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ABSTRACT

The acceleration of the solar coronal plasma to supersonic speeds is one of the most fundamental yet unresolved problems in heliophysics.
Despite the success of Parker’s pioneering theory on an isothermal solar corona, the realistic solar wind is observed to be non-isothermal,
and the decay of its temperature with radial distance usually can be fitted to a polytropic model. In this work, we use Parker Solar Probe data
from the first nine encounters to estimate the polytropic index of solar wind protons. The estimated polytropic index varies roughly between
1.25 and 1.5 and depends strongly on solar wind speed, faster solar wind on average displaying a smaller polytropic index. We comprehen-
sively analyze the 1D spherically symmetric solar wind model with the polytropic index c 2 ½1; 5=3�. We derive a closed algebraic equation
set for transonic stellar flows, that is, flows that pass the sound point smoothly. We show that an accelerating wind solution only exists in the
parameter space bounded by C0=Cg < 1 and ðC0=CgÞ2 > 2ðc� 1Þ, where C0 and Cg are the surface sound speed and one half of the escape
velocity of the star, and no stellar wind exists for c > 3=2. With realistic solar coronal temperatures, the observed solar wind with cZ1:25
cannot be explained by the simple polytropic model. We show that mechanisms such as strong heating in the lower corona that leads to a
thick isothermal layer around the Sun and large-amplitude Alfv�en wave pressure are necessary to remove the constraint in c and accelerate
the solar wind to high speeds.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0124703

I. INTRODUCTION

Since the start of the space era, numerous human-made satellites
that entered the interplanetary space have verified the existence of
continuous, supersonic plasma flow, also known as the solar wind.
Decades of satellite observations of the solar wind have revealed that
solar wind interacts with the Earth’s magnetosphere and injects a large
amount of energy into the magnetosphere, causing various space
weather events such as the magnetic storms and substorms that have
great impacts on human society. Thus, understanding the solar wind,
including how it is generated, is one of the most important topics in
the field of space physics.

Recent observations by Parker Solar Probe (PSP) show evi-
dence of an accelerating solar wind close to the Sun.1,2 Hence, it is

now a good time to revisit the theory of solar wind generation. The
first theory of the formation of solar wind was established by Ref. 3,
who showed that with an isothermal and hot solar corona, the
plasma is able to escape the solar gravity and becomes supersonic
flow whose speed is similar to the in situ observations. References
4–6 extend the theory to allow either a pre-defined temperature pro-
file or a temperature that relates to the density through a static baro-
metric law. In these early solar wind models, the only energy source
is the efficient thermal conduction from the base of the solar corona.
However, as the solar wind plasma is nearly collisionless, thermal
conduction is only effective for the electron fluid7,8 but not the ions.
Thus, other mechanisms are necessary for the acceleration and heat-
ing of solar wind.
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In the solar corona, various processes, for example, magnetic
reconnection (e.g., Ref. 9), may provide a significant amount of energy,
but these processes are important only at very low altitudes above the
solar surface. It is now widely accepted that Alfv�en waves are a promis-
ing power source of the solar wind, as large-amplitude Alfv�en waves
are observed to be quasi-omni-present in the solar wind (e.g., Ref. 10).
In this scenario, outward propagating Alfv�en waves are injected at the
base of solar corona and are partially reflected because of the gradient
of Alfv�en speed.11 The reflected waves interact nonlinearly with the
outward propagating waves, causing energy cascade from large to
small scales (the turbulence energy cascade).12 The cascaded energy
eventually dissipates through wave–particle interactions such as ion
cyclotron resonance13 and Landau damping,14 hence heats the plasma.
In addition, the waves may directly accelerate the solar wind through
the wave pressure gradient15 as the wave amplitude is large, especially
around the Alfv�en critical point. Many numerical works have shown
that this Alfv�en wave-driven solar wind model is able to produce the
observed fast solar wind.16–18

The goal of the current study is to conduct a comprehensive anal-
ysis of the 1D one-fluid solar wind model with the Alfv�en wave
dynamics and heating in the lower corona properly approximated. We
do not adopt a self-consistent Alfv�en wave-driven solar wind
model.15,16,18,19 Instead, we consider a polytropic solar wind model
where the plasma thermal pressure P and density q obey the poly-
tropic relation Pq�c ¼ Const with a polytropic index c. Here, c should
be no larger than 5/3 (adiabatic case) and no smaller than 1 (isother-
mal case). For c¼ 1, the plasma can always gain sufficient heating, for
example, from thermal conduction, to maintain a constant tempera-
ture during its expansion. For c ¼ 5=3, there is no heating of the
plasma so that the internal energy must be consumed to support the
work done by the plasma during its expansion, resulting in a cooling
solar wind. A polytropic solar wind with 1 < c < 5=3 is in an inter-
mediate state with finite heating; thus, we can use it to approximate
the heating effect from the Alfv�en waves.

We note that the model studied here is one-fluid such that pro-
tons and electrons have identical number density, velocity, and ther-
mal pressure. However, in the solar wind, electrons have complicated
characteristics and dynamics compared with the protons, such as non-
Maxwellian velocity distribution functions20 and collisionless heat
conduction.8 Consequently, electrons have different temperature pro-
files from the protons,21 and an ambipolar electric field exists in the
solar wind.22 Thus, two-fluid models23,24 are better in completely
describing the dynamics of solar wind. Other important processes
omitted in one-fluid models include the temperature anisotropy25 and
kinetic instabilities such as mirror and firehose modes.26 Nonetheless,
in this study, we focus on the one-fluid model because it can be solved
in a semi-analytic way and some fundamental properties of the poly-
tropic solar wind solution can be easily understood.

