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The use of the quaternions for describing the Earth’s rotation

C. Bizouard1, Y. Cheng1

Abstract

We derive the quaternions expressing the rotation transformation between celestial and terrestrial reference systems as func-

tions of the parameters giving the position of the Celestial Intermediate Pole (CIP) in those two systems, and of the rotation

angle. A first version is associated with the common Earth Orientation Parameters (EOP) recommended by the International

Earth Rotation and Reference System Service (IERS) and IAU; a second version uses the direction cosines of the CIP in

the International Terrestrial Reference System (ITRS) instead of the conventional pole coordinates. Whereas matrix and

quaternion methods are numerically comparable, the quaternion formulation offers a very elegant and concise analytical

representation, that does not exist for Earth rotation matrix and that can be easily programmed. In our view, this quaternion

representation reinforces the scope of the nowadays parameters adopted for describing Earth rotation.

Keywords Earth rotation · Quaternion · Coordinate transformation

1 Introduction

Widely used to control the attitude of a spacecraft from

the gyroscopic measurements of its angular velocity vec-

tor, the quaternions have been very little applied in the

Earth rotation studies. In his doctoral thesis, Bizouard (1996)

developed alternative Earth rotation parameters based upon

quaternions. The paper of Capitaine et al. (2003) briefly

discusses the possibility to formulate the precession by

quaternions. In 2006 Svehla (2018) showed how quaternions

facilitate the transition of the Earth rotation transformations

between two successive close epochs as long as the rota-

tion vector is known. But, to our knowledge, the rotation

transformation between the International Terrestrial Refer-

ence System (ITRS) and the Geocentric Celestial Reference

System (GCRS) has never been fully expressed in terms of

quaternion.

That rotation transformation is commonly described

through a sequence of elementary rotations around differ-

ent axes. Until the 2000, the conventional sequence was
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based upon the astronomical planes and direction involved

in the dynamical description of the precession–nutation: the

ecliptic plane, the mean and true equatorial planes with the

descending nodes with the ecliptic, called mean and true

equinoctial points respectively. In the modern representation,

adopted by IAU in 2000, the ecliptic plane and subsequent

equinoctial points were given up for the benefit of a single

intermediate plane, namely the true equatorial plane, per-

pendicular to the Celestial Intermediate Pole (CIP) and two

intermediate origins or non-rotating origins on this plane

allowing to clearly define UT1.

In that new representation, developed and advocated in

the 1980 s and 1990 s by Capitaine et al. (1986), the Celes-

tial Intermediate Pole (called Celestial Ephemeris Pole until

2000) plays a central role. As in IERS conventions (Petit and

Luzum 2010), the matrix M transforming terrestrial coordi-

nates into celestial coordinates is structured around the CIP

according to the compact expression

M(t) = Q(t)R(t)W (t), (1)

where

• W (t) = R3(−s′)R2(x)R1(y) is the polar motion matrix

depending on (i) the elementary rotation angles (x, y),

abusively called "pole coordinates" of the CIP in the

ITRS—see Sect. 4 for the relation between (x, y) and

the true pole coordinates (x p, yp) (ii) the locator of Ter-
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restrial Intermediate Origin (TIO) s′, transforming ITRS

to Terrestrial Intermediate Reference System (TIRS)

• R(t) = R3(−ERA) = R3(−θ) accounts for the rotation

around the CIP between Terrestrial Intermediate Origin

(TIO) and Celestial Intermediate Origin (CIO) given by

θ = �UT1 + θ0 where � is the reference Earth rotation

angular velocity, UT1 is the Earth rotation time, and θ0 a

given constant angle, transforming Terrestrial Intermedi-

ate Reference System to Celestial Intermediate Reference

System (CIRS)

• Q(t) = P N (X , Y )R3(s) where

P N (X , Y ) =

⎡

⎣

1 − a X2 −a XY X

−a XY 1 − aY 2 Y

−X −Y 1 − a(X2 + Y 2)

⎤

⎦

(2)

gives the coupled precession–nutation matrix as a func-

tion of the direction cosines X and Y of the CIP and the

CIO locator s in the GCRS. Capitaine (1990) put forward

the simplicity of this representation with respect to the

angular description, and developed the X and Y coordi-

nates as functions of time.

Astrogeodetic observations allows to determine the irregular

parts of parameters mentioned above: the pole coordinates

x , y, the non-uniform part of θ , that is �(UT1 − UTC), and

corrections (dX , dY ) to the modeled part (Xmod, Ymod) of

(X , Y ) coordinates, called celestial pole offsets. Those five

parameters are the so-called Earth Orientation Parameters

(EOP).

