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Abstract: In this paper, we present several study cases focused on marine, oceanographic, and
atmospheric environments, which would greatly benefit from the use of a deployable system for
small satellite observations. As opposed to the large standard ones, small satellites have become an
effective and affordable alternative access to space, owing to their lower costs, innovative design
and technology, and higher revisiting times, when launched in a constellation configuration. One
of the biggest challenges is created by the small satellite instrumentation working in the visible
(VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired
data depends on the physical dimension of the telescope and the antenna collecting the signal. In
this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite
architecture, once unfolded in space, can reach performances similar to those of larger satellites.
In this study, we show how ecology and Earth Observations can benefit from data acquired by
small satellites, and how they can be further improved thanks to deployable payloads. We focus on
DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and
on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify
its performances for Earth Observation studies.
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1. Introduction

Remote sensing, from visible (VIS), through thermal infrared (TIR), up to microwaves
(MW), represents a key tool to study and monitor our planet, especially when field measure-
ments are hard to produce because of environmental coverage (e.g., oceans) and/or techni-
cal and operational issues (e.g., inaccessibility, or seasonal or annual variations). Remote
sensing multispectral data are critical to monitor the results of human activities, e.g., pollut-
ing gases or industry-made products, and natural hazards, e.g., hurricanes, floods, fires,
earthquakes, volcanic eruptions, sandstorms, soil erosions, and landslides [1–14], whereas
the availability of more frequent views over the same area allows for a better management
of natural hazards and disaster e.g., [15]. These datasets allow for the development of
strategies for the safeguarding of natural habitats, plants, and animal species (e.g., [16–20]).

Although a great return is guaranteed, remote sensing performed by standard satellites
is very expensive [21], and is thus affordable only to countries and large consortia able
to ensure expensive, long-term operations. The high costs are due to large volumes and
masses (>1 m3, >500 kg) of the standard satellites, which imply the need for powerful
launchers. In the late 1980s, the technological advancement of small satellites [22], classified
in different classes depending on their masses (cf. Table 1), allowed for space programs
to also become accessible to countries, communities, and private institutes with limited
funding (e.g., [23]). Furthermore, small satellites represent ideal platforms to test and
validate new, cutting-edge technologies. The limited on-board resources indeed require
innovative propulsion methods (including electric propulsion and compressed gas or
liquids, e.g., butane and carbon dioxide), attitude control, communication, and computation
systems. Micro-satellites use innovative compact communication systems (e.g., optical
transceivers, antenna arrays, and satellite-to-satellite data relay), in the VHF (very high
frequency), UHF (ultra high frequency), and L-, S-, C-, and X-bands. In particular, a remote
sensing payload operating in VIS, TIR, and MW onboard small satellites represents a great
challenge to balance miniaturization and performance, because the achieved resolution
depends on the size of the signal collector. A novel solution is offered by the deployable
approach, which allows to both minimize the instrument volume at the launch phase and
achieve good performances at the orbital phase (once unfolded). For Earth Observations
(EO), deployable optics can become an asset to gain those accurate, precise, and frequent
measurements required to keep monitoring natural and human activities [24]. Alongside
any technical arrangements, the increasingly widespread data fusion techniques rely on
merging data from different sensors to ameliorate the quality of the final output, as regards
spatial resolution, geometry, and topography (e.g., [25]).

Table 1. Small satellite classification according to their mass adapted from [21,26,27].

Small Satellite Class Mass [kg]

Mini 100 to 500
Micro 10 to 100
Nano 1 to 10
Pico 0.1 to 1

Femto <0.1

In this paper, we reviewed several marine and atmospheric studies, as representative
cases (i) to highlight the improvements in accuracy, resolution, and spatial/time coverage
when using remote sensing payload onboard small satellites, and (ii) to validate the per-
formances of a deployable telescope, currently under development, targeting ecological
questions. In Section 2, we present a short introduction about both small satellites and
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remote sensing payloads for EO, along with DORA, the new deployable system that is
investigated in this study. In Section 3, environmental studies, focused on the potential eco-
logical hazards to the habitat, are described: for each application and observation strategy,
the most favorable characteristics of the satellite are defined. In Section 4, we introduce the
data fusion techniques as a powerful tool to combine multisensory data to better analyze
a given topic. In Section 5, we illustrate the radiometric analysis carried out to evaluate
the performances of the deployable telescope. Finally, in Section 6, conclusions and future
perspectives are outlined.

2. Small Satellites for VIS, TIR, and MW Remote Sensing

Satellites can be classified according to their weight: large (mass > 1000 kg), medium
(mass from 500 kg to 1000 kg), and small (mass < 500 kg). Small satellites, born as a mere
curious experiment and which currently have a key role for space exploration [22,26,27],
can be further classified, as reported in Table 1.

2.1. Evolution of Small Satellites

The historical evolution of small satellites has been extensively presented in a number
of other works (e.g., [22,28–31]); here we aim to provide only the main phases in order to
contextualize our work.

