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Abstract

The accuracy assessment of terrestrial reference frames (TRFs) at coordinate system level is a key task to ensure their
successful use in Earth studies, satellite navigation and other geodetic positioning applications. Currently, the TRF quality
specifications for the most demanding users dictate that the origin, orientation and scale should be determined at an accuracy
level of 1 mm, and they should remain stable over time at a rate of 0.1 mm/yr. To evaluate the conformity of the internal
accuracy of modern TRFs to such requirements, an appropriate mapping is needed to convert frame coordinate errors (and
their CV matrix) in a terrestrial network to matching errors (and their CV matrix) in the realized coordinate system. Several
projection schemes may be considered for this mapping problem, all of which aim at extracting the correlated part of the
estimation error in TRF coordinates that is describable by small random perturbations in their coordinate system. The goal
of the present paper is to investigate the inference problem of frame accuracy at coordinate system level, and to discuss not
only the theoretical aspects of the required covariance projectors, but also the practical impact on the results obtained by their
implementation in space geodetic solutions. For this purpose, a relevant case study is performed to evaluate the accuracy
of the realized origin, orientation and scale in the ITRF frame series based on the formal CV matrices for their estimated
positions and velocities in the four technique subnetworks (DORIS, SLR, VLBI, GNSS).

Keywords Reference frames - Coordinate system - Common-mode errors - Frame accuracy - Covariance projection

1 Introduction whereas their practical implementation relies on mathemat-

ical models, data processing strategies and datum-related

Terrestrial reference frames (TRFs) are represented by sets of
coordinates at individual points of an Earth-fixed polyhedron.
Such representations may be either static (epoch frames)
or time-dependent (multi-year frames), and their principal
aim is to realize a terrestrial reference system (TRS) for
precise positioning on the deforming Earth. The theoreti-
cal specifications for the TRS origin, orientation and scale
stem from a mixture of conventional stipulations, physical
considerations and other application-oriented preferences,
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constraints that are used in the frame estimation process by
space geodetic techniques. Equally important to any TRF
coordinate-based representation in a geodetic network is
therefore its dual complement which refers to the coordi-
nate system that is inherited by the underlying frame itself.
The present study deals with TRF representations of the latter
type and their accuracy assessment from the results of space
geodetic solutions.

At first glance, the problem considered in this paper is
rather straightforward and it can be stated in the following
simple way: given the covariance (CV) matrix for a set of
estimated coordinates, find the accuracy of the origin, ori-
entation and scale of the coordinate system that is realized
by these coordinates. In case of time-varying coordinates in
multi-year frames, the accuracy assessment of the coordi-
nate system extends to its initial state (at a reference epoch)
and its stability relative to a set of stations with known kine-
matic behavior. The practical relevance of this problem is
well known to geodesists, and it is dictated by the need to
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assess TRFs in relation to their fundamental role, namely to
provide access to a well specified TRS in support of Earth
observation, satellite navigation and other geodetic position-
ing applications.

Since any frame solution is supplied with a full CV matrix
for the estimated coordinates, it is sensible to propagate their
variances and co-variances to the elements of the realized
coordinate system. Obviously, such propagation leads to an
internal-only evaluation of the frame origin, orientation and
scale, which is nevertheless essential to form a complete view
of TRF quality. Its aim is to quantify, in a statistical sense,
the common-mode errors (CMEs) of translational, rotational
and scaling type that are present in the TRF coordinates,
and thus to deduce the intrinsic accuracy of the coordinate
system which is inherited by the frame solution. The CMEs
are regarded here as a correlated part of the total estimation
error in TRF coordinates that is concealed in their CV matrix
coming out of the least-squares adjustment of space geodetic
observations in global or regional networks. One of the goals
in this paper is to formalize the assessment of internal CMEs
in frame solutions by exploiting the error CV matrix of their
estimated coordinates.

The quest to evaluate the TRF accuracy, especially for
the origin and scale elements of the International Terrestrial
Reference Frame (ITRF) and its successive realizations, has
been a topic of primary interest to geodesists over the last
decade or so. This is mainly driven by the need to maintain
the ITRF as the fundamental basis for Earth system science
and global change studies, and thus to meet the demands
of scientific users for highly accurate and well predictable
station coordinates. In the context of the Global Geodetic
Observing System (GGOS), the specifications of multi-year
frame accuracy for the most stringent applications (e.g., long-
term monitoring of sea level rise) and their related products
are known to be at the level of 1 mm and 0.1 mm/yr per each
frame parameter (Plag and Pearlman 2009; Blewitt 2015)
which is not fully achievable at the present time, neither in
internal or external sense. Several studies have been actually
performed in the past years to investigate the accuracy level
of ITRF solutions using traditional approaches for assess-
ing the origin and scale (in-)consistency between successive
ITRFs and their technique-specific contributions, or external
comparisons with ground/space geodetic observations and
geophysical models that were not used in the ITRF construc-
tion (e.g., Altamimi et al. 2008; Collilieux and Altamimi
2013; Wu et al. 2011). Their findings demonstrated that the
most recent solutions are more accurate than the previous in
terms of origin and scale rate definition, yet additional anal-
ysis is still required to deliver a more precise error budget
for the individual frame parameters and their long-term sta-
bility (Collilieux et al. 2014). What is more, each of these
TRF evaluation methods carries its own advantages, but also
limitations and drawbacks, and none of them is adequate by
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itself to provide a full picture of the true accuracy of the real-
ized coordinate system. The present study contributes to the
aforesaid efforts through a stochastic approach that evaluates
the origin, orientation and scale accuracy of any TRF solu-
tion by an appropriate mapping of its coordinate CV matrix
onto the Helmert parameter space. Such an approach com-
plements the existing methods for the internal evaluation of
TRFs, and it can be effectively applied either to secular or
non-secular frame solutions from single- or multi-technique
estimation schemes.