In IERS Conventions (2010), Chapter 5, IERS recom-

mends the expression of the precession–nutation matrix

based upon the celestial coordinates (X , Y ) of the CIP (Petit

and Luzum 2010). In contrast to angular description of the

precession–nutation, the analytical representation with X , Y

parameters does not derive directly from the precession–

nutation theory where the introduction of the ecliptic plane

is unavoidable, and it contains more terms. That is why this

description faced many oral criticisms during international

meetings devoted to Earth’s rotation in the beginning of the

2000’s and is still not adopted universally in the computer

codes for handling space geodetic data. However, as this

paper will show, despite the lack of dynamical meaning of

the direction cosines X and Y of the CIP in the GCRS, they

provide a very elegant and concise analytical representation

in terms of quaternions, that does not exist in the matrix for-

mulation.

First, according to the properties of rotation quaternions

established in Appendix B, we derive the analytical expres-

sion of the Earth rotation quaternion (Sect. 2), validate it with

numerical computation (Sect. 3). Finally, in Sect. 4, we gen-

eralize this expression to the direction cosines of the CIP in

the ITRS instead of the conventional pole coordinates.

A reader not familiar with quaternions is advised to

read first Appendices A (definition and properties of the

quaternions) and B (description of a rotation by a unit quater-

nion and corresponding transformation coordinates) or any

textbook/internet resources related to those mathematical

objects, for instance de Casteljau (1997).

2 Earth rotation quaternion

Let [GCRS] be the coordinates of a given vector in the GCRS,

and [ITRS] its corresponding coordinates in the ITRS. The

coordinate transformation from the ITRS to the GCRS reads

[GCRS] = M[ITRS] where M is expressed by the matrix

(Petit and Luzum 2010)

M = R3(−E)R2(−d)R3(E)R3(s)R3(−θ)R3(−s′)R2(x)R1(y),

(3)

where d, E are the colatitude and longitude of the Celestial

Intermediate Pole in the GCRS.

According to Appendix B.4, the coordinate transforma-

tion of the precession–nutation sequence, R3(−E)R2(−d)

R3(E), is given by the quaternion

qP N = q3(E) ⊗ q2(−d) ⊗ q3(−E)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
E

2
0

0

sin
E

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
d

2
0

− sin
d

2
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
E

2
0

0

− sin
E

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
d

2

sin
d

2
sin E

− sin
d

2
cos E

0

(4)

According to the quaternion form (B7), that expression

means that the precession–nutation transformation is a rota-

tion of angle −d/2 around the axis of director cosine

(− sin E = cos(E + π/2), cos E = sin(E + π/2), 0), thus

lying in the XY plane at an angle E + π/2 to O X . It can

be expressed in function of the Cartesian coordinates of the

CIP in the ICRF, according to the relations given by the IERS

Conventions (Petit and Luzum 2010):

⎡

⎣

X

Y

Z

⎤

⎦ =

⎡

⎣

sin d cos E

sin d sin E

cos d

⎤

⎦ , (5)

we have

2 cos2 d

2
− 1 = Z 2 sin2 d

2
− 1 = −Z

cos
d

2
=

√

1 + Z

2
because
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0 ≤ d

2
≤ π

2

sin
d

2
=

√

1 − Z

2
because

0 ≤ d

2
≤ π

2

sin
d

2
cos E = sin

d

2

X

sin d

= X

2 cos
d

2

= X√
2(1 + Z)

sin
d

2
sin E = sin

d

2

Y

sin d

= Y

2 cos
d

2

= Y√
2(1 + Z)

, (6)

and (4) has the shortest expression

qP N = 1√
2(1 + Z)

∣

∣

∣

∣

∣

∣

∣

∣

1 + Z

Y

−X

0

. (7)

This simple expression makes the direction cosines of the

CIP, as introduced in Capitaine et al. (1986, 1990, 2000),

quite remarkable for describing the precession–nutation

independently from the ecliptic plane.

The sequence R2(x)R1(y) is the rotation transformation

associated with the polar wobble, and given by the quaternion

qW1 = q1(y) ⊗ q2(x)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
y

2

sin
y

2
0

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
x

2

0

sin
x

2
0

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
x

2
cos

y

2

cos
x

2
sin

y

2

sin
x

2
cos

y

2

sin
x

2
sin

y

2

. (8)

Neglecting second-order terms with x2, xy, y2 and terms of

higher orders (smaller than (10−6)2 = 10−12 rad = 0.2 μas),

we obtain

q̃W1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
y

2
x

2

0

. (9)

Only within this approximation, q1(y) and q2(x) becomes

commutative. The non-commutativity of quaternion q1(y)

and q2(x) is associated with the sign of the last quaternion

component in (8), here cw = sin
x

2
sin

y

2
. For the inverse

product q2(x) ⊗ q1(y), cw gets the opposite sign.

