◦ E in
longitude and from 35◦ N to 58◦ N in latitude with a 0.5◦× 0.5◦ of spatial resolution. There
were 9 vertical levels up to 500 hPa. The Chimèe model needs a set of gridded input data:
meteorological data, sea salt, biogenic and anthropogenic emissions, land use parameters,
initial and boundary conditions and deposition velocities.

Meteorology was obtained from the Weather Research and Forecasting model (WRF)
regional model forced by NCEP (National Centers of Environmental Predictions, http:
//www.ncep.noaa.gov, (accessed on 28 April 2022) with a base resolution of 1◦. The online
coupling mode Chimèe-WRF was used here with a feedback of the aerosol optical properties
to induce a radiative forcing, as shown in Briant et al. [41].

Annual anthropogenic emissions of gases and particles were taken from the EMEP
inventory for 2009. Temporalization of emissions was performed according to temporal
factors for each country provided by GENEMIS [42].

Biogenic emissions were computed with the Model of Emissions and Gases and
Aerosols from Nature (MEGAN) 2.1 [43] with high-resolution emission factors and leaf
area index (LAI) data. These emissions from biogenic sources included isoprene, limonene,
α-pinene, β-pinene, humulene and ocimene. Sea-salt emissions were computed according
to Monahan et al. [44].

http://www.lmd.polytechnique.fr/chimere
http://www.ncep.noaa.gov
http://www.ncep.noaa.gov
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Boundary conditions were generated from the results of the Model for OZone And
Related chemical Tracers (MOZART v4.0; Emmons et al. [45]) available online at https:
//www.acom.ucar.edu/wrf-chem/mozart.shtml (accessed on 28 April 2022). Initial condi-
tions of chemical species were taken from the GOCART model [46].

The MELCHIOR2 [47] mechanism was used to simulate the gas-phase chemistry.
Evaporation/condensation of semi-volatile species was represented with the algo-

rithm of Pandis et al. [48] using thermodynamic equilibria. Coagulation of particles was
represented as in Debry et al. [49]. Thermodynamic equilibria were computed with the
ISORROPIA II model [50] for inorganic compounds. Ten bins for aerosol size distribution
and the SOA (secondary organic aerosols) scheme of Bessagnet et al. [51] were used here.
The Chimere aerosol module distributes aerosols in 10 size bins ranging from 40 nm to
40 µm in a logarithmic sectional approach.

The Wesely [52] aerosol dry deposition and Loosmore [53] resuspension schemes were
used. The online coupling with the ISORROPIA model was used.

The basic chemical speciation includes elemental carbon, sulfate, nitrate, ammonium,
sodium, chloride, dust, SOA (formed from biogenic and anthropogenic VOCs and primary
organic aerosol) and the primary particulate matter other than ones mentioned above.

2.4. Observation Data
2.4.1. MODIS Data

MODIS products used in this study were a composite of AOD from MODIS TERRA
(north to south transect at about 10:30 a.m. local time) and MODIS AQUA (south to north
orbital transect about 1:30 p.m. local time) products. Both Terra- and Aqua-MODIS instru-
ments view the entire Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands
ranging in wavelengths from 0.4 to 14.4 µm. AOD retrievals were calculated at 0.55 µm
(AOD550) and originally processed using MODIS data at a spatial resolution of 0.1◦ × 0.1◦.
The MODIS AOD field was projected to the 0.5◦ × 0.5◦ spatial longitude/latitude grid and
happened to be only available in a subset of observation pixels due to multiple reflective
surfaces and cloud contamination.

2.4.2. AERONET Data

The AERONET (AErosol RObotic NETwork) photometers measurements [54,55] were
used to characterize the observed AOD. The AOD data were recorded by numerous stations
deployed around the world, and hourly values are available in https://aeronet.gsfc.nasa.
gov/new_web/aerosols.html (accessed on 28 April 2022). Several quality levels were
proposed on the AERONET database. In this study, the level 2.0 AERONET AOD at
440 and 870 nm and Ångström Exponent (AE440/870) [56] with an uncertainty estimated to
less than 0.02 [4,55] were used to derive AOD at 550 nm using logarithmic interpolation.
If an AOD value was not available at 440 nm, then the AOD was not obtained at 550 nm.
If the AOD at 870 nm was not available, the interpolation is made between AOD at 440 and
1020 nm. The location of the stations are displayed in Figure 3.