From a practical viewpoint, the inference of TRF accu-
racy at coordinate system level is not an effortless task to
be resolved by simple error propagation on some definite
analytic expression. It is essentially an inverse problem that
requires a suitable projection from the coordinate parameter
space to the Helmert parameter space based on the linearized
similarity transformation model and other problem-specific
criteria. A main challenge for geodesists is therefore the
choice of a mapping rule that allows the conversion of coor-
dinate errors in a terrestrial network to matching errors in the
realized coordinate system. Several types of projectors may
be considered for this problem, all of which aim at extracting
the correlated part of the estimation error in TRF coordinates
that is describable by small random perturbations in their
coordinate system. Different projectors shall lead to differ-
ent attributes in the filtered errors and likely dissimilar results
in the inferred TRF accuracy at coordinate system level. The
objective of this paper is to investigate not only the theoreti-
cal aspects of such projectors, but also the practical impact on
the results obtained by their implementation in space geode-
tic solutions.

The rationale of our work is linked to other previous stud-
ies that have used the mathematical apparatus of inverse error
mappings and covariance projectors to address key issues on
reference frames and their quality analysis. The basic prin-
ciples are rooted in Meissl’s inner error theory which was
introduced in his 1962 paper as a novel framework for filter-
ing the effect of an arbitrary set of parameters out of a given
CV matrix, and on his subsequent work where the concepts of
inner accuracy and free network adjustment were originally
introduced into geodesy (Meissl 1965, 1969). Considering
that the accuracy of estimated coordinates in geodetic net-
works (e.g., as formally obtained by their CV matrix after
a least squares adjustment) not only reflects the accuracy
of network shape characteristics but also the accuracy to
which the underlying network has been attached to a par-
ticular coordinate system, the focus of Meissl’s work was to
distinguish these two effects in order to evaluate the geometri-
cal strength of geodetic networks regardless of their external
datum definition. The theoretical background of this problem
was further enriched by Baarda (1973) and Pope (1973, 1974)
for the case of minimally constrained solutions, and also by
Ebner (1974, 1975) for more general settings. Later on, the
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same problem was reconsidered by Blewitt et al. (1992) for
removing datum-related dependencies from coordinate CV
matrices of GPS global solutions in order to compare them
with ITRF coordinates under a properly weighted Helmert
transformation. Their work initiated the usage of covariance
projectors for the filtering of frame parameters from space
geodetic solutions and the efficient handling of datum con-
straints in combined frame estimation schemes; for more
details see also Blewitt (1998). Another important work is
Sillard and Boucher (2001) which focused on the sensitivity
assessment of space geodetic techniques to estimable frame
parameters (the so-called reference system effect according
to their terminology) based on orthogonal decompositions
of normal equations systems (NEQs). Their analysis offered
an operational framework to identify the degrees-of-freedom
of the TRS that are not practically reduced by space geode-
tic observations in terrestrial networks, and thus to detect
the truly required minimal constraints for datum definition
purposes. The present study is somewhat similar to the pre-
vious paper, yet it refers to a different inferential problem,
namely the evaluation of the internal accuracy of the real-
ized coordinate system in TRFs that are estimated by space
geodetic techniques (and typically by an external set of datum
constraints). In fact, the proposed covariance projector for
solving this problem is different from the one suggested in
Sillard and Boucher (2001), as it will be explained in more
detail later in the paper.

The rest of the paper is organized as follows: Sect. 2
presents the theoretical background and explains the map-
ping problem of frame accuracy at coordinate system level;
the influence of datum constraints and their weighting level
on the CMEs of frame solutions is discussed in Sect. 3,
whereas additional key aspects for scientific users of TRFs,
namely the long-term degradation of multi-year frames
and their forward-in-time accuracy assessment are given in
Sect. 4; in Sect. 5, the theoretical framework of the pre-
vious sections is utilized to perform the internal accuracy
evaluation of the realized origin, orientation and scale in the
ITRF frame series based on the formal CV matrices for their
estimated positions and velocities in the four technique sub-
networks (DORIS, SLR, VLBI, GNSS); finally, in Sect. 6
some conclusions and prospects for future work are given.

2 Theoretical background

2.1 Coordinate frames and their common-mode
errors

The notion of CMEs in geodetic frames is related to mapping
small disturbances of a 3D Cartesian coordinate system to
small disturbances in the coordinates of a terrestrial network
with respect to that system (and vice versa). Hereafter, these

disturbances shall be treated as zero-mean random variables
with associated covariance structure which will be elucidated
later in the paper. Their joint relation is expressible by the
linear formula

dXy = Adb (1

which represents the classic 7-parameter or 14-parameter
Helmert transformation (HT) in compact differential form. In
case of static or epoch TRFs, the vector df contains the origin,
orientation and scale offsets of the coordinate system (3 trans-
lations, 3 rotations, 1 scale factor), whereas in secular TRFs it
is augmented by additional elements to account also for drifts
in the time-variable part of the coordinate system (3 trans-
lation rates, 3 rotation rates, 1 scale rate). Accordingly, the
vector d X¢ gives the variations of frame coordinates (either
disturbed positions or disturbed positions and velocities) and
A is the HT’s Jacobian matrix in compliance with the frame
type to be analyzed in the considered network.