Small satellites were pioneered by a group of radio amateurs in California, who, in
1961, built and launched a 10 kg satellite, OSCAR-1 [32]. The first advance came in the
subsequent years, with the addition of solar cells and rechargeable batteries, to allow
small satellites to achieve useful lifetimes in orbit, and rudimentary attitude stabilization
techniques (e.g., U.K. MoD Prospero, 66 kg, 1971). The transition to the “modern” small
satellites occurred in 1981 with the launch of the 54 kg micro-satellite UoSAT-1 (University
of Surrey Satellite), which included two in-orbit, reprogrammable microcomputers. UoSAT-
1 was the first civilian satellite built to assess the feasibility of the design, construction, and
launch of a scientific small satellite at a low cost. The U.S. Department of Defense started a
LightSat initiative in the mid-1980s with the goal of reducing the costs and development
time of satellites in the 50 to 1000 kg range [33]. During the 1980s, micro-satellites were
considered of interest, but only for education and training.

At the beginning of the 1990s, a number of commercial proposals were advanced for
constellations of small satellites operating in low Earth orbit (LEO), in order to provide
worldwide communications, focusing on services not provided by the geostationary Earth
orbit (GEO) satellites. During the 1990s, micro-satellites were used for technology demon-
stration and the verification of new digital services, before the widespread deployment of
terrestrial infrastructure, rudimentary EO, radio science, military applications, and training
programs for developing space nations. A series of micro-satellites, developed at the Sur-
rey Space Centre [34], demonstrated steadily improved EO capabilities, e.g., KITSat [35],
designed for experimental satellite engineering, PoSAT [36,37], 1 km ground sampling dis-
tance (GSD) for NIR, Thai-Phutt [22,38], and the first multispectral imaging micro-satellite
to achieve 300 m GSD NIR, Red, Green, and Blue, FASat-Bravo, that carried instruments to
monitor the distribution and concentrations of the ozone [39].

Between the end of the 1990s and the beginning of the 2000s, the complexity and
potential of small satellite development was encouraged by a series of international col-
laborations between emerging nations aiming to an affordable access to space. Modern
small satellites have, therefore, become suitable for EO, especially via constellations, due
to advancing technology and the lowering of costs of production. This was the case, for
instance, for the Disaster Monitoring Constellation First Generation (DMC-1G), an inter-
national partnership based on a Know-How Transfer and Training program for Third
Countries, featuring expense and problem sharing, and remote sensing data exchange
between all the partners. The DMC-1G constellation was made up by five micro-satellites
(~100 kg each), which were launched within a time window from 2002 to 2005, into a
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686 km sun-synchronous orbit (SSO), and resulted in being particularly effective during
the large-scale Indian Ocean Tsunami (2004) and Hurricane Katrina (2005) disasters [40].

The combination of commercial appeal and low unit cost brought small satellites to
the center of attention in 2010, and stimulated proposals for new applications and business
models [22]. The advent of small satellite constellations coupled to the Internet, Cloud
storage, advanced processing, and distribution methods has fostered the change from
science to commodity. The evolution of small satellite EO companies, e.g., RapidEye,
SkyBox, BlackBridge, and Planet (Labs), has demonstrated the rapid changes and their
market volatility. Specifically, RapidEye was operative since 2008 until a couple of years
ago. It represented a major milestone in the EO industry, for being the first fully commercial
operational class EO system using a constellation of five micro-satellites (~150 kg), which
provided exceptional performance for their class and a full end-to-end system. A dedicated
Spacecraft Control Centre and an 80 Mb/s X-band data downlink ground station service
was able to organize, acquire, and process up to 5,000,000 km2 of images every day from
the five-band multispectral imager (RGB, Red Edge, and NIR bands), with 6.5 m GSD to
generate land information products [41]. In 2013, SkyBox, with its micro-satellite SkySat-1,
provided 0.9 m resolution images in Panchromatic filters and became the first company
ever to capture and release HD videos acquired in space [42]. The resolution of the SkySat
satellite images and videos is high enough to observe objects that impact the global economy,
such as terrain, vehicles, and shipping containers [43].

Concurrently to the progress of SmallSats and the widespread of constellations, the
turn of the XXI century also represented a milestone for a particular class of “very” small
satellites, i.e., the CubeSats. CubeSats were born as a collaborative project between Robert
J. Twiggs at Stanford University’s Space Systems Development Laboratory (SSDL) and
Prof. Jordi Puig-Suari at California Polytechnic State University (Cal Poly) [44]. The idea
was to rapidly develop a pico-satellite that could give university students accessibility
to space for conducting scientific experiments and testing out new technologies [45–47].
Indeed, the standardized design and compact dimensions allowed to reduce both costs and
developing time, as well as to use the same type of deployment system (Poly-PicoSatellite
Orbital Deployed (P-POD)), which provides a verified and reliable procedure, preventing
any potential challenges in the phase of launch as a secondary payload [48,49]. These
characteristics, together with the advancement in the miniaturizing technology, have made
CubeSats the key element in the space industry, not only for the EO [50–52], but also for
the exploration of our solar system [53–55].

