
HAL Id: insu-04476093
https://insu.hal.science/insu-04476093v1

Submitted on 24 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of Topography on Venus’ Cloud Top Properties
as Observed by HST

K-L Jessup, Emmanuel Marcq, Jean-Loup Bertaux, F. Mills, S Limaye, A
Roman

To cite this version:
K-L Jessup, Emmanuel Marcq, Jean-Loup Bertaux, F. Mills, S Limaye, et al.. Impact of Topography
on Venus’ Cloud Top Properties as Observed by HST. 50th Lunar and Planetary Science Conference,
Mar 2019, The Woodlands, United States. pp.LPI Contribution No. 2132, id.2728. �insu-04476093�

https://insu.hal.science/insu-04476093v1
https://hal.archives-ouvertes.fr


IMPACT OF TOPOGRAPHY ON VENUS’ CLOUD TOP PROPERTIES AS OBSERVED BY HST.  K-L. 

Jessup1, E. Marcq2, J-L. Bertaux2, F. P., Mills3, S. Limaye4, A. Roman1Southwest Research Institute, Boulder CO, 

USA, jessup@boulder.swri.edu 2LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, 

France 3Australian National University, Canberra, Australia4University of Wisconsin, Madison, Wisconsin, USA; 
5Space Telescope Institute, Baltimore, MD, USA 

 

 

Introduction:  Venus is permanently covered with 

ubiquitous H2SO4·H2O cloud and haze layers of tempo-

rally and vertically variant abundance and opacity[1-4]. 

Data obtained during the Akatsuki and Venus Express 

(VEx) missions are now revealing the interdependence 

of the cloud top properties on both Venus local solar 

time and topography [6-9]. In 2010/2011 Hubble 

Space Telescope Imaging Spectrograph (HST/STIS) 

was used to record the cloud top properties over Aph-

rodite Terra and a low elevation region downwind of 

Aphrodite. The Aphrodite data were obtained on two 

dates in January 2011 separated by 5 days at 200-600 

nm, while the low-elevation plains regions data were 

obtained in December 2010 at 200-300 nm (Table 1); 

on each date two 0.1ʺ wide maps of the cloud top radi-

ance were obtained as function of latitude over local 

solar times extending from 7 to 11 hr. (Fig. 1) 

Table I 

Date 
Number 
of maps 

Phase 
Angleⱡ 

Geo.  
Longitude 

(LST, HH:MM) 

Terrain 

December 28, 
2010 

2 97° 
-5 to 45E; 

 (7:20 to 10:41) 
Plains 

January 22, 
2011 

2 82° 
70 to 125E 

(7:20 to 10:54) 

Aphrodite Terra 
Mountains 

January, 27, 
2011 

2 79° 
85 to 140E 

(7:20 to 10:52)  

Aphrodite Terra 
Mountains 

ⱡPhase angle is the sun-target-observer angle; VMC observations show that 
the cloud top albedo brightens as the phase angle increases [13] 

 

 
 

Observed Trends and Lessons learned: Our 

analysis of these data shows distinct trends in Venus’ 

cloud top properties (such as the albedo levels at 245 

nm, 365 nm, and the overall cloud top SO2 gas abun-

dance) as function of terrain type (mountain/plains), 

latitude and LST as summarized in Figures 2-5 and 

Table 2. 

 
Table 2 

No. Observed Trend 
Implied  
Physics 

1 
The 245 nm albedo spatial variations 
replicate those observed at 365 nm 
(Fig. 3) 

The species controlling 
the albedo at these 

wavelengths are linked 
[12,14] 

2 

Smooth increase in albedo with in-
creasing latitude within longitude re-
gions directly intersecting both the 
equatorial plains and Aphrodite Terra 
mountain range (Fig. 4) 

Hadley cell  
Transport of absorbing 

materials [15] 

3 
Smooth & rapidly increasing albedo 
darkening (~20%) above the plains at 
LST between 10 and 11 hr (Fig. 5) 

Manifestation of  
Shallow Cloud top   
Convective Cells  

(±2 hr of noon) [16,17] 