Every TRF solution from space geodetic data is affected
by random estimation errors, a part of which is always
describable through the linear disturbance model of Eq. (1).
This parameterized error part constitutes the CMEs that exist
in any set of frame coordinates obtained from inexact mea-
surements via a least squares estimation process. Specifically
it contains the sum of net-translational, net-rotational and
net-dilatational random errors, and it reflects the (internal)
accuracy of the coordinate system that is realized by the TRF
solution itself. The remaining error part is independent of
the coordinate system and it dictates the geometrical accu-
racy of the frame polyhedron that is defined by the station
coordinates. In principle, the following error decomposition
is therefore relevant to any TRF solution

dX =dXy +dX (2)
N~
Adb

where dX denotes the random errors relating to the solu-
tion’s CV matrix X x, while the meaning of the other terms
is self-evident from the previous discussion. A simplified
illustration of this error decomposition is shown in Fig. 1.
Although the above equation is useless for direct compu-
tations, it provides a convenient framework to infer the
statistical behavior of CMEs from the formal CV matrix of
frame coordinate errors. The treatment of this “error map-
ping” problem emulates the least-squares inversion of Eq. (2),
and it entails various open issues to be discussed next in this

paper.
2.2 Relevance of Eq. (2) in frame accuracy analysis

The error splitting in Eq. (2) is a modeling choice for ana-
lyzing the internal accuracy of TRFs at coordinate system
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Fig. 1 Graphical illustration of
the error decomposition in
geodetic TRFs according to

Eq. (2). The additive components
consist of a parametric part
(CMEs) which signifies the
internal accuracy of the realized
coordinate system, and a
nonparametric part (inner errors)
that reflects the geometrical
accuracy of the frame
polyhedron as defined by the
station coordinates

Frame coordinate
errors

level. Its rationale is based on the fact that frame coordi-
nates define at the same time two distinct features, that is
(1) the shape of an Earth-fixed polyhedron and (2) its rela-
tive placement with respect to a coordinate system, and thus,
their estimation errors will contaminate both of these fea-
tures. In fact, the only assumption that we make here is to
delineate the resulting errors in those features with a simple
additive model, without necessarily implying a null correla-
tion between them.

In line with the above reasoning, Eq. (2) is applicable
in all different kinds of TRF solutions, including minimally
constrained (MC) solutions, over-constrained solutions, or
even free solutions. However, the proper interpretation of
the error term d@ should be carefully considered in each
of the above cases. For example, in unconstrained solutions
the CMEs reflect the frame accuracy at coordinate system
level that is attainable only by the used observations in a
given network. This is useful for assessing the sensitivity
of space geodetic techniques to estimable frame parameters
(origin, scale), as it was already proposed in the work of
Sillard and Boucher (2001). Conversely, the CMEs in par-
tially or fully constrained solutions are affected by the datum
constraints and their interaction with the available observa-
tions during the frame estimation process. In this case, the
term d@ reflects the random errors in the realized coordinate
system (in the form of unknown offsets and drifts for the
origin, orientation and scale), while its CV matrix is a useful
metric to assess the frame’s compliance to formal accuracy
standards for various stringent applications (e.g., determina-
tion of long-term sea level change, monitoring of vertical
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CMEs

Inner
errors

* without net-translation,
net-rotation, net-scaling
components

land motion, multi-technique satellite orbit determination,
etc.).

It is essential to clarify that the merit of Eq. (2) is not
to perform its least-squares inversion in an optimal statis-
tical sense. Specifically, the error mapping problem that is
considered here is not rectified by setting up an optimal esti-
mator via the Gauss—Markov formulation, and it would be
misleading to adopt such a view for the inference of CMEs
in frame solutions. In fact, the sought solution for d@ should
not be linked with the best (minimum variance) linear unbi-
ased estimator, as this dictates that the error components d X ¢
and dX become de facto uncorrelated. This is a false pre-
sumption since both components are supposed to be random
quantities with joint (yet unknown) dependence on the frame
coordinate errors. Their de-correlation is a mathematical arti-
fice that can be used to resolve our error mapping problem,
but it will also lead to an unorthodox view of the frame’s
inner accuracy and, most likely, to under-estimated CMEs in
the frame coordinates; more details and numerical examples
are given in later sections.

2.3 Inference of CMEs in frame solutions

In general terms, the error mapping of Eq. (2) is resolved in
a linear context as follows

dX = QdX + (I — Q)dX 3)
—— —————
dXy dx
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where Q is a projection matrix (Q> = Q) to be chosen on
the basis of desired attributes for the individual error com-
ponents. Since the aim here is to extract the hidden CMEs
in TRFs, this matrix has to preserve the correlated part of
frame coordinate errors which is describable by the distur-
bance model of Eq. (1) (and it has to filter out the remaining
part). Consequently, a necessary property of the projection
matrix is

0A=A “

which ensures that the CMEs in dX are absorbed by the error
component d Xg (recall that A is the HT’s Jacobian matrix
conforming to the type of frame, epoch or secular, to be ana-
lyzed). Another critical aspect of the projection matrix is that
it restrains the inner part of frame coordinate errors (i.e., the
complement of CMEs) through the formula

Q0dX =0 5)

which is deduced from Eq. (3). This, in turn, confines the
projector choices to those that can assign a meaningful
geometrical interpretation to Eq. (5) and they ensure the
invariance of dX from the underlying coordinate system.

A suitable class of projection matrices for the previous
error decomposition is given by the general expression

0 = AATPA)IATP (6)

where P is a weight matrix for the frame coordinates. The
use of this projector is equivalent to applying the weighted
least-squares inversion of Eq. (2), and it implies the following
inference for the CV matrix of the error term d@:

Yo = (ATPA)'ATP XxPAATPA)™! 7

The above matrix gives the internal accuracy of the real-
ized origin, orientation and scale for any frame solution by
exploiting the formal CV matrix of the estimated coordi-
nates. The notion of inner errors in this case complies with
the condition

ATPdX =0 (8)

which is compatible with Eq. (5), yet its geometrical inter-
pretation is obscured by the unstipulated weight matrix P.