2.2. Current Status of Small Satellite Payload for Earth Observation

Small satellites for EO often carry optical or microwave sensors, providing observa-
tions with a range of spatial, spectral, and temporal resolutions. Here, we will briefly
provide an overview of these sensors (values are taken from manufacturer or space
agency websites).

In Table 2, we list a number of small satellites (still active or ended), equipped with
either remote sensing optical or microwave payloads. These examples have been developed
during the last few decades for the EO, with characteristics (e.g., payload characteristics,
revisiting time, and costs) that can be fully or partially suitable to image and monitor the
study cases presented in this work. In Table S1 in the Supplementary Material, we reported
the same parameters, but for medium to large satellites, as comparison.
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Table 2. List of the small satellites used in the text, with their main characteristics.

Satellite
Acronym

Satellite
Name

Satellite
Class

Satellite Description and
Main Goals

Sate-
llite

Weight
(kg)

Satellite
Size

Orbit
Altitude

(km)
Payload

Telescope
or Antenna
Aperture
Diameter

(mm)

f/Number
Focal

Length
FoV/

Beamwidth

Spatial
Ground

Resolution
(m)

SNR Swath
Width

Spectral
Range
(µm) *

/Frequency

Spectral
Resolu-

tion

Polari-
metric

Capabili-
ties

Revisiting
Time Constellation Year *

Company
(Coun-

try)
References

Capella
X-SAR Micro

• Earth’s monitoring to
provide the most
frequent, timely, and
high-quality SAR
imagery products
available, accessible
through an intuitive
self-serve online
platform

<40 - 485–525
sun-synch

X-SAR/3
acquisition

modes:
SL: spotlight,
SP: sliding
spotlight,

SM:
StripMap

8 m2 once
deployed - -

SL: 0.5–0.7 m
SP: 0.8–1.2 m
SM: 1.6–2.4 m

SL: −14 to
−10 dB

SP: −17 to
−14 dB

SM: −20 to
−16 dB

SL: 5 km ×
5 km

SP: 5 km ×
10 km

SM: 5 km
× 20 km

X-band:
9.4–9.9 GHz

bandwidth
of up to

500 MHz

yes: S
(HH) <1 week

Cappella is
born as a
constella-

tion of
36 micro-
satellites

2018

Capella
Space
Com-
pany

(USA)

[43,56–58]

DubaiSat-
2 Mini

• Technologically
advanced follow-up of
the DubaiSat-1

• Electro-optical imagery
for the EO, with very
high spatial resolutions

≤300

1.95
(height)
× 1.5 m
(diame-

ter)

600
sun-synch

HiRAIS
(High

Resolution
Advanced
Imaging
System)

420 mm 5.7 m -
<1 m PAN,
<4 m MS
@ 600 km
altitude

- 12 km @
nadir

PAN: 550–900
nm

MS1-Blue:
450–520 nm
MS2-Green:
520–590 nm

MS3-Red:
630–690 nm
MS4-NIR:

770–890 nm

- no <8 days

PanGeo
constella-

tion
(9 satellites)

in 2014
DubaiSat-2
worked in
conjunc-
tion with
Deimos-2

2013
(>5 years)

MBRSC/
SI (Dubai,

Korea)
[43,56]

Flock
Imaging
Constel-
lation

CubeSat

• Constellations operating
in a continuous
monitoring mode and
nadir pointing, to
capture imagery of the
sunlit portion of the
Earth’s surface

• Rapid iterative design
and frequent
replacement and testing
in space of nanosatellites,
to continuously deploy
improved S/C and P/L
into two types of orbits

5 3U

370–475
(ISS orbit

or
sun-synch

orbit)

Planet Scope/PS
(3

generations
of optical

systems, PS0,
PS1, PS2)

90 -

PS2:
HFOV:
21.8 km
VFOV:

14.5 km

3–5 m @nadir
(e.g.,: PS2: 3.3

m @ ISS
altitude)

- 21.8 km

PS2:
Red:

630–714 nm
Green:

515–610 nm
Blue:

424–478 nm
NIR:

70–900 nm

< 90 nm no <1 day

Constellation
of initially

28 nano
satellites:
constella-

tion
replen-

ished over
time

2014
(1 year

per
satellite
in ISS

orbit, or
2–3 years

per
satellite
in sun-
synch
orbit)

Planet
Labs

(USA)
[43,56,59]

HARP

Hyper-
Angular
Rainbow
Polarime-

ter

CubeSat

• Precursor for the new
generation of imaging
polarimeters

• Measure the
microphysical properties
of aerosol, cloud water,
and ice particles in the
atmosphere

6 3U 400
Imaging

Polarimeter
- -

94◦
cross-track

113◦
along-track

2.5 km - ≥900 km 440, 550, 670,
870 nm - yes - no 2019

(>1 year)
NASA/
ESTO
(USA)