4 

Limited (~ 0-10%) darkening of the 
albedo at LST between 10 and 11 hr at 
longitudes intersecting Aphrodite Terra 
mountain range (Fig. 5) 

Convective Cells 
formed near noon 
suppressed below 
cloud top altitudes; 
occurs when mixing 

rate or T in the stability 
layer is too high [18] 

5 

When visible, the degree of pre-noon 
darkening manifest at cloud tops above 
Aphrodite is smaller than the plains 
(Fig.5) 

amount of darkening 
material and/or cloud 
top haze perturbation 

is lower over Aphrodite 
than over the plains 

6 
Smooth decrease in SO2 abundance 
with increasing latitude away from 
equator over the plains (Fig. 2) 

Hadley cell  
transport of SO2 

7 

SO2 gas latitude gradient above Aph-
rodite observed to reverse from in-
creasing in latitude away from equator 
to decreasing with increasing latitude in 
a 5 day period—such that the SO2 
abundance at the equator was a mini-
mum rather than a maximum (Fig.2) 

Low vertical mixing 
rate within Hadley cell 

sufficient to allow 
photochemical de-

struction to minimize 
the equatorial SO2 over 

5-day period [14,15] 

8 

Although a reversal in the SO2 gas 
latitude gradient was observed at 
longitude intersecting Aphrodite, no 
corresponding reversal in the cloud top 
albedo latitude gradient was observed 
[12] 

Timescales of vertical 
and meridional 

transport and/or chem-
ical loss of the species 
controlling the albedo 

are longer than the  
SO2 photochemical 
loss timescale [12] 

9 

Equatorial SO2 gas abundances of 200 
ppb, 20 ppb and 10 ppb were retrieved 
from the HST data; the lowest equato-
rial abundances were observed over 
Aphrodite Terra (Fig. 2) 

Equatorial SO2 abun-
dance depends on the 
vertical mixing in the 
upward branch of the 
Hadley cell –mixing 
rates over Aphrodite 

were suppressed 
relative to the plains; 

this impacts all species 
contributing to the 
cloud top albedo at 
Aphrodite [11,12] 

Fig. 1 Two distinct cloud 

top albedo maps (pink & 

black) are derived from 

the latitude x longitude 

swaths encountered within 

the 0.1ʺ HST/STIS slit on 

December 28, 2010, 

above regions with eleva-

tions < 1km (cyan) at LST 

~ 7 to 11 hr (top axis). 

Similar cloud top albedo 

maps were obtained above 

Aphrodite (see Table 1). 
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Fig. 2 SO2 gas abundance retrieved from the 2010/2011 

HST data; two paths or maps were observed on each date 

as indicated by the color legend 

 

 
 

Fig. 3 The 245 nm and 365 nm cloud top albedo ob-

served above Aphrodite show the same rate of change 

with increasing latitude 

 

 
Fig. 4 Smooth increases in the cloud top 245 nm albedo 

with increasing latitude were observed over the plains and 

over  Aphrodite Terra. The 20˚ higher phase angle value 

associated with the December 2010 observations produc-

es a ~ 20% brightening in the cloud top albedo in Decem-

ber 2010 relative to the January 2011 dates. Therefore, to 

make a legitimate comparison of the albedo levels be-

tween the two terrain types we apply this brightening 

scale factor to the January albedo data. 

 

 
 

Fig. 5 Changes in the cloud top albedo as a function of 

LST between 10 and 11 hr is shown for the plains and 

Aphrodite; rapid and smooth darkening is more promi-

nent over the plains 

Conclusions: We find that both the observed SO2 

behavior and the observed albedo behaviors implies 

that large and small scale equatorial vertical motions 

(and winds) are compressed (suppressed) over Aphro-

dite, and that this compression (suppression) impacts 

the abundance of SO2 gas at the cloud tops the, the 

cloud top albedo, and the manifestation of sub-solar 

convective cell activity at the cloud tops.  
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