The diurnal rotation R3(−s′ − θ + s) including the slow

motion of the TIO and CIO in the intermediate equatorial

plane is described by the quaternion

qR1 = q3(s − θ − s′)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
θ ′

2
0

0

− sin
θ ′

2

, (10)

with θ ′ = −(s − θ − s′) = θ + s′ − s.

So, to sum up the total transformation (3) is expressed by

the quaternion

q̃M = q̃W1 ⊗ qR1 ⊗ qP N

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
y

2
x

2
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
θ ′

2
0

0

− sin
θ ′

2

1√
2(1 + Z)

∣

∣

∣

∣

∣

∣

∣

∣

1 + Z

Y

−X

0

, (11)

that is

q̃M = 1√
2(1 + Z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
θ ′

2

(

X
x

2
− Y

y

2
+ 1 + Z

)

+ sin
θ ′

2

(

X
y

2
+ Y

x

2

)

cos
θ ′

2

(

Y + (1 + Z)
y

2

)

+ sin
θ ′

2

(

−X − (1 + Z)
x

2

)

cos
θ ′

2

(

−X + (1 + Z)
x

2

)

+ sin
θ ′

2

(

−Y + (1 + Z)
y

2

)

cos
θ ′

2

(

−X
y

2
+ Y

x

2

)

+ sin
θ ′

2

(

X
x

2
− Y

y

2
− (1 + Z)

)

.

(12)

If we take the non-approximate expression (8) for the polar

motion quaternion qW , a quite simple analytical derivation

is still possible, yielding the fully exact quaternion
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qM = 1√
2(1 + Z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
θ ′

2

(

Xbw − Y aw + (1 + Z)tw

)

+ sin
θ ′

2

(

Xaw + Y bw + (1 + Z)cw

)

cos
θ ′

2

(

Xcw + Y tw + (1 + Z)aw

)

+ sin
θ ′

2

(

−Xtw + Y cw − (1 + Z)bw

)

cos
θ ′

2

(

−Xtw + Y cw + (1 + Z)bw

)

+ sin
θ ′

2

(

−Xcw − Y tw + (1 + Z)aw

)

cos
θ ′

2

(

−Xaw − Y bw + (1 + Z)cw

)

+ sin
θ ′

2

(

Xbw − Y aw − (1 + Z)tw

)

, (13)

with

tw = cos
x

2
cos

y

2

aw = cos
x

2
sin

y

2

bw = cos
y

2
sin

x

2

cw = sin
x

2
sin

y

2

. (14)

We can see that the transformation between terrestrial and

celestial systems in the form of quaternions is a simple ana-

lytical expression, and it can be easily coded.

The corresponding matrix transformation coordinate can

be derived from the quaternion components by computing

(B16), then taking its transpose. We immediately see that

its full analytical development, in contrast to the quaternion

form, is very long and largely exceeds the size of an A4 sheet.

3 Validation

In order to validate the quaternion transformation (12) and

(13), we reconstruct the corresponding transformation matrix

from the quaternion elements through (B16), and compare it

with the one calculated from SOFA Fortran programs accord-

ing to the IAU/IERS standards (IAU 2021).

Here all parameters can be obtained from IERS Con-

ventions models (coded in SOFA library) completed by the

Earth Orientation Parameters (EOP) dX , dY , U T 1 − U T C

or U T 1 − T AI , x , y, noting that

• X = Xmod + dX , Y = Ymod + dY where “mod” holds

for IAU 2006 precession–nutation model.

• θ = 2π 0.779057273264 + �(U T 1 − t0) with � =
2π 1.00273781191135448 rad/day and t0 is the First Jan-

uary 2000 at noon in UT1 time scale.

A Fortran program integrates the procedure iau_C2TXY

to compute the transformation coordinate matrix R between

two dates at equidistant steps defined in second. Another

program has been designed in order to calculate the Earth

rotation quaternion according its approximate and exact

expressions (Eqs. 12 and 13, respectively), and the associ-

ated transformation matrix Rq̃ and Rq . In both cases, for

dates different from 0hUTC, EOP are calculated by inter-

polating C04 series through cubic splines, modeled celestial

coordinates of the CIP are computed according to the SOFA

procedure iau_XY06, Earth rotation angle θ (incorporating

UT1) is calculated through iau_ERA00, the position s of the

CIO through iau_S06, and the position s′ of the TIO through

iau_SP00.