Many studies have been conducted to estimate the polytropic
index of the solar wind proton. Helios data give an average value 1.46,
which is independent of the solar wind speed.27 Measurements made
at 1AU confirm the speed independence28 and show that c is modu-
lated by the solar activity.29 Recent works30,31 using PSP measure-
ments, estimate the polytropic index to be close to or slightly smaller
than 5/3. There are some numerical–analytic studies of the polytropic
stellar or solar wind. Reference 32 analyzes the accretion problem in
spherically symmetric geometry and discusses the property of

solutions for polytropic plasma under stellar gravity and boundary
conditions far from the star. References 33 and 34 calculate the solar
wind solution, assuming a non-self-consistent radial profile of either
density or temperature. The recent study shows that the model of Ref.
33 produces a good estimate of solar wind speed compared with the
PSP data.35,36 Reference 37 derives the closed form of the polytropic
stellar wind equation, but they focus on the solution of the shocked
wind. A recent study by Ref. 38 utilizes the complex plane strategy to
solve the equation for polytropic stellar wind.

In this study, we will use a different approach from that used by
Ref. 38 to solve the polytropic stellar wind model. The main point is to
combine the integrated momentum equation (Bernoulli’s equation)
with the polytropic relation and the mass-conservation equation to
derive a single equation for the critical point. We will discuss how the
polytropic index and the inner boundary temperature modify the
wind solution. In addition, we approximate the effect of the coronal
heating at low altitudes by assuming an isothermal layer at the bottom
of the solar corona.35 We also analyze the effect of a pre-defined force
in the momentum equation. The paper is organized as follows: In Sec.
II, we show the statistical result, using PSP data from the first nine
orbits, of the radial evolution of the proton temperature and estimate
the polytropic index of the solar wind. In Sec. III, we show the proce-
dure to find the analytic–numerical solution of the polytropic stellar
wind and do a comprehensive analysis of the characteristics of the
model. In Sec. IV, we conclude the study.

II. PARKER SOLAR PROBE OBSERVATIONS

We use PSP proton data from the first nine encounters to esti-
mate the polytropic index of the solar wind. Level-3 proton velocity
and temperature data from Solar Probe ANalyzers (SPAN)-ion (elec-
trostatic analyzer) and Solar Probe Cup (SPC) (Faraday cup) are
used.39,40 In Fig. 1 panel (a), we show proton temperature (Tp) as a
function of radial distance to the Sun. Curves with different colors cor-
respond to different radial solar wind speed ranges (written in the leg-
end). Here, we calculate the average values (squares) and standard
deviations (errorbars) of the data binned in radial distance r. The black
solid line shows Tp / r�4=3, that is, adiabatic cooling with c ¼ 5=3.
The black dotted line shows Tp / r�1, that is, a polytropic wind with
c ¼ 1:5. The black dashed line shows Tp / r�0:5, that is, a polytropic
wind with c ¼ 1:25. For all the speed ranges, Tp roughly follows a
power-law decay with r, implying a polytropic relation Tp / r�2ðc�1Þ

assuming the solar wind speed does not vary much with r. We note
that, as PSP travels around the ecliptic plane, most of its observations
are made inside slow solar wind. Panel (b) of Fig. 1 displays the proba-
bility distribution function of the solar wind speed from the first nine
encounters. We can see that the peak of the distribution function is
around Vr¼ 300 km/s and there are very few data points for Vr > 600
km/s. Thus, data points with Vr > 600 km/s are excluded from the
statistics. Panel (a) of Fig. 1 clearly shows that the polytropic index
depends on the solar wind speed. The slower stream cools faster, with
the polytropic index around 1.5, slightly smaller than the adiabatic
index 5/3, while the faster stream cools slower, with the polytropic
index around 1.25 or even smaller for speed larger than 450 km/s. The
observation indicates that the in situ heating process, for example, that
from the turbulence cascade, is stronger in the faster solar wind
stream.
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III. 1D POLYTROPIC SOLARWIND MODEL

In this section, we analyze the spherically symmetric 1D time-
stationary solar wind model with purely radial velocity. In Sec. IIIA,
we will briefly review the isothermal case.3 In Sec. III B, we show in
detail how to determine the polytropic wind solution. Then, we discuss
the effect of an isothermal layer at the coronal base in Sec. IIIC, and
finally, we show the effect of the external force in Sec. IIID.

A. Isothermal solar wind

As an introduction, we briefly review the 1D isothermal solar
wind model with adiabatic index c¼ 1, which was first analyzed by
Ref. 3. Considering a flux tube with cross-sectional area A(r), the mass
flux conservation gives

qðrÞVðrÞAðrÞ ¼ Const; (1)

where q;V are the density and radial solar wind speed. The momen-
tum equation is

V
dV
dr

¼ �C2 1
q
dq
dr

� GM
r2

; (2)

with C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mp

p
being the sound speed, where kB is the

Boltzmann constant, mp is the proton mass, and T is the sum of pro-
ton and electron temperatures (we have assumed the two temperatures
are identical). In a spherically expanding solar wind [AðrÞ ¼ r2], the
momentum equation can be re-arranged in the following form:

V � C2

V

� �
dV
dr

¼ C2 2
r
� GM

r2
(3)

with the mass-conservation relation. The lhs term indicates that if we
require a solution of V(r) that starts from a very small value at the
inner boundary and increases to larger than the sound speed, the
equation has a singular point

rc ¼ GM
2C2

; (4)

at which V(r)¼C. We can integrate equation (3) from this critical
(sound) point to any radial location r and get Bernoulli’s equation

V2

C2
� 1

� �
� ln

V2

C2

� �
¼ 4 ln

r
rc

� �
þ 4

rc
r
� 1

� �
: (5)

In Fig. 2, we show the solution of the isothermal wind model [Eq. (5)]
for different coronal temperatures by solid curves. We note that there
are actually two branches of solutions that pass through the critical
point, but the other solution has dV=dr < 0, that is, wind speed
decreasing with distance and passing through the sound speed from
above; thus, it is not the solar wind solution we are interested in.
However, it is worth noting that since the momentum equation isFIG. 1. (a) Proton temperature (Tp) as a function of radial distance to the Sun.