2.4 Choice of the weight matrix
To utilize the previous error mapping in practice, we should
settle the choice of the weight matrix for the frame coordi-

nates. Two possible options are considered here, namely

P=3x;'or P=1 9)

The first option is the one suggested in Sillard and Boucher
(2001) on the basis of its de-correlation property for the pro-
jected error components, that is

dX = (I - ATz A) ATz hax (10a)
dXo= AATZ'A) ATz dX = Ade (10b)
Xixax, =0 (10c)

In this case, the frame accuracy at coordinate system level
is evaluated by the CV matrix

Ty = ATz A)7! (1)

which has minimum trace among all alternate inferences
given by Eq. (7) for different weight matrix choices (the
above matrix is identical with the result given in the third
line of Eq. (18) of Sillard and Boucher (2001)). This sug-
gests a tight evaluation of CMEs by assigning to them the
smallest possible contribution to the TRF estimation error.
Hence, Eq. (11) sets a useful theoretical bound in the sense
of defining the “best case scenario” for the internal accu-
racy of the realized coordinate system. The disadvantage of
this weighting option is that the resulting inner errors cannot
admit a clear-cut geometrical interpretation and their invari-
ance with respect to the frame’s coordinate system becomes
dubious. In particular, the inner errors defined by Eq. (10a)
satisfy the condition
ATz ldX =0 (12)
which does not ensure the absence of net-translational, net-
rotational and net-scaling components in their values! As a
result, the CV matrix in Eq. (11) is likely to give an optimistic
view of frame accuracy that may not reflect the actual CMEs
in the estimated coordinates.

The second option employs a unit weight matrix for the
frame coordinates, and it is equivalent to applying the ordi-
nary least-squares inversion of Eq. (2), that is

dX = —-AATA 'AT)dXx (13a)

dXg = AATA)'ATdX = Adé (13b)

Zixax, = I —AATA) AT ZxAATA) AT £ 0
(13c¢)

It is essential to clarify that the choice P = I does not

mean that the frame coordinates are assumed to have the
same quality or being uncorrelated with each other, but it

@ Springer
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Table 1 Summary of projection
schemes for the internal

Projection scheme I Projection scheme 11

assessment of CMEs and the
evaluation of frame accuracy at
coordinate system level

Weight matrix for frame
coordinates

Projection matrix for frame
coordinate errors

Frame error projection

Estimation errors of frame
coordinates

CMEs
Inner errors

Frame errors at coordinate
system level

Frame accuracy at coordinate
system level
Mathematical properties

Nullification of net-translation,
net-rotation and net-scaling
components (in inner errors)

Stochastic correlation btw
CME:s and inner errors

Algebraic independence btw
CME:s and inner errors

P=13; P=1

0=AATz /) ATz} 0=AATA) AT

dX,ZX dX,ZX

dXg = QdX = Ado
dX =(I — Q)dX
do = (ATx'A) AT X ldx

dXo=QdX =Ado
dX =(I — Q)dX
do = (ATA) 'ATdXx

¥ =Tz a)! ¥, =

(ATA) ATy A(ATA)™!

No Yes

No Yes

dX' T3'dXy =0 dX' dXy =0

only dictates that the frame stations are equally contribut-
ing to the assessment of the realized coordinate system. The
frame accuracy at coordinate system level is now given by
the projected CV matrix
o= (ATA)'ATZyAATA)! (14)
which generally leads to different results compared to
Eq. (11), whereas the respective inner errors fulfill the con-
dition
ATdX =0 (15)
The above condition ensures the nullification of net-
translational, net-rotational and net-scaling components in
d X, thus complying with the traditional perception of inner
errors in geodetic networks. The independence between the
CME:s and inner errors is assured by the orthogonality con-
dition
=T
dX dX¢=0 (16)
which is easily verified from Eqs. (13a) and (13b). A brief
summary of the two weighting options of Eq. (9) and their
associated properties is given in Table 1.
The projected error components d X and d Xy by the sec-
ond weighting option remain stochastically correlated with
each other, yet this is not problematic in any way and it offers

@ Springer

a more realistic treatment of the error mapping problem at
hand. The stochastic correlations between CMEs and inner
errors, as expressed by Eq. (13c), are a manifestation of the
fact that the shape of the frame polyhedron and its relative
placement in a coordinate system do not occur from inde-
pendent procedures, but they always stem from the same
estimation process and a single set of noisy coordinates (this
fact is ignored by the first weighting option).

An additional aspect of the second option is that the
uniform weighting of frame stations honors to full extent
their geometrical configuration and its contribution to the
realized coordinate system. On the other hand, the uniform
weighting may be seen as a drawback in the sense that it
equates the contribution of stations with different time spans
of observation history and dissimilar quality in their esti-
mated coordinates. This argument can be counteracted by
the fact that an operational TRF is not just a selected core-
network of a limited number of high-quality stations, but it
consists of all stations that have participated in its estima-
tion phase from space geodetic observations. Obviously, to
avoid an “unfair” evaluation of frame accuracy due to the
influence of few bad stations with low-accuracy coordinates,
it is sensible to remove them in advance from the CV matrix
X' x before applying the covariance projector of Eq. (14) or

Eq. (11).
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Fig. 2 Internal accuracy of the combined EPN weekly solutions at coor-
dinate system level. The two plots refer to different weighting options
for the weekly frame coordinates, namely (a) P = ¥ }1 and(b)P =1.

An empirical “middle-ground” approach that reconciles
the two weighting options of Eq. (9) could be also consid-
ered to support the TRF accuracy evaluation. It would seem
reasonable, for example, to have diagonal weights in P that
reflect the positive impact a station might have on the ref-
erence frame (which can be considered less extreme than
inclusion or rejection of a station in the frame evaluation
process). Such an alternative approach of diagonal weight-
ing has been addressed in Blewitt et al. (1992), yet it will not
be pursued in the present study.

Based on the previous discussions, the weight matrix
P = I is perceived as the most suitable choice for evalu-
ating the (internal) accuracy of frame solutions at coordinate
system level. In fact, any other weighting choice does not
properly isolate the CMEs since the matching inner errors
will not be free of net-translation, net-rotation and net-scaling
components as per Eq. (15). The same preference was also
endorsed by Rebischung (2014) with regard to a similar infer-
ential problem, namely the estimation of implicit (datum
related) parameters in linear adjustment models of space
geodetic observations. Following a different approach from
the one presented here, his study showed that the alternate
weight matrix P = ¥ }1 discards the correlations between
datum parameters, network geometry and other model-based
factors, and it results in a tighter assessment of implicit
parameters (and their accuracy level) in space geodetic solu-
tions.