[43,56]

ICEYE Micro

• Timely and reliable
Earth’s observation data

• Goal of enabling better
decision making

85 70 cm ×
60 cm

560–700
sun-synch
and ECT

X-SAR/3
acquisition

modes:
SM: strip
mode, SP:
spot mode,

SC: scan
mode

3.2 m
(along-
track)
× 0.4 m

- -
ST: 3 m
SP: 1 m

SC: <15 m

ST: −22 to
−21.5 dB

SP: −18 to
−15 dB

SM: −22.2
to −21.5 dB

ST: 30 ×
50 km

SP: 5 ×
5 km

SC: 100 ×
100 km

X-band:
9.65 GHz

bandwidth:
37.6–

299 MHz

yes: S
(VV)

20 h
mean
revisit
time at
equator

18 micro-
satellites 2018

ICEYE
Ltd. of
Espoo

(Finland)

[43,56,57,
60]

JASON–
1 Mini

• Monitoring the global
ocean circulation and
events such as El Nino

• Understanding the
ocean–atmosphere
relation

• Improving the global
climate predictions

500

954 mm
×

954 mm
×

1000 mm

1324
drift

Poseidon-2
(altimeter)

JMR
(microwave
radiometer)

DORIS
(Doppler Or-
bitography

and Radiopo-
sitioning)
BlackJack

(GPS flight
receiver)

Poseidon-2:
1.2 m -

JMR:
beamwidth

= 1.2◦ @
18.7 GHz,
1.0◦ @ 23
GHz, 0.7◦
@ 34 GHz

-

Poseidon-2:
Ku-band:

3.2 dB
C-band:
0.9 dB

-

Poseidon-2:
Ku-band,
C-band

JMR:
23.8 GHz,
34 GHz,

18.7 GHz

- no 9.9 days

Jason-1
works in
conjunc-
tion with
TOPEX/
Poseidon

and
Jason-2

2001–
2013

CNES/
NASA

(France,
USA)

[43,56]
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Table 2. Cont.

Satellite
Acronym

Satellite
Name

Satellite
Class

Satellite Description and
Main Goals

Sate-
llite

Weight
(kg)

Satellite
Size

Orbit
Altitude

(km)
Payload

Telescope
or Antenna
Aperture
Diameter

(mm)

f/Number
Focal

Length
FoV/

Beamwidth

Spatial
Ground

Resolution
(m)

SNR Swath
Width

Spectral
Range
(µm) *

/Frequency

Spectral
Resolu-

tion

Polari-
metric

Capabili-
ties

Revisiting
Time Constellation Year *

Company
(Coun-

try)
References

OSTM/
JASON-

2

Ocean
Surface

Topography
Mission/
JASON-2

Mini

• Extending the time
series of ocean surface
topography
measurements to:

(a) obtain a continuous
record of
observations

(b) determine the
variability of ocean
circulation at
decadal time scales
from combined data
record with T/P and
Jason

(c) improve the
measure of the
time-averaged
ocean circulation

(d) improve the
measure of global
sea-level change

(e) improve open ocean
tide models

553
1 m ×
1 m ×
3.7 m

1336
drift

Poseidon-3
(solid-state

radar
altimeter)

AMR
(Advanced
Microwave
Radiometer)

DORIS
(Doppler Or-
bitography

and Radiopo-
sitioning

Integrated by
Satellite)

TRSR-2/GPSP
(Turbo

Rogue Space
Receiver-2)
LRA (Laser
Retroreflec-

tor
Array)

Poseidon-3:
1.2 m -

Poseidon-3:
1.28◦

(Ku-band),
3.4º

(C-band)

-

Poseidon-3:
3.2 dB

(Ku-band),
0.9 dB

(C-band)

-

Poseidon-3:
C-band:
5.3 GHz
Ku-ban:

(13.575 GHz

Poseidon-3:
320 MHz

band-
width

no 10 days

Jason-2
works in
conjunc-
tion with
TOPEX/
Poseidon

and
Jason-1

2008–
2019

NOAA/
EUMETSAT

(USA/
Europe)

[43,56,61]

JASON-
3 Mini

• Providing continuity to
the unique accuracy and
coverage of the
TOPEX/Poseidon,
Jason-1, and
OSTM/Jason-2 missions
in support of operational
applications related to
extreme weather events
and operational
oceanography and
climate applications and
forecasting

553
1 m ×
1 m ×
3.7 m

1336
drift

Poseidon-3B
(altimeter)

AMR-2
(Advanced
Microwave
Radiometer)

DORIS
(Doppler Or-
bitography

and Radiopo-
sitioning

Integrated by
Satellite)

LRA (Laser
Retroreflec-
tor Array)

GPSP
(Global

Positioning
System

Payload)

Poseidon-3B:
1.2 m -

Poseidon-3B:
1.28◦

(Ku-band),
3.4◦

(C-band)