2.4.3. AirBase Data

AirBase (https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-
air-quality-database-8, accessed on 28 April 2022) gathers regulatory data reported by
Member States of the European Union according to the air quality directives [57]. For this
study, quality-controlled and assured hourly PM2.5 data from both rural and urban back-
ground stations were used. Figure 3 shows the locations of the AirBase stations over Europe
used here.

https://www.acom.ucar.edu/wrf-chem/mozart.shtml
https://www.acom.ucar.edu/wrf-chem/mozart.shtml
https://aeronet.gsfc.nasa.gov/new_web/aerosols.html
https://aeronet.gsfc.nasa.gov/new_web/aerosols.html
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8
https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-8
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Figure 3. Maps of evaluation stations from AirBase network (184 stations) for PM2.5 concentrations
(right panel) and AERONET network (91 stations) for AOD (left panel).

2.5. Statistical Evaluation Method

The statistical evaluation was based on a set of performance statistical indicators: the
simulated mean (s), the root mean square error (RMSE), the correlation coefficient, the mean
fractional bias (MFB) and the mean fractional error (MFE). They are defined in Table 1.
Based on the MFB and the MFE, Boylan and Russell [58] proposed a performance and a
goal evaluation criteria as detailed in Table 2.

Table 1. Definitions of the statistics used in this work. (oi)i and (ci)i are the observed and the
simulated concentrations at time and location i, respectively. n is the number of data.

Statistic Indicator Definition

Root mean square error (RMSE)
√

1
n ∑n

i=1(ci − oi)2

Correlation (Corr) ∑n
i=1(ci − c̄)(oi − ō)√

∑n
i=1(ci − c̄)2

√
∑n

i=1(oi − ō)2

Mean fractional bias (MFB) 1
n ∑n

i=1
ci − oi

(ci + oi)/2
Mean fractional error (MFE) 1

n ∑n
i=1
| ci − oi |
(ci + oi)/2

Table 2. Boylan and Russel criteria.

Criteria Performance Criterion Goal Criterion

|MFB| ≤60% ≤30%
MFE ≤75% ≤50%

2.6. An Analysis Example

An example of the calculation of the analysis of AOD field for the first simulation
day of 7 March 2009 is shown in this section. All MODIS observations during a day were
assimilated at 00 UTC: the MODIS observations at 1:30 Local Time were assimilated at
00UTC. The modeled, retrieved and the analyzed AOD fields during that day are shown in
Figure 4.
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Figure 4. (Upper left panel): Modeled AODChim (first guess). (Upper right panel): MODIS AODobs
retrievals. (Lower left panel): the analysis of AOD field AODana. (Lower right panel): Ratio of AOD
analysis to the AOD first guess.

On 7 March 2009, the MODIS data were not available over the whole European domain
because of the cloud coverage during a winter day. The model tends to underestimate the
AOD over areas where satellite data are available (a bias of −69% is found over the cells
where MODIS data is available). The modeled AOD values did not exceed 0.3. The analysis
of AOD field showed higher values especially over Tunisia, Greece, south of France and
Eastern Europe due to the impact of high observed AOD values.

A map of the adjustment ratio (AODana/AODChim) is shown in Figure 4.
Figure 4 shows that this adjustment ratio locally exceeds 1.0, especially over regions

where the satellite AOD are available.

3. Simulations Experiments Evaluation

Two simulations are performed with the same input data and parameterizations
during the month of March 2009, which correspond to record pollution concentrations over
Europe: the first one is the reference simulation without DA (called “Simulation without
D.A.”), and the second one is run with the developed DA (called “Simulation with D.A.”).
Figure 5 shows maps of PM2.5 concentrations and AOD field over Europe averaged over
March 2009 and the relative difference between the two simulations in order to quantify
the impact of OA on the model predictions. The white areas in Figure 5 correspond to areas
of relative difference equal to zero.
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Figure 5. Maps of PM2.5 concentrations (upper left), AOD field (lower left panel) and the relative
difference between the simulations with and without objective analysis in terms of PM2.5 concen-
trations (upper right panel) and AOD field (lower right panel). The dashed area in the lower left
figure represents the oceanic part of the simulated domain.

The effect of OA during the one-month period is significant. The main differences
between the modeled concentrations of PM2.5 and AOD with and without OA are located
over France (∼50–60%) and the southern part of Europe (∼50–60%): the northern part of
Italy, Balkans, south of Greece and over the Mediterranean.

The modeled PM2.5 concentrations (resp. AOD) are compared against hourly surface
observations from AirBase (resp. AERONET) network in Table 3 (resp. Table 4).