As a last remark, let us note that the frame accuracy
assessment at coordinate system level relies on the correct-
ness of the CV matrix X x which is obtained from the least

(b)

10°

[—TX—TY —TZ—RX—RY ——RZ Sc

10'

e

|
b

ﬁ
10" W\\&l@&“ﬁ'm

2000 2005 2010 2015 2020

The alignment method of the EPN weekly solutions to the ITRF changed
from heavy constraints (HCs) to minimal constraints (MCs) in the GPS
week 1303 (December 2004)

squares adjustment of space geodetic observations in global
or regional networks. It is therefore important that any scaling
issues or other mis-modeling aspects of this matrix are clearly
known before its proper exploitation through the covariance
projection schemes that were described in this section.

2.5 Numerical example

An instructive example from the implementation of the pre-
vious error covariance projectors is given here. In particular,
Egs. (11) and (14) were used to infer the frame accuracy
at coordinate system level of the weekly combined solu-
tions in the EUREF Permanent GNSS Network (EPN) for
the period 1999-2021 (GPS weeks 1000-2154). The plots
in Fig. 2 depict the square roots of the diagonal elements of
the weekly CV matrices { Xy } which were computed by each
weighting option based on the official SINEX files of the EPN
weekly solutions. To allow easier visualization of the results,
the accuracy of the orientation and scale parameters has been
expressed in mm by multiplying their standard deviations
with the mean Earth radius. Note that the EPN weekly solu-
tions are tied to various ITRF realizations—mostly in accor-
dance with the International GNSS Service (IGS) reference
frame updates—and they have not all used the same align-
ment strategy nor the same fiducial set of IGS reference sta-
tions. For more details on the EPN post-processed products,
see the information given at https://www.epncb.oma.be/.
By comparing the results in Fig. 2, it is confirmed that
the first option (P = ¥ ;(1, left plot) overestimates the frame
accuracy compared to the second option (P = I, right plot)
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throughout the entire time period. This is more emphati-
cally seen in the results for the pre-2005 period, where the
alignment of the EPN weekly solutions to ITRF is based on
heavy constraints at IGS fiducial stations. For that period, the
two weighting options show differences that reach up to two
orders of magnitude for the internal accuracy of the frame
parameters. These large differences should be attributed to
the fact that CMEs and inner errors are strongly correlated
with each other in over-constrained networks, therefore their
de-correlation under the first weighting option (see Eq. 10c)
yields a “false” CV matrix ¥y with minimum trace that does
not reflect in a realistic way the frame accuracy at coordinate
system level. After the switch of the EPN alignment strat-
egy to minimal constraints, the two weighting options show
much better consistency and their differences are gradually
reduced from few mm down to sub-mm level.

A detailed analysis of the results obtained by the second
weighting option in the EPN network, along with an expla-
nation of the frame accuracy “offset” that is visible at the
beginning of 2010 in both plots of Fig. 2, is given in a recent
paper by Kotsakis and Chatzinikos (2022).

3 The role of datum constraints and their
weighting

Let us consider the analytic form of the CV matrix of esti-
mated frame coordinates thatis usually stored in SINEX files,
that is

Yy=6>(N+H WH)! (17)

where N is the normal matrix of the used observations (after
reducing other auxiliary parameters from the original NEQ),
H is the design matrix of datum constraints, W is the weight
matrix of datum constraints, and 62 is the a posteriori vari-
ance factor of the estimated solution. The above expression
applies to several (but not all) cases of frame estimation prob-
lems that appear in geodetic practice, and it relies on the
following assumptions: (a) the datum constraints carry their
own prior accuracy level that is specified by the matrix W !
(typically this is a diagonal matrix set by the user to control
the impact of datum constraints into the final solution), and
(b) the aforesaid accuracy level is propagated to the variances
and co-variances of the estimated frame coordinates.

After considering Eq. (17), a crucial distinction needs to
be made between the projected CV matrix ¥ g and the inverse
weight matrix W ~! which is embedded in TRF solutions. The
former matrix is computable by Eq. (14), and it gives the
internal accuracy of the coordinate system that is realized
through all frame stations and their estimated coordinates.
The latter matrix refers to the prior accuracy of datum con-
straints which are typically enforced in a subset of frame
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stations. The former matrix is influenced by the latter with-
out necessarily reproducing its a priori weights for the datum
definition. To put it in simple words: the accuracy level at
which the frame origin, orientation and scale are defined
through a set of datum constraints in a subset of reference
stations does not coincide with the accuracy at which those
elements are being realized by the final solution over the
entire frame network. Several other factors that are hidden
in the CV matrix of Eq. (17), such as the network geometry,
the type of constraints and the spatial distribution of fidu-
cial stations, the noise level and datum content (if any) of
the available observations, as well as their joint interaction
during the frame estimation process, play a key role and they
also affect the accuracy of the realized coordinate system.

There is a special case, however, where the impact of the
aforesaid factors is rescinded and the internal accuracy of
the realized coordinate system shall be controlled solely by
the formal weighting of the datum constraints. This situation
occurs if the so-called full inner constraints (a particular type
of MCs with optimal properties for the entire network, see,
e.g., Blaha 1971, 1982) are applied in frame estimation using
the design matrix

H = (ATA)7'AT (18)

Any TRF solution by such datum constraints is essentially
free from (internal) CMEs in the sense that the estimation
errors of frame coordinates will not contain net-translation,
net-rotation and net-scaling components. In this case, the
observation noise and network geometry do not affect the
accuracy of the realized coordinate system, a fact that is ver-
ified by Eq. (14) as follows

o = AT AT 2N+ HTWH)™ ! AAT 4)7!
Zx
=62ATA AT N+ AAT A ' wAaTa) ATy TaaT 4!
=¢2w! (19)

The above result stems from the matrix identity H(N +
HTWH)"'HT = W~ which holds for any minimally con-
strained normal matrix (see Kotsakis 2012), yet it has limited
interest due to the practical irrelevance of full inner con-
straints for frame estimation problems. The datum definition
is hardly applied on all frame stations and it usually involves
a smaller subset of stations, or even separate subsets for each
constrained element of the coordinate system. On the other
hand, the covariance projector of Eq. (14) is applied over all
frame stations and it will not reproduce the prior weights of
datum constraints at the selected reference stations.