-

Poseidon-3B:
3.2 dB

(Ku-band),
0.9 dB

(C-band)

-

Poseidon-3B:
C-band:
5.3 GHz
Ku-band:

13.575 GHz
AMR:

18.7, 23.8 and
34 GHz

Poseidon-3B:
320 MHz

band-
width

no 9.9 days

Jason-3
works in
conjunc-
tion with

Jason-1 and
Jason-2;

it belongs
to the

NOAA/
EUMETSAT/
CNES/NASA

program
for

monitoring
weather,
climate,

and the en-
vironment

2016

NOAA/
EUMETSAT/

CNES/
NASA
(USA/

Europe)

[43,56,62]

N2 Nigeria
Sat-2 Mini

• Supporting food supply
security, agricultural,
and geology applications

• Supporting mapping
and security applications

• Supporting development
of the national GIS
infrastructure

• Providing continuity
and compatibility with
the existing NigeriaSat-1
system

270 -
700

× 733 km
sun-synch

VHRI
(Very High-
Resolution

Imager)
MRI

(medium
resolution

imager)

VHRI:
385 - -

VHRI:
PAN: 2.5 m

MS: 5 m
MRI:
32 m

-

VHRI:
20 km for
2.5 m &

5 m GSD
MRI:

300 km for
32 m GSD

VHRI:
PAN:

450–900 nm
Blue:

450–520 nm
Green:

520–600 nm
Red:

630–690 nm
NIR:

760–900 nm
MRI:

4 spectral
bands

VHRI:
> 140 nm no 2 days

DMC-1G
constella-

tion
2011–
2018

NASRDA/
SSTL

(Nigeria,
UK)

[43,56]

NX Nigeria-
Sat-X Micro

• Training model to give
the NASRDA engineers
the Know-How
Technology experience
in the satellite
specifications, project
management, system
engineering,
manufacturing, testing,
assembly, and final
system testing of a
spacecraft

87
0.6 m ×
0.6 m ×

0.6 m

663 km ×
700 km

sun-synch

SLIM6
(Surrey
Linear
Imager

Multispectral
6 channels,

but 3 spectral
bands)

- - 26.6◦ 22 m @ nadir >100

>600 km
(>300 km

per
channel)

Green:
520–620 nm

Red:
630–690 nm

NIR:
760–900 nm

<900 nm no 3–5 days
DMC-2G
constella-

tion
2011

(5 years)

NASRDA/
SSTL

(Nigeria,
UK)

[43,56]
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Table 2. Cont.

Satellite
Acronym

Satellite
Name

Satellite
Class

Satellite Description and
Main Goals

Sate-
llite

Weight
(kg)

Satellite
Size

Orbit
Altitude

(km)
Payload

Telescope
or Antenna
Aperture
Diameter

(mm)

f/Number
Focal

Length
FoV/

Beamwidth

Spatial
Ground

Resolution
(m)

SNR Swath
Width

Spectral
Range
(µm) *

/Frequency

Spectral
Resolu-

tion

Polari-
metric

Capabili-
ties

Revisiting
Time Constellation Year *

Company
(Coun-

try)
References

Nova-
SAR-1 Mini

• Making SAR observation
missions more affordable
to a customer base

• Opening up new
application-oriented
options in the
microwave region of the
spectrum

450 - 580
sun-synch

S-SAR/4
acquisition

modes:
SS: ScanSAR

mode, MS:
maritime

surveillance
mode, SM:
StripMap,

WS:
ScanSAR

Wide

3×1 m2 - -
SS: 20 m
MS: 30 m
SM: 6 m

WS: 30 m

SS:
< −18 dB

MS:
< −12 dB

SM:
< −18.5 dB

WS:
< −19 dB

SS:
50–100 km
MS: 750 km

SM:
13–20 km

WS:
55–140 km

S-band -

yes: S, D,
T (HH,
VV, HV,

VH)

Polar
orbit: 0.9–
4.4 days

equatorial
orbit: 0.5–
1.3 days

constellation:
< 8 h

yes
3 satellites

2018
(7 years)

SSTL/
UKSA
(UK)

[43,56,57,
63]

PARASOL

Polarization
an-

dAnisotropy
of Re-

flectances
for

Atmospheric
Science
coupled

with Obser-
vations
from a
Lidar

Micro

• Monitoring Earth’s
atmosphere

• Understanding the role
of clouds and aerosols in
climate mechanisms
(What effect does global
warming have on cloud
cover? How do clouds
and aerosols interact?)