Table 3. Statistics of model to AirBase measurements comparisons for hourly PM2.5 concentrations
during March 2009. s and RMSE are expressed in µg·m−3.

o = 38.01 µg·m−3 s RMSE Correlation [%] MFB [%] MFE [%]

Simulation without D.A. 20.89 30.05 40 −34 51
Simulation with D.A. 33.21 15.13 45 −15 39
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Table 4. Statistics of model to AERONET measurements comparisons for daily AOD during March
2009. s and RMSE are expressed in µg·m−3.

o = 0.37 s RMSE Correlation [%] MFB [%] MFE [%]

Simulation without D.A. 0.21 0.19 73 −45 55
Simulation with D.A. 0.30 0.11 78 −27 42

Using the default simulation without the DA, the modeled surface concentrations of
PM2.5 are significantly underestimated by a factor of about 47% (the measured and modeled
means are 38.01 and 20.01 µg·m−3, respectively). The goal criteria are not respected as
the mean fractional bias and error are −34 and 51%, respectively. This underestimation
is mainly due to the fact that the model highly underestimates PM2.5 concentrations over
the urban background stations but modeled PM2.5 concentrations agree better with the ob-
served concentrations over the rural background. The reasons of this underestimation were
explained by Terrenoire et al. [59] who showed Chimère has more difficulty in reproducing
the PM concentrations during winter, especially at urban background stations because the
model is not able to correctly simulate the stable meteorological conditions that lead to
high PM episodes [60].

During this winter month, PM2.5 are mainly composed of primary organic compounds
mainly emitted by industrial, traffic and biomass-burning anthropogenic sectors. The high-
est concentrations are located over North Eastern Europe, which is consistent with results
found by Terrenoire et al. [59].

Because of the OA, PM2.5 concentrations increased by 59% as the simulated means
moved from 20.89 to 33.21 µg·m−3 and became closer to the observed mean (38.01 µg·m−3).
The RMSE also decreased from 30.05 to 15.13 µg·m−3. The bias and error, moreover, were
reduced from −34 to −14% and from 51 to 39%, respectively.

In addition, the model performance improved as the modeled PM2.5 concentrations
using OA respect the goal criterion in a time when the modeled concentrations without OA
respects only the performance criterion. Tombette et al. [25] evaluated the OA effect using
Polyphemus model on both PM10 and PM2.5 over 156 European stations and found that
PM10 concentrations increased by 7% and the bias was reduced from 55% to 49%, and over
8 European stations, PM2.5 concentrations increased by a factor of 7%. Tang et al. [35] also
improved hourly PM2.5 and ozone concentrations using OA over AIRNOW measurements
as the mean bias improved from −7.14 to −0.11 µg·m−3 and from 2.54 to 1.06 ppbV.

Similarly, the modeled AOD field over AERONET stations increased by a factor of 43%
from 0.21 to 0.30. The correlation also slightly improved from 73 to 78%. Both the bias and
error decreased from −45 to −27% and from 55 to 42%. The error of 42% can be explained
by the fact that AERONET can make a much wider range of measurements throughout the
day while MODIS onboard Terra and Aqua pass at 10:30 and 1:30 local time, respectively.

Figure 6 shows the scatter plots of hourly PM2.5 concentrations and AOD modeled
with and without the developed DA over AirBase and AERONET stations, respectively.

The number of compared data in the AERONET network is lower than the number
of compared AirBase data because numerous missing data were found in the AERONET
data. The correlation moved from 40 to 58%, and the slope of the scatter plot increased
from 0.23 to 0.52. The same result is found when it comes to the modeled AOD (as
the correlation increased from 73 to 90% and the slope of the scatter plot moved from
0.34 to 0.59). The analysis fields show an overestimation of the PM2.5 concentrations. This
overestimation (false alarms) can be explained by the fact that concentrations of PM with
an aerodynamic diameter larger than 2.5 µm are also sensitive to AOD550 and therefore
are accounted for in Equation (1). A better distribution of AOD by particles size should
be added to avoid false alarms in the forecasting system in future studies. In addition,
the model was evaluated against the terrestrial part of the simulated domain as shown in
Figure 5. Because of the diurnal change in the boundary layer, as well as humidity and
other factors that are very different over the sea surface than the terrestrial surface, this
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evaluation of the model and the DA impact needs to be further validated over the part
of the Atlantic Ocean of the domain (dashed area in Figure 5). Over the Mediterranean
sea, the AirBase and AERONET stations over islands such as Corsica, Malta, the Balearic
Islands, etc., can be considered as a validation over the Mediterranean sea.

Figure 6. Scatter plots of the match-ups of model outputs surface PM2.5 concentrations with AirBase
observations (right panel) and AOD values with AERONET AOD (right panel). CORR, ME and
MAE refer to the correlation coefficient, Mean Error and Mean Absolute Error, respectively.

Temporal Impact of the OA

In order to evaluate the effectiveness of the MODIS AOD assimilation, the time scale
for which the OA affects the concentrations is worth exploring because the OA operates
on the initial conditions. Figure 7 shows the hourly evolution of PM2.5 concentrations
averaged over all grid points where the relative difference is over 20% to better estimate
the influence of the DA. Figure 7 shows that the effect of OA lasts nearly 13 h, which is
comparable to the temporal impact found by Tombette et al. [25] using OA along with
Polyphemus model over Europe. After 13 h, the impact of the MODIS data on the modeled
concentrations is low because the impact of the regional transport and local emissions start
overshadowing the assimilation impact.