PSP/SPAN and PSP/SPC data from the first nine encounters are used. Curves with
different colors correspond to different radial solar wind speeds as indicated in the
legend. Squares and errorbars show the average values and standard deviations of
the data binned in radial distances to the Sun. The black solid line shows
Tp / r�4=3, that is, adiabatic cooling c ¼ 5=3. The black dotted line shows
Tp / r�1, that is, a polytropic solar wind with c ¼ 1:5. The black dashed line
shows Tp / r�0:5, that is, a polytropic solar wind with c ¼ 1:25. (b) Number of
data points as a function of solar wind speed range.

FIG. 2. Solution of the isothermal (solid curves) and polytropic (c ¼ 1:09, dashed-
dotted curves) solar wind models for different temperatures at the solar surface
(r¼ rs).
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invariant under the transformation V ! �V , the decelerating solu-
tion represents an accretion flow,32,41 which is likely related to the star
formation process.42 Yet, as accretion is not important in the solar sys-
tem, we do not analyze the decelerating solution in detail.

B. Polytropic solar wind

In this section, we show how to self-consistently find the tran-
sonic solutions, that is, solutions that pass through the sound point
smoothly, with c > 1. The polytropic case is more complicated than
the isothermal case in that the critical point cannot be explicitly deter-
mined. A self-consistent analysis of the polytropic wind solution can
be found in the textbook Ref. 43, while the approach presented in this
section is different from that in Ref. 43.

The mass-conservation relation gives

qðrÞ ¼ q0
A0V0

AðrÞVðrÞ ; (6)

where q0, V0, and A0 are the density, velocity, and cross-sectional area
at the inner boundary r0. The polytropic relation gives Pq�c ¼ Const
or equivalently Tq�ðc�1Þ ¼ Const. The momentum equation is

V
dV
dr

¼ � 1
q
dP
dr

� GM
r2

þ f ðrÞ; (7)

where f (r) is the external force per unit mass. In this section, we set
f (r)¼ 0. Using the polytropic relations, the pressure gradient term can
be written as

� 1
q
dP
dr

¼ � kB
mp

c
c� 1

dT
dr

: (8)

Plug it into Eq. (7) and integrate from r0 to r, we get

1
2
ðV2 � V2

0 Þ ¼ � c
c� 1

kB
mp

ðT � T0Þ þ GM
1
r
� 1
r0

� �
: (9)

The subscript “0” indicates quantities at the inner boundary r0. The above
equation includes two integral constants: V0 and T0. The temperature T0
should be a given inner boundary condition, but V0 is not a free parame-
ter and should be determined by the constraint that the solution V(r)
passes through the critical point smoothly. So, let us revisit the momen-
tum equation [Eq. (7)]. We can write the pressure gradient term as

� 1
q
dP
dr

¼ C2
s

1
AV

dðAVÞ
dr

; (10)

where

C2
s ¼

ckBT
mp

¼ C2
0

A0V0

AV

� �c�1

(11)

is the square of local sound speed and C2
0 ¼ ckBT0=mp is the square of

sound speed at r0. Plug the above relation into Eq. (7), we get

V � C2
s

V

� �
dV
dr

¼ C2
s
1
A
dA
dr

� GM
r2

: (12)

One can easily show that for c¼ 1 and A ¼ r2, the above equation
reduces to Eq. (3). Equation (12) implies that the location of the criti-
cal point rc and the velocity at the critical point Vc satisfy

Vc � C2
s

Vc
¼ 0; (13a)

C2
s

1
A
dA
dr

� �
rc

� GM
r2c

¼ 0; (13b)

or

V2
c ¼ C2

s ¼
GM
r2c

� 1
A
dA
dr

� ��1

rc

: (14)

One more equation is needed to relate V0 that appears in Cs [Eq. (11)]
with rc and Vc. Writing Bernoulli’s equation [Eq. (9)] at r¼ rc and
using the relation Tc ¼ T0ðA0V0=AcVcÞc�1 to substitute Tc, we get

1
2
ðV2

c � V2
0 Þ ¼ � C2

0

c� 1
V0A0

VcAc

� �c�1

� 1

" #
þGM

1
rc
� 1
r0

� �
: (15)

Equations (13a), (14), and (15) form a closed equation set

V2
c ¼ C2

s ¼ C2
0

A0V0

AcVc

� �c�1

; (16a)

V2
c ¼ GM

r2c
� 1

A
dA
dr

� ��1

rc

; (16b)

1
2
ðV2

c �V2
0 Þ ¼ � C2

0

c� 1
V0A0

VcAc

� �c�1

� 1

" #
þGM

1
rc
� 1
r0

� �
; (16c)

from which we can solve V0, Vc, and rc simultaneously. Here, we note
that this three-equation model can be easily extended to a multi-
temperature fluid, for example, a wind where the ion and electron
have different temperatures and polytropic indices.35 The only modifi-
cations are the definition of the sound speed and the pressure gradient
term in Eq. (16c) as we need to sum up the contributions from all spe-
cies. For simplicity, we assume a single-fluid solar wind throughout
this study.

We consider a radially expanding solar wind [AðrÞ ¼ r2]. Then,
from Eq. (16b), we get

V2
c ¼ GM

2rc
¼ C2

g

sc
; (17)

where we have defined the normalized radius s ¼ r=r0 and

Cg ¼
ffiffiffiffiffiffiffiffi
GM
2r0

r
; (18)

which is one half of the escape velocity. We note that r0 does not nec-
essarily equal to the solar radius rs. As will be discussed in Sec. III C, r0
could be the outer radius of the isothermal layer formed due to large
heating or thermal conduction in the lower corona.35 Plug Eq. (18) in
Eq. (16a), we get

V2
0 ¼ C2

g

Cg

C0

� � 4
c�1

s
3c�5
c�1
c : (19)

With Eqs. (17) and (19), we can eliminate V0 and Vc in Eq. (16c) and
get a single equation for sc:
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1
2