The special result of Eq. (19) is also verified if we use
the alternative covariance projector of Eq. (11). The proof
is straightforward after taking into account the fundamental
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property of the rank-deficient normal matrix, thatis NA = 0
(Kotsakis 2012).

4 Forward prediction of internal accuracy
in multi-year frames

A key aspect of a successful TRF is the ability to predict
accurate station coordinates on the deformable Earth at any
time needed (Blewitt 2015). For this reason, it is essential
to know the accuracy level at which the coordinate system
of multi-year frames is retained in their primary networks.
It is actually expected that the internal accuracy of multi-
year frames deteriorates in time, a fact that can degrade their
long-term “predictability” for the dynamic state of the Earth
system (e.g., sea level change, vertical land motion, ice melt-
ing rates, etc.).

To assess how the internal accuracy of multi-year frames
varies in time, we need to combine the covariance mapping
of Eq. (14) and the regularized kinematic model of frame
coordinates. This shall be demonstrated here for the case of
secular frames, but the same procedure can be also extended
in non-secular frames with modeled seasonal displacements
(e.g., ITRF2020). For the secular case, the regularized coor-
dinates of the frame stations at any time instant are given by
the linear model

X(1) = X(to) + (1 —15)- X (20)
while their formal CV matrix is analytically expressed as

Yxo = Xxq, + (t — to)zzj( + (t—1,)

T
x (zx(,u),,-( + Exaa),x) 1)

where the individual terms at the right side stem from the
full CV matrix of the multi-year frame solution. The latter
can be projected at the coordinate system level by using the
Jacobian matrix of the 14-parameter HT model according to
the general scheme

EX = |: ZX(tU) ZX([(ﬁ)aX:| Eq' (14))
27X,X(ta> Xy

X X ;
Xy = |: 0(1,) 0(t0),0:| (22)
2(9,0(;,,) 2

The above result offers a detached representation of TRF
accuracy that refers to the initial state (at a reference epoch
t,) and the stability of the realized coordinate system. Alter-
natively, we can apply the covariance projector of Eq. (14)

directly to Eq. (21) by using the Jacobian matrix of the 7-
parameter HT model, that is

Toy = (ATA) AT Zx;) A AT A)! (23)

which is also expressible in the equivalent form (after simple
algebraic manipulation)

Lo+ = Xou,) + (Stzzé + 8t(20(t{,),é + EaT(tu),é)
(24)

where the individual matrices at the right side of the last
equation are exactly the same with the ones obtained under
the composite mapping of Eq. (22).

As already stated, the TRF specifications for the most
demanding users dictate that the origin, orientation and scale
should be determined at an accuracy level of 1 mm, and they
should remain stable over time at a rate of 0.1 mm/yr (Plag
and Pearlman 2009). These specifications are aligned with
the partitioned representation of TRF accuracy in Eq. (22),
but they seem to overlook the added uncertainty in the real-
ized coordinate system due to the cross-correlations between
0(t,) and 6 as shown in Eq. (24). Secular frames do not
theoretically have a linear-in-time evolution of their internal
accuracy and may even exhibit an interim improvement over
time in case of strong negative correlations between 6(z,)
and @ (this is largely depended upon the cross-correlations
between X(¢,) and X ).

Considering the above remarks, the time-dependent CV
matrix in Eq. (24) should be preferred for checking the com-
pliance of the internal accuracy of multi-year frames with
imposed quality specifications on their realized coordinate
system. Its practical use shall be demonstrated with various
examples in the following section.

5 Internal evaluation of the ITRF series
5.1 Rationale, data and methodology

The goal in this section is to evaluate the accuracy of the
realized origin, orientation and scale in the ITRF series based
on the formal CV matrices for their estimated positions and
velocities in the four technique subnetworks (DORIS, SLR,
VLBI, GNSS). These matrices are the ones obtained at the
final step of the frame estimation process and they were
extracted from the respective SINEX files which are available
in the ITRF website (https://itrf.ign.fr/). The frame releases
that are considered here include ITRF2000, ITRF2005,
ITRF2008 and ITRF2014. The latest release ITRF2020 is
quite distinct from the previous ones due to the non-secular
modeling of station motions in the inter-technique combina-
tion phase (Altamimi et al. 2023), and it will be investigated
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Table 2 Number of stations in

the technique subnetworks that ITRF2000 ITRF2005 ITRF2008 ITRF2014

are used for the internal accuracy

assessment of the ITRF solutions DORIS 78 113 130 155
SLR 122 68 104 107
VLBI 93 87 82 98
GNSS 338 302 560 1054

The numbers shown here do not reflect the station discontinuities that appear in the respective SINEX file of

each technique

in another paper. More details about the tested solutions and
their estimation strategies can be found in the papers by
Altamimi et al. (2002, 2007, 2011, 2016).