120
60 cm ×
60 cm ×

80 cm
705

sun-synch
POLDER-3

(radiometer/
polarimeter

- - ±43◦ to
±57◦

6 km × 7 km at
nadir 200 2400 km

9 wavelengths,
with

3 polarizations
at

3 wavelengths
in the

443–1020 nm
range:

443.5 ± 6.7 nm
490.9 ± 8.2 nm
563.8 ± 7.7 nm

669.9 ±
75.6 nm

762.9 ± 5.5 nm
762.7 ± 19.1

nm
863.7 ± 16.9

nm
907.1 ± 10.6

nm
1019.6 ± 8.6

nm

- yes: T 2 days
A-train

constella-
tion

2004–
2013

CNES
(France) [43,56,64]

PICASSO

Pico-
Satellite for
Atmospheric
and Space

Science
Observations

Pico

• Demonstrating the
potentiality of tiny
satellites to achieve a
very high ratio of
“science data versus
cost”

• Determining the ozone
distribution in the
stratosphere, the
temperature profile up
to the mesosphere, and
the electronic plasma
characterization in the
ionosphere

3.8 3U 530

VISION
(Visible
Spectral

Imager for
Occultation

and
Nightglow)

SLP
(sweeping
Langmuir

probe)

- - VISION:
2.5◦

vertical res
= 2 km - - VISION:

430–800 nm
FWHM
<10 nm no 2–3

weeks no 2020 (29
months)

BISA,
VTT,

Clyde
Space

(Belgium,
Finland,

UK)

[43,56]

RainCube Radar in a
CubeSat CubeSat

• Observing the short-time
evolution of weather
processes, which is
necessary to validate
and improve the current
assumptions and skills
of numerical weather
models

5.5 6U 400

miniKaAR-C
(miniatur-

ized Ka-band
Atmospheric

Radar for
CubeSats)
KaRPDA
(Ka-band

radar
parabolic

deployable
antenna)

KaRPDA:
0.5 m

deployable
- -

Horizontal:
7.9 km

Vertical: 120 m
- - Ka-Band:

35.75 GHz - no - yes 2018–
2020

NASA
ESTO
(USA)

[43,56,65]

RapidEye Micro

• Land information
services (agriculture,
environment, forestry,
mapping, intelligence
and defense, security
and emergency, and
visual simulation) to a
variety of customers

156
0.78 m ×
0.938 m
× 1.17 m

620
sun-synch

MSI (Multi-
Spectral
Imager)

145 mm f/4.3
633 mm

± 6.75◦ @
nadir 6.5 m @ nadir 50–250

> 70 km @
620 km
altitude

5 bands in the
400–850 nm

range:
440–510 nm
520–590 nm
630–685 nm
690–730 nm
760–850 nm

- no

< 1 day @
off-nadir
5.5 days
@ nadir

5 satellites 2008–
2020

RapidEye
AG

(Germany)
then

acquired
in 2015

by Planet
Labs

(USA)

[43,56,63,
66]
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Table 2. Cont.

Satellite
Acronym

Satellite
Name

Satellite
Class

Satellite Description and
Main Goals

Sate-
llite

Weight
(kg)

Satellite
Size

Orbit
Altitude

(km)
Payload

Telescope
or Antenna
Aperture
Diameter

(mm)

f/Number
Focal

Length
FoV/

Beamwidth

Spatial
Ground

Resolution
(m)

SNR Swath
Width

Spectral
Range
(µm) *

/Frequency

Spectral
Resolu-

tion

Polari-
metric

Capabili-
ties

Revisiting
Time Constellation Year *

Company
(Coun-

try)
References

RAVAN

Radiometer
Assess-
ment

usingVerti-
cally

Aligned
Nanotubes

CubeSat

• Demonstrating
technology: compact
and low cost satellites
can be used to collect key
measurements to predict
changes in Earth’s
climate

<5 3U 617
syn synch

4 RAVAN
radiometers:

2 VACNT
(vertically

aligned
carbon

nanotube)
adsorbers + 2
black-painted cavity

absorbers

- - 130◦ - - -

PTOT Primary
(VACNT) Total channel:

UV–far IR
PSW Primary

(VACNT) SW channel:
UV–5.5 m

STOT Secondary
(cavity) Total channel:

UV–far IR
SSW Secondary
(cavity) SW channel:

UV–5.5 m

- no ≤ 3 days

No
technology
demonstra-
tion for the

ERB con-
stellation

2016
(20 months)

NASA’s
ESTO
(USA)

[43,56]

SeaHawk-
1 CubeSat

• Demonstrating the
potential scientific
applications of a high
resolution (~120m)
ocean color instrument
placed on 3U CubeSat
Platforms

5 3U 575
HawkEye Ocean
Color Sensor

- - ± 11.3◦ 120 m 150–490 250
× 400 km

8 SeaWiFS
bands:

412 nm,
443 nm,
490 nm,
510 nm,
555 nm,
670 nm,

750.9 nm,
865 nm

14.7–40
nm no 9 days Socon Con-

stellation
2018

(18–24 months)
UNCW
(USA) [43,56]

SkySat
constel-
lation

Generation
A: SkySat-1
Generation
B: SkySat-2
Generation
C: SkySat-3

to 21

Micro

• Constellation of
high-resolution and
frequent Earth imaging
satellites

• Addressing two distinct
markets:

(a) various
environmental
applications (e.g.,
monitoring
agriculture, forestry,
and other natural
resources)

(b) asset tracking,
where S/C images
help customers
monitoring various
facilities for changes

G-A:
83G-

C:
110

G-A:
60 cm ×
60 cm ×

80 cm
G-C:

60 cm ×
60 cm ×

95 cm

Skysat 1–2:
600 km,

sun-synch
Skysat 3–15:
500 km at

launch,
lowered to
450 km in
early 2020,
sun-synch

Skysat 16–18:
400 km

inclined,
non-

sun-synch

SkySat camera:
mono- and

stere-
imaging, and

video
acquisition

modes

SkySat-C:
350 mm

f/10.3
3.6 m

2.0 km ×
1.1 km

SkySat-1–2:
PAN: 0.86 m

MS: 1 m
SkySat-3–15:
PAN: 0.65 m
MS: 0.81 m

SkySat-16–21:
PAN: 0.57 m
MS: 0.75 m

-

SkySat-1–2:
8 km

SkySat-3–15:
5.9 km

SkySat-16–21:
5.5 km

PAN:
450–900 nm

Blue:
450–515 nm

Green:
515–595 nm

Red:
605–695 nm

NIR:
740–900 nm

- no

Constellation:
sub-daily,
6–7 times
at world-

wide
average,
12 times

max
Satellites:
4–5 days

(reference
altitude:
500 km)

Constellation
replen-

ished over
time

(21 satel-
lites in
2021)

2013
(>4–6 years)

Skybox
Imaging,

then
renamed
as Terra
Bella in

2016
(USA)

[43,56]

TecSAR

SAR
Technology
Demonstra-

tion
Satellite

Mini

• Technology
demonstration mission
for military purposes

• Providing
high-resolution SAR
imagery, day and night,
in all weather conditions,
at an affordable cost

260 - 403 km ×
581 km

X-SAR
(X-band
Synthetic
Aperture
Radar)/4

acquisition
modes:

WS: wide
coverage
ScanSAR,

SM:
StripMap,
SS: Super
StripMap,

SL: spotlight

3 m - -
WS: 8m
SM: 3 m
SS: 1.8 m
SL: <1 m

>200 <100 km X band:
9.59 GHz -

yes: HH,
HV, VH,

VV
3–4 days no 2008

(>5 years)
Israel’s
MoD

(Israel)
[43,56,57]

TEMPEST-
D

Temporal
Experi-

ment for
Storms and

Tropical
Systems

Technology—
Demon-
stration

CubeSat

• Validating the
performance of a 6U
CubeSat microwave
radiometer designed to
study precipitation
events on a global scale

• Observing the time
evolution of clouds and
studying the conditions
that control the
transition from
non-precipitating to
precipitating clouds
using high-temporal
resolution observations

3.8 6U 410
MM Radiometer
(millimeter-

wave
radiometer)

- - -
from 12.5 km @
181 GHz to 25
km @ 87 GHz

NE∆T:
0.20 K @
89 GHz
0.35 K @
165 GHz
0.55 K @
176 GHz
0.55 K @
180 GHz
0.75 K @
182 GHz

825 km

5 frequencies:
89 GHz,

165 GHz,
176 GHz,

180 GHz, and
182 GHz

bandwidth
require-
ments:
4 ± 1

GHz @
center fre-
quencies
of 89 and
165 GHz
2 ± 0.5
GHz @

176, 180,
and 182

GHz
center fre-
quencies

yes:
Quasi-H

or
Quasi-V

Pol

3–5 min
for up to
30 min

Demonstrative
CubeSat
for the
future

TEMPEST
constella-

tion

2018
(90 days

after
on-orbit
commis-
sioning)

Colorado
State

Univer-
sity/NASA

(USA)

[43,56,67]
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Table 2. Cont.

Satellite
Acronym

Satellite
Name

Satellite
Class

Satellite Description and
Main Goals

Sate-
llite

Weight
(kg)

Satellite
Size

Orbit
Altitude

(km)
Payload

Telescope
or Antenna
Aperture
Diameter

(mm)

f/Number
Focal

Length
FoV/

Beamwidth

Spatial
Ground

Resolution
(m)

SNR Swath
Width

Spectral
Range
(µm) *

/Frequency

Spectral
Resolu-

tion

Polari-
metric

Capabili-
ties

Revisiting
Time Constellation Year *

Company
(Coun-

try)
References

TROPICS

Time-
Resolved
Observa-
tions of

Precipitation
structure

and storm
Intensity

with a
Constellation

of
SmallSats

CubeSat

• Studying the
development of tropical
cyclones through
rapid-revisit sampling

• Relating the
precipitation structure
evolution, including the
diurnal cycle, to the
evolution of the
upper-level warm core
and associated intensity
changes

• Relating the occurrence
of intense precipitation
cores (convective bursts)
to storm intensity
evolution

• Relating the retrieved
environmental moisture
measurements to
coincident measures of
storm structure
(including size) and
intensity