Cg

C0

� � 4
c�1

s
2ð2c�3Þ
c�1

c � 1

" #
þ 1
c� 1

C2
0

C2
g
sc � 1

 !
¼ 2ðsc � 1Þ : (20)

This is an algebraic equation, so we can numerically find all the roots
scðc;C0=CgÞ. An alternative form of the equation can be found in Ref.
44. In Appendix, we describe in detail how to determine the number
of roots of equation (20) with the knowledge of C0=Cg and c. In Fig. 3,
we show the phase diagram of the number of roots of equation (20)
on the ðC0=CgÞ2-c plane. Dark red region has two roots, orange region
has one root, and the white region has no root. The yellow line is
ðC0=CgÞ2 ¼ 2ðc� 1Þ. We have numerically verified, by comparing Vc

and V0, that if there is one root, only the decelerating solution exists;
that is, solar wind solution can only be found in the dark red region,
bounded by the two lines C0=Cg ¼ 1 and ðC0=CgÞ2 > 2ðc� 1Þ.
Naturally, c < 3=2 must also be satisfied as the two lines cross at
c ¼ 3=2. Early study33 using asymptotic analysis points out that physi-
cally meaningful solar wind solution exists only with c < 3=2
and 1 � ðC0=CgÞ2 > ðc� 1Þ=2c. Our result gives a more precise
constraint on ðC0=CgÞ2. The cyan lines in Fig. 3 mark the realistic
parameters of the Sun with r0 ¼ rs and varying temperature at the
inner boundary T0. One can read that for T0 ¼ 2, MK solar wind does
not exist for cZ1:1, and even for a very hot corona with T0 ¼ 5 MK,
the solar wind does not exist for cZ1:3.

Figure 4 shows sc as a function of T0 with fixed c (panel (a)) and
sc as a function of c with fixed T0 [panel (b)]. In this plot, we have set
r0 ¼ rs. Blue curves show the accelerating (solar wind) solution, and
orange curves show the decelerating solution. The black curve in panel
(a) and the red dots in panel (b) correspond to an isothermal plasma
(c¼ 1). Different from the isothermal case where the accelerating and
decelerating solutions pass through the same critical point, the two
branches of solutions with c > 1 have different critical radii because
the temperature depends on the wind speed profile. As T0 decreases

and c increases, the critical radii for both the two branches of solutions
increase, and rc of the accelerating solution increases much faster than
that of the decelerating solution. Consistent with Fig. 3, one can read
from panel (b) of Fig. 4 that rc for the accelerating solution diverges to
extremely large values (actually infinity) as c approaches certain criti-
cal values, corresponding to the cross points between the cyan and yel-
low lines in Fig. 3.

After sc is solved, we can easily calculate Vc from Eq. (16b) and
then integrate the momentum equation from rc ,

1
2
ðV2 � V2

c Þ ¼ � V2
c

c� 1
Vcs2c
Vs2

� �c�1

� 1

" #
þ 2C2

g
1
s
� 1
sc

� �
; (21)

to acquire the profile of V(r). We note that the above equation gives
two branches of V(r) starting from one critical point, but only one

FIG. 3. Phase diagram of the number of roots of equation (20). Horizontal axis is
polytropic index c, and vertical axis is the parameter a ¼ ðC0=CgÞ2 measuring the
relative strength of the gravitational field. Dark red region has two roots, orange
region has one root, and the white region has no root. The yellow line shows
a ¼ 2ðc� 1Þ. The horizontal dashed line marks a¼ 1, and the vertical dashed
line marks c ¼ 3=2. The cyan lines show the realistic parameters of the Sun with
r0 ¼ rs and varying inner boundary temperature T0.

FIG. 4. (a) Location of the sound point rc=r0 (r0 ¼ rs) as a function of the inner
boundary temperature T0. Blue curves are the accelerating (wind) solution and
orange curves are the decelerating solution. Solid curves are c ¼ 1:09 and
dashed-dotted curves are c ¼ 1:05. Black curve is the isothermal case. (b)
Location of the sound point as a function of the polytropic index c with fixed inner
boundary temperature. Solid curves are T0 ¼ 2 MK, dotted curves are T0 ¼ 3 MK,
and dashed-dotted curves are T0 ¼ 5 MK. Red dots mark the isothermal cases.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 122901 (2022); doi: 10.1063/5.0124703 29, 122901-5

Published under an exclusive license by AIP Publishing

 22 February 2024 08:47:35

https://scitation.org/journal/php


branch satisfies the given inner boundary condition. This is similar to
early work on polytropic accretion flow,32 which shows that there are two
branches of solutions that cross the critical point but only one of them
satisfies the boundary condition at infinity. In Fig. 2, we plot V(r) for c
¼ 1:09 and varying T0 in dashed-dotted curves. Compared with the iso-
thermal case, the solar wind speed drops significantly even though c is
only slightly larger than 1. In Fig. 5, we show the profiles of the solved
solar wind speed (top) and the corresponding temperature (bottom) for a
fixed inner boundary temperature T0 ¼ 3 MK and different values of c.
We see that the wind speed decreases very rapidly with the increasing c.

In conclusion, results from this section show that a simple poly-
tropic wind model cannot explain the observed solar wind speed with
the polytropic index deduced from in situ data as shown in Sec. II. In
Secs. III C and IIID, we will discuss two mechanisms that possibly
contribute to solve the problem.

C. Isothermal layer

In the lower corona, heating mechanisms such as magnetic
reconnection and high thermal conduction may prevent the plasma

temperature from decaying much. Hence, one way to overcome the
difficulty that solar wind solution does not exist with large polytropic
index is to assume there is an isothermal zone35 with radius riso > rs
such that Tðr � risoÞ � T0. In the recent study by Ref. 35, this “iso-
poly” solar wind model is solved numerically with quite thick isother-
mal layers such that the critical point always falls inside the isothermal
layer. In this section, we discuss the model in more details and analyze
the case when the critical point is outside the isothermal layer.
Especially, we point out that, due to the discontinuity in c at the inter-
face between the isothermal and polytropic layers, the values taken by
riso present a radial interval (around the critical point), for which iso-
poly solar wind solutions do not exist.