Comparison of R and Rq̃ /Rq were carried out over differ-

ent periods.

In the case of the exact quaternion, the elements of R and

Rq present differences below 10−14 rad and can be attributed

to numerical precision of the computation (double precision

in Fortran programmes). An example is displayed in Fig. 1b

where R and Rq are calculated between 2019/1/1 at 0hUTC

and 2021/1/1 at 0hUTC every 1200 s.

When we consider the approximate quaternion (12), dif-

ferences increase up to 1.5 10−12 rad for some terms, as

shown in Fig. 1a. The observed quasi-annual modulation

of the differences mostly results from the neglected term

cw ≈ −xy/4 rad. But those discrepancies are at least 100

times smaller than the current uncertainty affecting EOP,

which is larger than 40 μas or 2 × 10−10 rad. Thus, they can

be neglected for the astro-geodetic computations. In terms of

station position, the approximation impacts the station posi-

tions at an insignificant level of 0.01 mm.

4 Full symmetrized transformation

Whereas the CIP is located by Cartesian coordinates (X , Y , Z)

in the ICRF, its position in the ITRF is given by elementary

rotations of angles x and y. In order to fully symmetrize the

form of R, we introduce the spherical coordinates of the CIP

in the ITRF, and the associated coordinates x p and yp. Let λp

be the longitude of the CIP in the ITRF, θp be the colatitude,

the coordinates of the CIP in the ITRF are
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Fig. 1 Differences between Earth rotation matrix elements computed directly from SOFA program and the ones computed from the quaternions,

according to the approximate expression (12) (left plot) and exact one (13) (right plot) over 720 days every 1200 s from 2019/1/1 0hUTC

⎡

⎣

x p

yp

z p

⎤

⎦ =

⎡

⎣

sin θp cos λp

sin θp sin λp

cos θp

⎤

⎦ , (15)

and the transformation is expressed by

M = R3(E)R2(−d)R3(−E)R3(s)R3(−θ)R3(−s′′)

R3(−λp)R2(θp)R3(λp) (16)

where the TIO locator s′′ is a quantity slightly differing from

s′ as it will be shown later.

The real pole coordinates x p and yp of the CIP in the

ITRF can be expressed in function of the angles x and y by

applying the coordinate change

⎡

⎣

x p

yp

z p

⎤

⎦ = R1(−y)R2(−x)

⎡

⎣

0

0

1

⎤

⎦

=

⎡

⎣

1 0 0

0 cos y sin(−y)

1 sin y cos y

⎤

⎦

⎡

⎣

cos x 0 sin x

0 1 0

− sin x 0 cos x

⎤

⎦

⎡

⎣

0

0

1

⎤

⎦

(17)

that is

⎡

⎣

x p

yp

z p

⎤

⎦ =

⎡

⎣

cos x 0 sin x

sin x sin y cos y − cos x sin y

− sin x cos y sin y cos x cos y

⎤

⎦

⎡

⎣

0

0

1

⎤

⎦

=

⎡

⎣

sin x

− cos x sin y

cos x cos y

⎤

⎦ . (18)

Now, the quaternion associated with the polar motion trans-

formation Wp = R3(−λp)R2(θp) R3(λp) is expressed by

qWp =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
θp

2

− sin
θp

2
sin λp

sin
θp

2
cos λp

0

. (19)

By analogy to the transformation between (E, d) and

(X , Y , Z) according to (6), we have
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cos
θp

2
=

√

1 + z p

2

sin
θp

2
cos λp = x p

√

2(1 + z p)

sin
θp

2
sin λp = yp

√

2(1 + z p)

. (20)

From that it results

qWp = 1
√

2(1 + z p)

∣

∣

∣

∣

∣

∣

∣

∣

1 + z p

−yp

x p

0

. (21)

In order to determine the new locator of the TIO s′′ in regard

to polar rotation matrix Wp, we use the fact that the transfor-

mations R3(−s′′) Wp and R3(−s′) R2(x)R1(y) have to be

equal. This can be expressed by the equality of the quater-

nions qWp ⊗q3(−s′′) and q1(y) ⊗ q2(x) ⊗ q3(−s′), leading

to qWp ⊗ q3(s
′ − s′′) = q1(y) ⊗ q2(x), that is

1
√

2(1 + z p)

∣

∣

∣

∣

∣

∣

∣

∣

1 + z p

−yp

x p

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
s′ − s′′

2
0

0

sin
s′ − s′′

2

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
x

2
cos

y

2

cos
x

2
sin

y

2

cos
y

2
sin

x

2

sin
x

2
sin

y

2

(22)

The last component of this relation is written

√

1 + z p

2
sin

s′ − s′′

2
= sin

x

2
sin

y

2
, (23)

that is, after neglecting terms of order higher than or equal

to 3

s′′ − s′ ≈ − xy
√

2(1 + z p)
≈ − xy

2
, (24)

which indicates a difference of about 10−12 radians. A matrix

calculation allows a geometrical interpretation of the differ-

ence s′′ − s′ as exposed in Appendix C.