For our investigation, we exploit the covariance projec-
tor of Eq. (14) in conjunction with the Jacobian matrix of
the 14-parameter HT model. The reasons for using this pro-
jector instead of the alternative form of Eq. (11) have been
thoroughly discussed in Sect. 2. The computations were
performed separately for each subnetwork, thus leading to
multiple “views” of the ITRF accuracy at coordinate sys-
tem level (i.e., a separate matrix ¥y is obtained for every
technique subnetwork in each ITRF release). To prevent any
misreadings of our findings, it is clarified in advance that
what we evaluate here is the internal accuracy at which the
ITRF origin, orientation and scale are realized in the tech-
nique subnetworks by their estimated coordinates (station
positions and velocities) from successive ITRF solutions.
The presented results convey the full statistical information
of the CV matrices of these solutions, along with the impact
of network geometry on the realized frame parameters. The
inferred accuracy, for example, of the ITRF origin in the
GNSS subnetwork does not reflect its likely offset (and drift)
relative to the true mean CM, but rather it indicates the uncer-
tainty level at which the ITRF origin (that is, the mean CM as
sensed by SLR) is reproduced by the estimated coordinates
of the GNSS stations. Forward in-time projections have been
also computed by Eq. (24) to assess the degradation of the
frame parameters in ITRF solutions, with emphasis on their
decadal performance.

The present study is performed on the entire set of I[TRF
stations that appear in the SINEX files of the official solu-
tions. No attempt is made to form “core” subnetworks based
on selective criteria for the used stations, e.g., to exclude
stations by considering their observation time span or other
conditions related to geological site stability. Hence, the
results shown here refer to the total ITRF network (and its
technique-specific subnetworks) of the successive solutions,
and they may be slightly pessimistic compared to the achiev-
able frame accuracy in other custom-built clusters of ITRF
stations. Even so, a number of low-accuracy stations were
removed beforehand from our analysis to avoid undue dis-
tortions in the computed results (this is mostly crucial for the
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VLBI and SLR subnetworks). Their removal was performed
by deleting their respective rows/columns from the full CV
matrices in which those stations were detected. In particular,
we removed from each subnetwork all points whose esti-
mated positions and velocities had sigma values larger than
5 cm and 5 cm/yr, respectively. The total number of stations
that were finally used for evaluating the internal accuracy in
the ITRF series is given in Table 2.

The key aspects to look for in the results of this investiga-
tion are:

e a gradual improvement of the internal accuracy from one
ITRF solution to the next; and

e atendency to approach (or even exceed) the accuracy level
of 1 mm and 0.1 mm/yr for the realized frame parameters
in the technique-specific ITRF subnetworks. Of course,
this is not sufficient to ensure the compliance with the
GGOS-related specifications as it refers only to the inter-
nal accuracy at which the ITRF origin, orientation and
scale are accessible through the individual subnetworks
(and their estimated coordinates), yet it is essential to
obtain an insightful view of the ITRF quality. Additional
evaluations with external geodetic observations and/or
geophysical models are obviously needed in order to assess
the true accuracy level of the ITRF in conformity with
its theoretical setting (see also the related discussion in
Sect. 1).

Our findings seem to verify, to a large extent, both of the
aforesaid aspects, and they are discussed in the next sections.

5.2 Frame realization accuracy in ITRF solutions

A series of CV matrices { X'y } with dimensions 14 x 14 have
been computed in accordance with the methodology that was
outlined in the previous section. Herein, we focus on their
diagonal elements which expose the accuracy of the initial
state and rate-of-change of the realized frame parameters in
different ITRF solutions (and their technique subnetworks).
Note that the reference epoch of the initial state varies for
each tested solution, namely 1997.0 (ITRF2000), 2000.0
(ITRF2005), 2005.0 ITRF2008) and 2010.0 (ITRF2014).
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As far as the frame origin, the growth of its internal accu-
racy is depicted in a number of plots given in Fig. 3. The
improvement, from one ITRF solution to the next, is mostly
visible in the stability of the origin components (translation
rates along the three Cartesian axes) while similar behavior
is also observed in the respective plots for the scale and ori-
entation parameters shown in Figs. 4 and 5. A reasonable
explanation is that the increasing time span of space geode-
tic observations (which are used in each ITRF solution) has
greater influence on the stability, and less on the initial state,
of the realized frame parameters. The ITRF2014 origin rates
in the DORIS, SLR and GNSS subnetworks exhibit an inter-
nal accuracy around 0.1 mm/yr (or better), whereas in the

ITRFO8

ITRF14 ITRFOO

ITRFO5

ITRFO8  ITRF14

VLBI subnetwork only the 7Z rate conforms to this accu-
racy level. In previous solutions, especially ITRF2000 and
ITRF2005, the internal accuracy of the origin rates is lower
by a factor of 3 or even more, depending on the technique
subnetwork (see Fig. 3). It is noted that the origin stability
in the GNSS subnetwork seems to be better than 0.1 mm/yr
even in the ITRF2005 and ITRF2008 solutions. This refers
of course only to the internal accuracy of the realized origin
by the ITRF coordinates (station positions and velocities) in
the particular subnetwork, and it should be largely credited
to its stronger spatial configuration and higher station density
compared to the other technique subnetworks.

The initial state of the ITRF origin (as realized by the
estimated coordinates in each subnetwork at the reference
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Fig.5 Internal accuracy of the realized frame orientation in different ITRF solutions and their respective technique subnetworks

epoch) shows the same internal accuracy in the last two solu-
tions, and also a sizeable improvement since the ITRF2000
release. The accuracy level of 1 mm (at 7,)) is almost reached
in ITRF2014 for the DORIS and SLR subnetworks, and par-
tially for the VLBI subnetwork (only in the 7Z component).
In the GNSS subnetwork, all origin components at the refer-
ence epoch are realized with much higher internal accuracy
(< 1 mm), even in pre-ITRF2014 solutions, mainly as a result
of its denser global coverage over the other technique sub-
networks.