For the polytropic layer, if the critical point is still inside the layer
(rc > riso), the procedure described in Sec. III B to solve Eq. (16)
remains exactly the same. We only need to set the inner boundary at
r0 ¼ riso and re-define Cg using Eq. (18). In Fig. 6, we show the phase
diagram of the solutions to Eq. (16) on the r0=rs � c plane, with a base
temperature T0 ¼ 3 MK. The plot is similar to Fig. 3, but here the
number of solutions is determined by numerically searching roots of
Eq. (20) in the range r 2 ½1; 20 000�r0 instead of using the method
described in Appendix. Thus, it also serves as a verification of the
method described in the Appendix. In this plot, the yellow curve
marks C0=Cg ¼ 1 and the cyan curve marks ðC0=CgÞ2 ¼ 2ðc� 1Þ.
The horizontal dashed line marks the critical radius for the isothermal
wind rc;iso. Note that the yellow curve intersects with the horizontal
line at c¼ 1 [Eq. (4)].

If ðriso; cÞ falls in the red region, that is, the iso-poly critical point
is in the polytropic layer. We can first calculate the solar wind solution
in the polytropic layer following the procedure in Sec. IIIB. We will
also acquire the solar wind speed at the inner boundary riso. As the
wind speed must be continuous, VðrisoÞ serves as the upper boundary
condition for the isothermal layer. Thus, we can then integrate the

FIG. 5. Solar wind solution for T0 ¼ 3 MK and varying c. Top panel shows the
wind speed, and bottom panel shows the temperature.

FIG. 6. Phase diagram of the solutions to Eq. (16) on the r0=rs � c plane, with a
base temperature T0 ¼ 3 MK. Here, the numbers of solutions are determined by
numerically searching roots of equation (20) in the range r 2 ½1; 20 000�r0. The
dark red region has both accelerating and decelerating solutions, the orange region
has only decelerating solution, and other regions have no solution. The yellow
curve marks C0=Cg ¼ 1, and the cyan curve marks ðC0=CgÞ2 ¼ 2ðc� 1Þ. The
horizontal dashed line marks the critical radius for the isothermal wind rc;iso.
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isothermal momentum equation back from riso to rs. In panel (a) of
Fig. 7, we show profiles of solar wind speed for T0 ¼ 3 MK, c ¼ 1:1
and varying radius of the isothermal layer r0 (riso). The black curve is
r0 ¼ rs, that is, no isothermal layer, and the green curve is r0 ¼ 2rs, a
case that the critical point falls in the polytropic layer. The circles
mark the locations of r0. One can see that raising the height of the iso-
thermal layer indeed increases the solar wind speed. In addition, Fig. 6
shows that changing riso also changes the range of c in which a solar
wind solution can be found, though the maximum c value allowed is
always 3/2 with rc in the polytropic layer.

If we set riso > rc;iso (in the green region on Fig. 6), no transonic
solution exists in the polytropic layer and the critical point, if exists,
falls inside the isothermal layer such that rc ¼ rc;iso. In this case, we

can first determine the solution in the isothermal layer, which is sim-
ply the classic Parker’s model (Sec. IIIA). The solution then gives
VðrisoÞ, which serves as the inner boundary condition for the poly-
tropic layer. In panel (a) of Fig. 7, the orange dashed curve is
r0 ¼ 5:78rs ¼ 1:5rc;iso. We get a higher wind speed than the cases
r0 ¼ 2rs and r0 ¼ rs. However, one limitation appears: the difference
between the isothermal sound speed and the polytropic one does not
ensure that the wind speed continues to increase beyond r0. For
instance, let us consider the following scenario: r0 is only slightly larger
than (or equal to) rc;iso so that the isothermal layer gives
Vðr0ÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mp

p ¼ C. However, for the polytropic solar wind, we

have C0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckBT=mp

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mp

p
, which may lead to Vðr0Þ < C0

in the polytropic layer, that is, the supersonic solar wind suddenly
becomes subsonic across r¼ r0 for this case. In other words, since the
wind speed V(r) does not overcome C0 before going out of the isother-
mal layer, there is no possible supersonic expansion in the polytropic
layer (no overlap between the green and red regions in Fig. 6), and the
flow cannot remain supersonic above r0. Then, one will get either a
blow-up solution with dV=dr ! 1 at some point or a “breeze” with
Vðr ! þ1Þ ! 0. The blue curve on the panel (a) of Fig. 7 illustrates
the case of a breeze solution with r0 ¼ 3:85rs ¼ rc;iso, for which
beyond r0, the accelerating solar wind suddenly starts decelerating and
the wind speed tends to zero at large r. Another limitation of the iso-
poly model appears when we consider the white parameter space
[region between the yellow (C0=Cg ¼ 1) curve and the rc;iso line] of
Fig. 6. Within this parameter space, the isothermal layer is thinner
than rc;iso so that the solar wind cannot be accelerated to a supersonic
speed below riso. Meanwhile, the polytropic layer does not have an
accelerating transonic solution. Thus, for this parameter region, we
cannot find a transonic iso-poly solution.

In panel (b) of Fig. 7, we plot iso-poly wind speed profiles for
T0 ¼ 3 MK, r0 ¼ 5:78rs ¼ 1:5rc;iso and different values of c. The black
curve represents the isothermal case, and dark-to-light colors corre-
spond to increasing values of c. The red circle marks riso, and the red
square marks rc(¼rc;iso). Below riso, the solutions are exactly the same
for all the c. Indeed, within the isothermal layer, all the iso-poly mod-
els have the same initial temperature, and they pass through the same
sonic point. Slightly above riso, a larger c value leads to a larger acceler-
ation of the wind on a short radial distance, but it also gives a smaller
asymptotic wind speed. We note that, in this case (solutions in the
green region of Fig. 6), c can be larger than 3/2.