Actually, the TIO locator is expressed by definition as a

function of the pole coordinates (x p, yp) (Capitaine et al.

1986), but in the IERS convention (Petit and Luzum 2010)

(x p, yp) are approximated by the two rotation angles x and

−y, respectively. Using the true pole coordinates as intro-

duced above is strictly consistent with the concept of the

TIO locator.

The total transformation is represented by the quaternion

q = qWp ⊗ q3(−s′′ − θ + s) ⊗ qP N , that is

qM = 1
√

2(1 + z p)

1√
2(1 + Z)

∣

∣

∣

∣

∣

∣

∣

∣

1 + z p

−yp

x p

0
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
−s′′ − θ + s

2
0

0

sin
−s′′ − θ + s

2
∣

∣

∣

∣

∣

∣

∣

∣

1 + Z

Y

−X

0

. (25)

This gives the quaternion as a function of the direction

cosines of the CIP in both GCRS and ITRS:

q = 1

2
√

(1 + z p)(1 + Z)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

cos
θ ′′

2

[

X x p + Y yp + (1 + Z)(1 + z p)
]

− sin
θ ′′

2

[

−Xyp + Y x p

]

cos
θ ′′

2

[

Y (1 + z p) − (1 + Z)yp

]

+ sin
θ ′′

2

[

−X(1 + z p) + (1 + Z)x p

]

cos
θ ′′

2

[

−X(1 + z p) + (1 + Z)x p

]

+ sin
θ ′′

2

[

−Y (1 + z p) − (1 + Z)yp

]

cos
θ ′′

2

[

Xyp − Y x p

]

+ sin
θ ′′

2

[

X x p + Y yp − (1 + Z)(1 + z p)
]

,

(26)

where θ ′′ = θ + s′′ − s.

5 Conclusion

Quite absent from Earth rotation studies where Euler angles

or matrices are favored, the quaternions are a pertinent alter-

native for describing the Earth rotation in compliance with the

parametrization based upon the direction cosines of the CIP

(recommended by the IAU). Indeed, the rotation quaternion

between celestial and terrestrial reference systems presents

a simple analytical expression, that is impossible to obtain

in the case of the matrix formalism. We check its coherence

with the matrix calculation of SOFA Fortran library of the

IAU to within 10−12 rad for its approximate form and 10−14

rad for its exact one.

The parametrization of the CIP was extended to its

direction cosines in the ITRF, replacing the common pole

coordinates and ending up in a full symmetrized expression

of the Earth rotation quaternion.

Various tests showed that the expression (13) or (26) do not

produce a significant CPU time gain with respect to the direct
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numerical calculation of the corresponding matrix. But, due

to their short analytical form, those expressions can be easily

coded in any software requiring the Earth rotation transfor-

mation (telescope pointing, reduction of astro-geodetic data).

Actually, a precision of 1.5 10−12 rad (0.3 μas) is sufficient

for many applications, and the approximate version (12) can

then be used. Moreover, in the context of the astro-geodetic

reduction, those expressions allow to easily derive the par-

tial derivatives of the measured quantities with respect to the

EOP X , Y , UT1, (x, y) or (x p, yp).
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Appendices

A Definition of the quaternions and
properties

A.1 Definition

The quaternions were discovered by the Irish Mathemati-

cian William Rowan Hamilton in the early 1840’s (Hamilton

1866). The problem was to find a multiplication law ⊗ for

n-uplets of real number X = [x1, x2, . . . , xn] such that the

modulus of a product X ⊗ X ′ is equal to the product of the

modulus |X ||X ′|:

|X ||X ′| = |X ⊗ X ′| (A1)

the modulus being defined by |X | =
√

X X where X =
[x1,−x2,−x3, . . .] is the conjugate.

Numbers obeying such a law constitute a generalization of

complex numbers. Hamilton had already searched for a solu-

tion to this problem for the tri-uplet, but unsuccessfully.