The internal accuracy of scale and orientation in the ITRF
solutions is plotted in Figs. 4 and 5, respectively. To allow
easier reading of these plots, the sigmas for the frame param-
eters have been expressed in mm and mm/yr after re-scaling
by the Earth’s mean radius. Overall, the internal accuracy of
the ITRF scale and its rate appears to be weaker in the VLBI
subnetwork. This is clearly seen, for example, in ITRF2014
where these parameters are realized at the level of 1.6 mm
and 0.3 mm/yr, whereas in the other three subnetworks they
exhibit an internal accuracy level that is better than 1 mm
and 0.1 mm/yr. On the other hand, the orientation parame-
ters and their rates are weaker in the SLR subnetwork and,
to lesser extent, in the DORIS subnetwork (especially for RZ
and its rate). The rotation angle RZ and its rate are system-
atically better in the VLBI subnetwork (compared to SLR
and DORIS) for all tested ITRF solutions. Finally, the GNSS
subnetwork offers the best realization accuracy for the scale
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and orientation parameters (and their rates) at a statistical
level that is better than 1 mm and 0.1 mm/ yr. It is reminded,
however, that this optimistic performance reflects only the
internal accuracy as deduced by the full CV matrix of the
estimated positions/velocities and it is mainly attributed to
the large number of stations within the GNSS subnetwork
(see Table 2).

5.3 Appraisal of the long-term accuracy in ITRF
solutions

In this section, we examine the frame stability in ITRF solu-
tions by considering the impact of correlations between the
estimated positions and velocities in each technique sub-
network. For this purpose, we apply the error covariance
expression of Eq. (24) at different intervals 67 (up to 20 years),
and then the results are shown as continuous function of time
in a series of plots given in Fig. 6. These plots depict the
square roots of the diagonal elements of the CV matrices
Y1, +51), and they reveal the temporal degradation of the
realized coordinate system in each ITRF solution. The zero
origin of the time axis in all plots identifies the reference
epoch #, of each tested solution. For the sake of economy,
we purposely omit the assessment of ITRF2005 from the
presented results. This does not cause any crucial loss of
information since the omitted results are fully consistent with
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the ones already shown here, while their appearance would
only clutter the presentation without any significant gain.

The long-term frame accuracy is generally improved from
one ITRF solution to the next, especially when comparing the
earliest and latest releases that are considered here. The only
exception occurs in the VLBI subnetwork for the equato-
rial translations and scale parameters, which seem to retain
the same stability level when switching from ITRF2008
to ITRF2014, see Fig. 6. Overall, the ITRF stability does
not fully comply with the strict specification of “1 mm +
0.1 mm/yr” which aims to serve the needs of stringent sci-
entific users. According to this specification, the internal
accuracy of the ITRF, say after a decade from its reference
epoch, should be at the 2 mm level or better (for each frame
parameter), yet this is only partially verified by our results. As
seen in Fig. 6, none of the pre-ITRF2014 solutions maintains
such high stability level in the DORIS, VLBI and SLR sub-
networks. The situation is improved in ITRF2014 where only
afew frame parameters turn out to be “weakly realized” (at o
> 2 mm) after a period of ten years. These parameters are: the
rotation angle RZ (for DORIS), the scale and the equatorial
translations (for VLBI), and the three rotation angles RX, RY,
RZ (for SLR).

In the VLBI subnetwork, the scale shows the weakest
long-term performance among all other frame parameters in
all ITRF solutions, whereas in the DORIS subnetwork a sim-
ilar result occurs with the rotation angle RZ. In the case of the
SLR subnetwork, the origin and scale parameters outperform
the three rotation parameters in ITRF2005, ITRF2008 and
ITRF2014 (but not in ITRF2000). Moreover, if we consider
a longer time period, say 6¢ = 15 yrs, then the internal accu-
racy of the realized scale in the VLBI subnetwork degrades
to the level of 4-5 mm, in contrast to the SLR subnetwork
where it remains a bit better than 2 mm (this comparison
refers to ITRF2014), see Fig. 6.

The long-term accuracy of the frame parameters is sig-
nificantly better in the GNSS subnetwork (compared to the
other technique subnetworks) for all tested ITRF solutions.
Specifically, the stability of ITRF2008 and ITRF2014 seems
to fulfill the specification “1 mm + 0.1 mm/yr” for all frame
parameters, whereas in ITRF2000 it is reached only for the
orientation parameters; see Fig. 6. In ITRF2014, the accu-
racy of the realized origin, orientation and scale in the GNSS
subnetwork remains better than 1 mm even after a period
of 20 years from the initial reference epoch (2010.0). Again
it is noted that such an optimistic assessment reflects only
the internal accuracy as deduced by the full CV matrix of the
estimated positions/velocities in each ITRF solution, and it is
somewhat “biased” by the larger number of stations involved
in the GNSS subnetwork.
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6 Summary—conclusions

To investigate the accuracy of TRFs at coordinate system
level, we introduced a stochastic approach based on a suit-
able projector for the CV matrix of frame coordinates that
are obtained by space geodetic techniques. The theoretical
aspects of this evaluation scheme have been addressed in
detail in the present paper. The role of the proposed projec-
tor is to extract the CMEs (of translational, rotational and
dilatational type) that are always hidden in estimated frame
coordinates, and thus to deduce the uncertainty of the coor-
dinate system which is realized by these coordinates. Our
approach offers a versatile tool to assess the internal accu-
racy of TRFs and the compliance with application-specific
quality standards of their long-term stability on the deform-
ing Earth.

In the context of this study, we have carried out the accu-
racy evaluation of the realized origin, orientation and scale
in the ITRF series (and their technique subnetworks), which
revealed the advancements in the achievable frame stability
from ITRF2000 up to ITRF2014. The accuracy improvement
among the different ITRF solutions that is exposed in our
results reflects the growth in quality and time span of space
geodetic data, the enhancement of their modeling strategies,
and the strengthening of the terrestrial network, that have
occurred over the years in the ITRF estimation process. In
terms of future work, we plan to repeat the same procedure
for the internal accuracy assessment of the latest ITRF2020
solution and also of other available realizations of the Inter-
national Terrestrial Reference System (i.e., DTRF, JTRF).
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permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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