In conclusion, the iso-poly model is able to produce transonic
wind solutions under either of the following two conditions: (i)
riso > rc;iso and VðrisoÞ > ðC;C0Þ; that is, the wind is supersonic and
faster than both sound speeds as it enters the polytropic layer. This
case corresponds to the orange curve in panel (a) of Fig. 7. (ii) (c, riso)
falls in the dark red region in Fig. 6; that is, the wind is subsonic when
it enters the polytropic layer and is accelerated to supersonic speeds in
the polytropic layer. This case corresponds to the green curve in panel
(a) of Fig. 7.

D. External force

In this section, we discuss the influence of the external force on
the polytropic wind model. In the solar wind, Alfv�en wave pressure
gradient may provide such force as the amplitude of the wave mag-
netic field can be comparable to the mean magnetic field.45–47

FIG. 7. (a) Profiles of solar wind speed for T0 ¼ 3 MK, c ¼ 1:1 and varying radius
of the isothermal layer r0 (riso). Black curve is r0 ¼ rs, that is, no isothermal layer.
The green curve is r0 ¼ 2rs. Blue curve is r0 ¼ 3:85rs ¼ rc;iso where rc;iso is the
critical radius in isothermal case. Orange dashed curve is r0 ¼ 5:78rs ¼ 1:5rc;iso.
The circles mark the locations of r0. Embedded plot is a blow-up of the dotted rect-
angle. The dashed vertical line marks rc;iso ¼ 3:85rs. (b) Profiles of solar wind
speed for T0 ¼ 3 MK, r0 ¼ 5:78rs, and varying c. Dark-to-light colors correspond
to c from 1 to 5/3. Embedded plot is a blow-up of the dotted rectangle. Red circle
marks r0, and red square marks rc;iso.
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Rigorously, we need to model the amplitudes of outward and inward
propagating Alfv�en waves with two additional equations.15,16,18,19

However, these new equations will greatly complicate the system as
they introduce a new critical point, the Alfv�en point.11,48 Thus, in this
section, we assume the force f (r) is a known function of r, so that the
problem can be solved semi-analytically like we did in Sec. III B and
IIIC. The expression of f (r) is

f ðrÞ ¼ f0
1þ bðs� 1Þ

s3
exp a 1� 1

s

� �� �
; (22)

where a and b are two constants, s ¼ r=r0 and f ðr0Þ ¼ f0.
Asymptotically, there is

f ðr ! þ1Þ ! f0 � bea

s2
; (23)

that is, the external force decays as r�2, consistent with a
Wentzel–Kramers–Brillouin (WKB) decay of the Alfv�en wave,49–51

which predicts an asymptotic r�3=2 decay of the magnetic field fluctua-
tions. The integral of f (r) can also be written analytically asð

f ðr0Þdr0 ¼ f0r0
abðs� 1Þ þ ð1� bÞsþ a

a2s

� exp a 1� 1
s

� �� �
þ Const: (24)

We use one dimensionless parameter F to measure the strength of f0
such that f0 ¼ F � ðGM=r20Þ. In this study, we fix a¼ 3, b¼ 8, such
that f (r) peaks at r ¼ 2:22r0, and we set r0 ¼ rs. The radial profile f (r)
is plotted in panel (a) of Fig. 8, where the curves with different colors
correspond to different values of F and the black dashed line is the
gravity force. We note that the choice of the analytic form of f (r),
including values of a and b, is not fully rigorous. The only physics-
based requirements are that the wave pressure gradient increases in
the lower corona and asymptotically decays as r�2. One can adjust the
profile of f (r), which will result in different profiles of the solution
V(r). However, a parametric study of the influence of the shape of f (r)
on the solution V(r) is beyond the scope of this study and is unneces-
sary for drawing the main conclusion of this section.

We start from the isothermal case (c¼ 1). With the external
force, the critical point at which V ¼ C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=mp
p

is determined
by

GM
r2c

� f ðrcÞ
� �

1
A
dA
dr

� ��1

rc

¼ C2: (25)

Obviously, adding an external force below the original sound point,
that is, the sound point without external force, does not change the
location of the sound point nor the profiles of V(r) beyond the sound
point. After numerically solving the critical point from Eq. (25), we
can integrate the momentum equation from the critical point, which
gives

1
2

V2 � C2ð Þ ¼ C2 ln
VA
CAc

� �
þ GM

1
r
� 1
rc

� �
þ
ðr
rc

f ðr0Þdr0 ; (26)

to recover the profile of V(r). We assume a spherical expansion such
that AðrÞ ¼ r2. In panel (b) of Fig. 8, solid curves show the solar wind
speed V(r) with T¼ 3MK and different F. It is clear that a stronger

FIG. 8. (a) Radial profile of the external force f(r) [Eq. (22)] with a¼ 3, b¼ 8,
and f0 ¼ F � ðGM=r20 Þ. The black dashed line is the gravity force as a refer-
ence. (b) Radial profile of solar wind speed V(r) with different external force
strengths and T0 ¼ 3 MK. Solid curves are isothermal case, and dashed curves
are c ¼ 1:1. (c) Radial profile of solar wind speed V(r) with T0 ¼ 3 MK,
F¼ 0.05, and different c.
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external force lowers the critical point and increases the solar wind
speed significantly.

In the polytropic case, the closed equation set with non-zero f (r)
is similar to Eq. (16):

V2
c ¼ C2

s ¼ C2
0

A0V0

AcVc

� �c�1

; (27a)

V2
c ¼ GM

r2c
� f ðrcÞ

� �
� 1

A
dA
dr

� ��1

rc

; (27b)

1
2
ðV2

c � V2
0 Þ ¼ � C2

0

c� 1
V0A0

VcAc

� �c�1

� 1

" #

þ GM
1
rc
� 1
r0

� �
þ
ðrc
r0

f ðr0Þdr0 : (27c)

From Eq. (27b), we get

V2
c ¼ C2

g

s0c
; (28)

where we have defined a “modified critical radius” s0c for convenience
such that

1
s0c
¼ 1

sc
� rcf ðrcÞ

2C2
g

: (29)

Plug it into Eq. (27a), we get

V2
0 ¼ C2

g

Cg

C0

� � 4
c�1

� s4c
1
s0c

� �cþ1
c�1

: (30)

Then, plug Vc and V0 into Eq. (27c), we acquire the equation for sc

1
2

1
s0c
� Cg

C0

� � 4
c�1

s4c
1
s0c

� �cþ1
c�1

" #
þ 1
c� 1

1
s0c
� C2

0

C2
g

 !