Considering then a fourth dimension, he obtained a mul-

tiplication law, which satisfies Eq. (A1). Considering two

quadruplets q1 = [t1, x1, y1, z1] and q2 = [t2, x2, y2, z2],
their multiplication is given by

q1 ⊗ q2 =

∣

∣

∣

∣

∣

∣

∣

∣

t1t2 − x1x2 − y1 y2 − z1z2

t1x2 + x1t2 + y1z2 − z1 y2

t1 y2 − x1z2 + y1t2 + z1x2

t1z2 + x1 y2 − y1x2 + z1t2

(A2)

Endowed with this internal composition, these quadruplets

of real numbers q = [t, x, y, z] are called quaternions and

have a structure of group.

The addition of two quaternions is defined by

q1 + q2 = [t1 + t2, x1 + x2, y1 + y2, z1 + z2]. (A3)

It can be easily shown that the multiplication law is associa-

tive and distributive with respect to the addition. However, it

is not commutative. Let be i = [0, 1, 0, 0], j = [0, 0, 1, 0],
k = [0, 0, 0, 1], any quaternion [t, x, y, z] can be expressed

by

q = t + i x + j y + kz. (A4)

Any quaternion of the form (t, 0, 0, 0) is reduced to the real

number t . From the multiplication law (A2) i, j and k check

the properties

i ⊗ j = − j ⊗ i = k, j ⊗ k = −k ⊗ j = i,

k ⊗ i = −i ⊗ k = j

i2 = i ⊗ i = j2 = k2 = i jk = [−1, 0, 0, 0]
. (A5)

These relations determine fully the multiplication of two

quaternions.

A.2 Scalar and vectorial parts

We can consider (x, y, z) as the components of a vector �V in

a direct orthonormal basis, so that every quaternion can be

expressed by

q = [t, �V ], (A6)

where �V is the vectorial part of the quaternion and t is

its scalar part. As the vectorial part is referred to a direct

orthonormal basis, (A2) can be rewritten

q1 ⊗ q2 =[t1, �V1] ⊗ [t2, �V2] = q3 = [t3, �V3]
with t3 = t1t2 − �V1 · �V2 and

�V3 = t2 �V1 + t1 �V2 + �V1 ∧ �V2,

(A7)

where �V1 · �V2 is the scalar product of the vectorial parts and
�V1 ∧ �V2 their vectorial product.
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The non-commutativity of the product of two quaternions

comes from the non-commutativity of the vectorial product
�V1 ∧ �V2.

A.3 Symmetric and antisymmetric parts

According to (A7), the symmetric part of the product of two

quaternions is

< q1 ⊗ q2 >= 1

2
(q1 ⊗ q2 + q2 ⊗ q1)

= [t1t2 − �V1. �V2, t2 �V1 + t1 �V2], (A8)

and the antisymmetric part

[q1 ⊗ q2] = 1

2
(q1 ⊗ q2 − q2 ⊗ q1) = [0, �V1 ∧ �V2]. (A9)

A.4 Conjugate andmodulus

The conjugate of a quaternion q = [t, �V ] is defined by q =
[t,− �V ]. Then, it can be easily shown that the conjugate of

a product of two quaternions is the inverse product of the

conjugates:

q1 ⊗ q2 = q2 ⊗ q1. (A10)

The norm or the modulus of a quaternion q is

|q| =
√

q ⊗ q =
√

q ⊗ q =
√

t2 + x2 + y2 + z2. (A11)

A.5 Inverse

From A11, any non-zero quaternion q has an inverse, written

q−1, such as q ⊗ q−1 = q−1 ⊗ q = (1, 0, 0, 0) and given by

q−1 = q

|q|2 . (A12)

A.6 An useful lemme

Let q = (t, �Ŵ) be any quaternion and (0, �V ) a pure vectorial

quaternion, the following expressions can be easily derived:

q ⊗ (0, �V ) ⊗ q

=
[

0, 2 (�Ŵ · �V )�Ŵ + (t2 − �Ŵ2) �V + 2t �Ŵ ∧ �V
]

, (A13)

and

q ⊗ [0, �V ] ⊗ q

=
[

0, 2 (�Ŵ · �V )�Ŵ + (t2 − �Ŵ2) �V − 2t �Ŵ ∧ �V
]

. (A14)

B Representation of a rotation by a unit
quaternion

B.1 Quaternion of rotation

Any rotation can be fully defined by the rotation angle φ

and the direction of its rotation axis, characterized by its

direction cosines (α, β, γ ) = û in a direct orthonormal basis.