Figure 7. Daily profile of PM2.5 concentrations averaged temporally over the one-month simulation
period and on cells on which the PM2.5 relative difference is higher than 20%.
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4. Sensitivity to the Creesman Influence Radius

The performance of the OA is tested using two different influence radii. A first (resp.
second) simulation using an influence radius R1 (R2) equal to (is twice) the grid cell spacing,
which corresponds to 0.5◦ (1◦).

Table 5 shows the temporal and spatial sum of relative differences between the simu-
lations with OA computed with R1 and R2, respectively, over the cells where the effect of
OI exceeds 20%. The comparison shows that the model performance is slightly sensitive
to the influence radius value: the relative difference between the two simulations do not
exceed 10.5 (12.3)% for PM2.5 concentrations (AOD). This may be due to the low satellite
observation density during winter because of dense cloud coverage. Figure 8 shows the
cloud coverage (MODIS Terra-corrected reflectance with a spatial resolution of 250 m) over
Europe on four different days in March as examples of where the majority of the European
land is masked by clouds. The results are expected to be more sensitive to the influence
radius if the satellite data were of better quality or obtained during summertime.

Table 5. Temporal and spatial sum of relative differences between the simulations whereby the
influence radius is set to twice and equal to the average spacing of observations.

Influence Radius Relative Difference (%)

PM2.5 10.2
AOD 12.3

Figure 8. MODIS Terra cloud corrected reflectance on 1 March (top left panel), 10 March (top right
panel), 20 March (lower left panel) and 30 March (lower right panel) 2009.

The comparison of the two simulations against AirBase and AERONET data in
Tables 6 and 7 show that simulation with a radius of influence equal to the grid cell pre-
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dicts PM2.5 and AOD that have a better agreement with observations. The simulated
mean of PM2.5 concentrations (AOD) 33.21 µg·m−3 (0.30) are closer to the observed means
38.01 µg·m−3 (0.37). In addition, the goal criteria are respected with the analysis of the
PM2.5 concentration field simulated using R1.

Table 6. Statistics of hourly simulated PM2.5 concentrations with DA using two influence radii R1

and R2 to AirBase measurements comparisons during March 2009. s and RMSE are expressed in
µg·m−3.

o = 38.01 µg·m−3 s RMSE Correlation [%] MFB [%] MFE [%]

Simulation with DA (R1) 33.21 15.13 45 −15 39
Simulation with DA (R2) 29.44 20.71 40 −31 51

Table 7. Statistics of hourly simulated AOD with DA using two influence radii R1 and R2 to
AERONET measurements comparisons for daily AOD during March 2009. s and RMSE are ex-
pressed in µg·m−3.

o = 0.37 s RMSE Correlation [%] MFB [%] MFE [%]

Simulation with DA (R1) 0.30 0.11 78 −27 42
Simulation with DA (R2) 0.25 0.31 65 −54 72

5. Conclusions

In this study, we tested the assimilation method of objective analysis to adjust Chimère’s
initial conditions for the simulation of PM2.5 and AOD550 over Europe during March 2009.
The base model underestimated surface PM2.5 concentrations and AOD field because of
the low resolution and uncertainties on meteorology and emissions. The objective analysis
assimilation was able to correct the aerosol concentrations and AOD fields. However,
the impact of adjusting initial conditions can be overshadowed by the local emissions and
local winds, as they lasted for 13 h. The proposed model can be used in operational air
quality forecasting, data validation and the verification of regulations.

Assimilating data from elevated levels or airborne measurements, although occa-
sionally available, can be used to sharpen the adjustment of initial conditions and would
improve PM2.5 concentration and AOD field as it represents the loading of the aerosol col-
umn. However, precise knowledge on the vertical distribution of PM2.5 using lidars [61,62]
is required for at least two reasons: (1) it is better for quantifying air quality and its vari-
ability since, for example, the different vertical distribution of PM2.5 near the Earth surface
has very different impact on public health; (2) it is likely to significantly enhance the PM2.5
estimation and provide data for model evaluation, improvement and development for the
daily air quality forecast.

Future works could focus on investigating the OA impact on finer-resolution sim-
ulations, describing the background and observation covariance matrices better, using
more complex data assimilation techniques such as 4D-var and ensemble Kalman filter,
describing the emissions using a top-down approach (inverse modeling) better, combining
the use of satellite data with ground based or airborne observations of the aerosol chemical
composition (organics, sulfate, nitrate, sea-salts, etc.). The use of lidar observations could
furthermore be very beneficial to improve the vertical distribution of aerosols.
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