¼ 2
1
sc
� 1

� �
þ 1
C2
g

ðrc
r0

f ðr0Þdr0; (31)

which is solved numerically. Finally, we integrate the momentum
equation from the critical point and get the profile V(r). In panel (b) of
Fig. 8, the dashed curves show V(r) with T0 ¼ 3 MK, c ¼ 1:10 and
varying F. Similar to the isothermal case, the external force increases
the wind speed significantly. In addition, the external force weakens
the constraint on the polytropic index c. We have verified that a higher
F results in a larger range of c in which a solar wind solution can be
found. For instance, with T0 ¼ 3 MK, the solar wind solution is only
possible for c. 1:15 (Fig. 3) without the external force. However, with
FZ 0:04, c can be larger than 3/2, and with FZ 0:05, c can take
any value between 1 and 5/3. In panel (c), of Fig. 8, we plot V(r) with
T0 ¼ 3 MK, F¼ 0.05, and c varying from 1.0 to 5/3. Even with
c ¼ 5=3, the solar wind is still accelerated to over 600 km/s. However,
we emphasize that the external force used here is not a self-consistent
physics model. The selected values of F lack comparison with observa-
tions as the radial profile of the wave pressure in the corona cannot be
easily obtained from remote-sensing data. Assuming the wave ampli-
tude at solar surface is du ¼ 30 km/s, a typically value used in Alfv�en
wave models,19 and the scale of variation of the wave pressure is

roughly L ¼ 0:1rs, one can estimate F � ðduÞ2=L=ðGMs=r2s Þ
¼ 0:047. Hence, a choice of F¼ 0.05 may be reasonable, but future
studies are necessary to quantify the Alfv�en wave pressure in the solar
corona and solar wind.

IV. CONCLUSION

In this study, we make use of PSP data from the first nine
encounters to estimate the polytropic index of the solar wind proton.
The radial profiles of the proton temperature indicate that the poly-
tropic index is highly dependent on the solar wind speed. Faster solar
wind in general has smaller polytropic index than the slower solar
wind. Solar wind stream faster than 400km/s may have a polytropic
index around 1.25, while the stream slower than 300km/s may have a
polytropic index around 5/3 (Fig. 1).

We then carry out a comprehensive analytic–numerical study of
the 1D polytropic solar wind model. The major results of this part are
summarized below:

1. For a generic star with Cg(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=2r0

p
), C0(¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckBT0=mp

p
),

and the polytropic index c, the accelerating transonic stellar
wind solution only exists in the parameter space bounded by
C0=Cg < 1 and ðC0=CgÞ2 > 2ðc� 1Þ. Naturally, there is a con-
straint in c such that 1 � c < 3=2.

2. For the Sun, with realistic surface temperature T0 ¼ 1 	 3 MK,
no solar wind solution exists with the polytropic index cZ1:25,
which is deduced from in situ measurements.

3. An isothermal layer, in which the temperature remains constant,
may help generate a solar wind with large c. However, the upper
boundary of the layer must not be too close to the isothermal
critical radius in order to produce a continuously accelerated
solar wind. Whether there is such an isothermal layer is a ques-
tion and needs further studies using in situ measurements as
close as possible to the Sun and remote-sensing observations.

4. The external force, for example, the Alfv�en wave pressure gradi-
ent, may also contribute to overcome the constraint in c.

These results indicate that both the lower coronal heating by
thermal conduction or processes like magnetic reconnection, and the
in situ dynamics such as the Alfv�en waves can be very important in
generation of the observed polytropic solar wind.
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APPENDIX: EXISTENCE OF TRANSONIC SOLUTIONS

1. Number of roots

In this appendix, we analyze Eq. (20) in detail and explain the
method to determine whether the equation has roots and how
many roots exist with given parameters. For convenience, let us
define x ¼ 1=sc; a ¼ ðC0=CgÞ2, and bðcÞ ¼ ð5� 3cÞ=ðc� 1Þ so
that Eq. (20) can be reformed into

EðxÞ ¼ a�
2

c�1 
 xb � b 
 x þ 2a
c� 1

� 4
� �

¼ 0: (A1)

We aim to find the solutions in the range x 2 ð0; 1� with free
parameters a 2 ð0;þ1Þ and c 2 ð1; 5=3�, which means
b 2 ½0;þ1Þ. Especially, bð3=2Þ ¼ 1 and bð5=3Þ ¼ 0.

First, we can write down

Eð0Þ ¼ 2a
c� 1

� 4; Eð1Þ ¼ a�
2

c�1 þ 2a� c� 1
c� 1

: (A2)

By taking the derivative of E(x),

E0ðxÞ ¼ b a�
2

c�1xb�1 � 1
� �

; (A3)

we see that there is only one extremum [E0ðxeÞ ¼ 0] within
x 2 ð0;þ1Þ, at xe ¼ a

1
3�2c, and

EðxeÞ ¼ 2ð2c� 3Þ
c� 1

a
1

3�2c þ 2a
c� 1

� 4: (A4)

Thus, given the values of a and c, the number of roots can be deter-
mined with the following process:

1. Calculate E(0), E(1), xe, and EðxeÞ
2. If Eð0ÞEð1Þ < 0, there is only one root. If Eð0ÞEð1Þ > 0, go to

the next step.
3. If xe � 1, there is no root. If 0 < xe < 1, go to the next step.
4. If Eð0ÞEðxeÞ > 0, there is no root. If Eð0ÞEðxeÞ < 0, there are

two roots. If EðxeÞ ¼ 0, there is one root.