From a given vector �r and the vector û, we can build another

orthonormal direct basis (û, v̂, ŵ) such as

ŵ = û ∧ �r
‖û ∧ �r‖

v̂ = ŵ ∧ û = �r − (û · �r)û

‖û ∧ �r‖
. (B1)

Let us apply the rotation of angle φ and direction vector û)

on the vector �r , which becomes �r ′. The projection of �r ′ on

the rotation axis û is unchanged and equal to �r · û. Its second

component along v̂, namely �r · v̂, is rotated by the angle φ

in the plane (v̂, ŵ). Its third component, along ŵ is equal to

zero, for ŵ is perpendicular to t�r . It results

�r ′ = (�r · û) û + (�r · v̂) cos φ v̂ + (�r · v̂) sin φ ŵ. (B2)

By using the last expression of (B1), we get v̂ · v̂ = 1 =
�r · v̂/‖û ∧ �r‖, that is �r · v̂ = ‖û ∧ �r‖, allowing to derive

v̂ = [�r − (û · �r)û]/�r · v̂ and ŵ = û ∧ �r/�r · v̂, and finally

�r ′ = (1 − cos φ)(û · �r)û

+ cos φ�r + sin φ û ∧ �r . (B3)

On the other hand, applying the transformation (A13) to the

quaternion vector [0, �r ′] and quaternion q = (t, �Ŵ), yields

q ⊗ [0, �r ] ⊗ q = [0, �r ′]
=

[

0, 2 (�Ŵ · �r)�Ŵ + (t2 − �Ŵ2) �r + 2t �Ŵ ∧ �r
]

. (B4)

So, the quaternion q = (t, �Ŵ) corresponds to the rotation

transformation (B3) if it obeys the system

2(�Ŵ · �r)�Ŵ = (1 − cos φ)(û · �r) û

t2 − �Ŵ2 = cos φ

2t �Ŵ ∧ �r = sin φ û ∧ �r
, (B5)

with solutions

q = (t, �Ŵ) = ±
[

cos

(

φ

2

)

, sin

(

φ

2

)

û

]

. (B6)
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By definition, the quaternion of rotation q(φ,û) associated

with the rotation (φ, û) is

q(φ,û) =
[

cos

(

φ

2

)

, sin

(

φ

2

)

û

]

. (B7)

The rotation of same axis but of opposite angle is given by

the conjugate quaternion q(φ,û).

Both these quaternions allows to obtain the transform vec-

tor �r ′ according to

[0, �r ′] = q(φ,û) ⊗ [0, �r ] ⊗ q(φ,û). (B8)

B.2 Coordinate transformation

Let (x, y, z) be the coordinates of a given vector �r in the

Cartesian frame Oxyz endowed with the orthonormal basis

(î, ĵ, k̂). By applying the quaternion of rotation q(φ,û) on

(î, ĵ, k̂), this one is transformed into the basis (î ′, ĵ ′, k̂′). Let

(x ′, y′, z′) be the coordinate of �r in this new basis. Then, two

equal vectorial quaternions give �r :

x ′[0, î ′] + y′[0, ĵ ′] + z′[0, k̂′] = x[0, î] + y[0, ĵ] + z[0, k̂].
(B9)

According to the transformation law (B8), this relation

becomes

x ′q(φ,û) ⊗ [0, î] ⊗ q(φ,û) + y′q(φ,û) ⊗ [0, ĵ] ⊗ q(φ,û)

+ z′q(φ,û) ⊗ [0, k̂] ⊗ q(φ,û)

= x[0, î] + y[0, ĵ] + z[0, k̂].
(B10)

Then

q(φ,û) ⊗ q(φ,û)

(

x ′[0, î] + y′[0, ĵ] + z′[0, k̂]
)

q(φ,û) ⊗ q(φ,û) = q(φ,û) ⊗
(

x[0, î] + y[0, ĵ ] + z[0, k̂]
)

⊗ q(φ,û).

(B11)

As q(φ,û) ⊗ q(φ,û) = q(φ,û) ⊗ q(φ,û) = |q(φ,û)|2 = 1, we

obtain

x ′[0, î] + y′[0, ĵ] + z′[0, k̂]
= q(φ,û) ⊗

(

x[0, î] + y[0, ĵ] + z[0, k̂]
)

⊗ q(φ,û).

(B12)

or

[0, x ′, y′, z′] = q(φ,û) ⊗ [0, x, y, z] ⊗ q(φ,û). (B13)

Noting x = (x, y, z) and x ′ = (x ′, y′, z′), the former relation

can be expressed by

[0, x ′] = q(φ,û) ⊗ [0, x] ⊗ q(φ,û). (B14)

This is the passive transformation in the sense that it only

transforms the vector coordinates and not the vector itself, in

contrast to the active transformation (B8).