To complete the analysis, we need to discuss the case
Eð0ÞEð1Þ ¼ 0.

If Eð0Þ ¼ 0, we get a ¼ 2ðc� 1Þ, and thus,

Eð1Þ ¼ 2ðc� 1Þ½ ��2=ðc�1Þ � b: (A5)

One can show that Eð1Þ � 0 for c 2 ð1; 5=3� with the zero point at
c ¼ 3=2, which is a special condition and will be discussed later.
Here, let us ignore the c ¼ 3=2 case and write Eð1Þ > 0:

xe ¼ 2ðc� 1Þ½ �1=ð3�2cÞ; (A6)

which is always smaller than 1 with c 2 ð1; 5=3�. EðxeÞ is negative
for 1 < c < 3=2 and positive for c > 3=2. Thus, along the line
a ¼ 2ðc� 1Þ, there is one root for 1 < c < 3=2 and no root for
3=2 < c < 5=3.

If Eð1Þ ¼ 0, one can show that a¼ 1 is the only possibility for
any c value. Then, we have xe¼ 1. Thus, no matter whether E(0) is
negative or positive (separated by c ¼ 3=2), there is only one root
along the a¼ 1 line, which is x¼ 1 such that the flow starts with
sound speed at the inner boundary.

One special case is c ¼ 3=2 (b¼ 1) when E(x) is a linear func-
tion of x. In this case, one can show that

Eð0ÞEð1Þ ¼ 4ða� 1Þ2 4� ðaþ 1Þða2 þ 1Þ=a4	 

: (A7)

For a<1, Eð0ÞEð1Þ < 0 and there is one root. For a>1,
Eð0ÞEð1Þ > 0 and there is no root. For a¼ 1, we get EðxÞ � 0; that
is, any x is allowed. By observing the integrated momentum equa-
tion [Eq. (9)], we find that with c ¼ 3=2 and a¼ 1, VðrÞ � V0 is an
exact solution. That is to say, the flow can start from any initial
value and remains a constant speed. That is why any critical point
is allowed.

Another case is c ¼ 5=3 (b¼ 0) and all terms containing x
vanish in Eq. (A1), leading to the equation

a�3 þ 3a ¼ 4: (A8)

The equation is not satisfied in general unless a¼ 1, when x can be
of any value. Actually, one can show that with c ¼ 5=3 and a¼ 1,
VðrÞ ¼ C0s�1=2 is a solution, and the wind speed equals to the
sound speed [VðrÞ ¼ CsðrÞ] at any location r. Hence, for adiabatic
plasma, there is no transonic solution at all.

The phase diagram of the number of transonic solutions on
the a� c plane is shown in Fig. 3.

2. Property of the solutions

We note that so far we only determined the number of roots.
For each root, whether the solution V(r) is accelerating or decelerat-
ing with r needs further analysis. The simplest way is to calculate V0

[Eq. (19)] and Vc [Eq. (14)] after solving rc and compare the two
values. If Vc > V0 the flow is accelerating and vice versa.

We do not find a straightforward way to make such compari-
son analytically [see next paragraph for a weak proof with both
a < 2ðc� 1Þ and a<1 satisfied]; thus, we numerically calculate
these values. We have verified that if there is only one root of rc,
only the decelerating solution (Vc < V0) exists, and if there are two
roots of rc, one of the root corresponds to Vc < V0 and the other
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one corresponds to Vc > V0. That is to say, the accelerating solution
(Vc > V0) only exists in the dark red region shown in Fig. 3 that is
bounded by a<1 and a > 2ðc� 1Þ.

In this paragraph, we provide a proof that if a < 2ðc� 1Þ and
a<1 are both satisfied, that is, the orange region in Fig. 3 except for
the triangle above a¼ 1, the solution must have Vc < V0. We can
write Eqs. (19) and (14) as

V2
0

C2
0
¼ a�ðcþ1Þ=ðc�1Þxbc (A9)

and

V2
c

C2
0
¼ xc

a
; (A10)

where xc ¼ 1=sc. Thus,

V2
c

V2
0
¼ xc

a�2=ðc�1Þxbc
¼ xc

bxc þ 4� 2a
c� 1

; (A11)

where Eq. (A1) is used to eliminate xb. Consider a < 2ðc� 1Þ, that
is, the orange region in Fig. 3, such that the denominator is always
positive (note that b>0 and xc > 0). If we assume V2

c =V
2
0 > 1, we

get

ð1� bÞxc > 4� 2a
c� 1

: (A12)

For 1 < c < 3=2; 1� b < 0, but xc > 0 and 4� 2a=ðc� 1Þ > 0, so
the above inequality cannot be satisfied. Thus, in Fig. 3, the orange
region on the left of c ¼ 3=2 can only have a decelerating solution.
For c > 3=2; 1� b > 0, and thus, we get

xc > 1þ 1� a
2c� 3

: (A13)

Obviously, for a<1, the above inequality means xc > 1, which is
out of the domain (0 < x � 1). Thus, we have proven that the
orange region on the right of c ¼ 3=2 and below a¼ 1 can only
have a decelerating solution. We note that no analytic proof for the
triangle bounded by a < 2ðc� 1Þ and a>1 is found, but we have
numerically verified that in this region, Vc < V0 is still valid.

An interesting point is that, below a¼ 1 line, the decelerating
solution starts at r0 with supersonic speed, that is, V0=C0 > 1 and
crosses the sound point from above. However, above a¼ 1 line [and
below a ¼ 2ðc� 1Þ], the decelerating solution starts with subsonic
speed, that is, V0=C0 < 1, and crosses the sound point from below.
That is to say, both CsðrÞ and V(r) are decreasing but CsðrÞ
decreases faster than V(r) so that they cross at the sound point. It
means that, although V(r) is a decreasing function, the flow transits
from subsonic to supersonic as it propagates away from the star.
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