B.3 Equivalent matrix for coordinate transformation

Equation (B3) allows to calculate the components of the new

basis in the old one, i.e., the transformation matrix P from

the basis (î, ĵ, k̂) to the basis (î ′, ĵ ′, k̂′):

P = (1 − cos φ)

⎡

⎣

α2 βα γα

αβ β2 γβ

αγ βγ γ 2

⎤

⎦ + cos φ I

+ sin φ

⎡

⎣

0 −γ β

γ 0 −α

−β α 0

⎤

⎦ , (B15)

where α, β and γ are the direction cosines of û.

Considering the components t = cos φ/2, a = α sin φ/2,

b = β sin φ/2, c = γ sin φ/2 of the quaternion q(φ,û) =
[t, a, b, c], P takes the form

P =

⎡

⎣

t2 + a2 − b2 − c2 2(ab − ct) 2(ac + bt)

2(ab + ct) t2 − a2 + b2 − c2 2(bc − at)

2(ac − bt) 2(bc + at) t2 − a2 − b2 + c2

⎤

⎦ .

(B16)

Then, the coordinate transformation can be written as

x ′ = PT x = R x, (B17)

where the coordinate transformation using the matrix R is

equivalent to that using the quaternion q given by (B14).

B.4 Quaternion representing the product of two
rotations

Let q1 and q2 be the quaternions pertaining to the rotations

R1 and R2, respectively (with secant axes). From (B8), the

active sequence of rotations R2 R1 (first R1 then R2) applied

to the vector �r gives

[0, �r ′] = (q2 ⊗ q1) ⊗ [0, �r ] ⊗ (q1 ⊗ q2)

= (q2 ⊗ q1) ⊗ [0, �r ] ⊗ q2 ⊗ q1. (B18)
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According to (B14), the passive sequence transforming the

coordinates x of �r to x ′ is

[0, x ′] = (q2 ⊗ q1) ⊗ [0, x] ⊗ (q1 ⊗ q2)

= q1 ⊗ q2 ⊗ [0, x] ⊗ (q1 ⊗ q2). (B19)

So, the product R2 R1 is associated with the quaternion q2⊗q1

in the case of the active transformation and to q1 ⊗ q2 in the

case of the passive transformation.

C Matrix-based calculation of s′ − s
′′

According to (23), we derive

cos(s′ − s′′) = 1 − 2
2

1 + z p

sin2 x

2

sin2 y

2
= cos x + cos y

1 + z p

. (C1)

This difference actually comes from a residual rotation

between the 2-rotation sequence R2(x)R1(y) and the 3-

rotation sequence Wp = R3(−λp)R2(θp)R3(λp). To see

this, let us apply those rotation sequences on the unit vec-

tor x̂ of the ITRS basis (x̂ , ŷ, ẑ). The resulting vector in the

ITRS basis is the first column of the transpose of the corre-

sponding transformation coordinate matrix.

So, for the transformation R2(x)R1(y), we have to con-

sider the matrix

R1(−y)R2(−x) =

⎡

⎣

cos x 0 sin x

sin x sin y cos y − cos x sin y

− sin x cos y sin y cos x cos y

⎤

⎦

(C2)

of which the first column gives the vector

x̂1 = cos x x̂ + sin x sin y ŷ − sin x cos y ẑ. (C3)

For the 3 rotation sequence Wp, it should be noticed that

the transformation coordinate W T
p R3(s

′′) from the TIRS to

the ITRS is similar to P N (X , Y )R3(s) going from the CIRS

to the GCRS. So W T
p can be easily written by replacing

X with x p and Y with yp in the conventional precession–

nutation matrix P N (X , Y ) given by (2), taking as well

a = 1/(1 + z p) = 1/(1 + cos x cos y):

W T
p = R3(λp)R2(−θp)R3(−λp)

=

⎡

⎣

1 − ax2
p −ax p yp x p

−ax p yp 1 − ay2
p yp

−x p −yp 1 − a(x2
p + y2

p)

⎤

⎦ . (C4)

The corresponding transformed vector is

x̂2 = (1 − ax2
p) x̂ − ax p yp ŷ − x p ẑ (C5)

that is, from (18),

x̂2 =
(

1 − sin2 x

1 + cos x cos y

)

x̂ + sin x cos x sin y

1 + cos x cos y
ŷ − sin x ẑ. (C6)

Then the angle between the vectors x̂1 and x̂2 is precisely the

difference s′′ − s′ with the cosine

cos(s′′ − s′) = �x1 · �x2

= 1

1 + z p

(cos x + cos2 x cos y

− cos x sin2 x + sin2 x cos x sin2 y

+ sin2 x cos y + sin2 x cos x cos2 y)

= cos x + cos y

1 + z p

,

(C7)

which is exactly the expression (C1) that we found by com-

paring quaternion expressions.
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