• Assimilating microwave
radiances and/or
retrievals in mesoscale
and global numerical
weather prediction
models to assess impacts
on storm track and
intensity

6 3U
600 (550 ±

50 km
tolerance)
sun-synch

TROPICS
radiometer:
W-band:
92 GHz
F-band

(7 channels):
114–119 GHz

G-band
(4 channels):
183–204 GHz

- - -

W-band (90GHz):
29.6 km @

nadir, 50.7 km
@ EAS

(Effective
Across Scan)

F-band (118 GHz):
24.1 km @

nadir, 41.2 km
@ EAS

G-band (183 GHz):
16.1 km @

nadir, 27.5 @
EAS

G-band (205 GHz):
15.2 km @

nadir, 26.0 @
EAS

NE∆T:
2.0 K @
90 GHz
1.5 K @
~110–

120 GHz
1.0 K @

~180–200
GHz

2000 km

Ch1:
91.655 GHz

Ch2:
114.50 GHz

Ch3:
115.95 GHz

Ch4:
116.65 GHz

Ch5:
117.25 GHz

Ch6:
117.80 GHz

Ch7:
118.24 GHz

Ch8:
118.58 GHz

Ch9:
184.41 GHz

Ch10:
186.51 GHz

Ch11:
190.31 GHz

Ch12:
204.80 GHz

bandwidth:
~300–
2000
MHz

no 30 min 6 satellites
TROPICS

2021
(9 years):
Pathfinder

2022
(9 Years):
Constella-

tion

MIT/
Lincoln

Labs,
NASA
(USA)

[43,56]

ZACUBE-
2 CubeSat

• Technological
demonstration:
automatic identification
system (AIS) receiver to
test AIS message
reception using its
SDR-based payload

• Earth’s observation with
a near-infrared imager
for forest fire detection
and ocean color

4 3U 480 km ×
508 km

K-line camera
(medium
resolution

CMOS
imager)

VHF
AIS/VDE receiver

- - K-line camera:
7.8◦ × 6.2◦

K-line camera:
53 m - K-line camera:

68 km
K-line camera:

770 nm

K-line camera:
1 nm
band-
width
VHF

AIS/VDE:
extended

VDES
bands
from

156.75
MHz to
162.05
MHz

VHF
AIS/VDE:

yes
(linear)

-
Yes:

MDASat-1
constella-

tion
2018

Cape
Penin-
sula

Univer-
sity of

Technol-
ogy

(South
Africa)

[43,56]

* The years of the missions are given as an interval when it is a past mission. When only one date is given, this refers to the launch date. The eventual numbers in brackets refer to the
expected lifetime, as given in the references.
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2.2.1. Optical Payloads

The performance of an optical payload, in terms of spatial and signal-to-noise ratio
(SNR), is limited by aperture size. Remote optical sensing systems mounted on small
satellites usually employ aperture diameters ≤400 mm (cf. Table 2) (e.g., [68]), allowing
for a spatial resolution ranging from 1 to 4 m, which is limited by light diffraction and
dependent on satellite altitude. New methods have been implemented to limit sensors’
volume and mass with similar resolutions to larger satellites, e.g., the high-precision
telescope (HPT), a high spatial resolution multispectral sensor sized for small platforms [69],
and the deployable optical systems [24].

At the same time, small satellites provide a unique opportunity for launching afford-
able constellations, which can provide daily return cycles. In this respect, small satellites
reach the temporal resolutions that are not practical with large satellites. Constellations
such as SkySat (Terra Bella), Flock Imaging Constellation and RapidEye (Planet Labs),
ICEYE (ICEYE Ltd. of Espoo), NovaSar, and Disaster Monitoring Constellation Second
Generation (SSTL/UKSA) are examples of small satellites working cooperatively to provide
a daily coverage of the terrestrial surface (cf. Table 2).

2.2.2. Microwave Payloads

Earth imaging in the microwave range is mainly achieved using the synthetic aperture
radar (SAR) technology, which synthesizes the elevation by processing a tailored signal
(e.g., [57,70]). This technology allows to increase the spatial resolution using a smaller
antenna than in the real aperture radar (RAR) system. Due to its day, night, and (almost)
all-weather capabilities, SAR is a key tool for a broad range of EO applications, including
the observation of oceans (currents, winds, waves, pollution, etc.), the cryosphere (coverage
and extension of ice and snow, navigation routes, etc.), and lands (coverage and extension
of vegetation, evolution of geological and tectonic structures, utilization of terrains for
agriculture, etc.) [57,71–73].

The SAR system was the main payload of large satellites such as Sentinel-1 (ESA)
and TSX (BMBF, DLR), medium-large satellites such as COSMO-SkyMed (first and second
generations, ASI) (cf. Table S1 in the Supplementary Materials), down to the smaller
sizes (<500 kg) such as TecSAR (Israe’s MoD) and NovaSAR-1 (SSTL/UKSA) (cf. Table 2).
Similar to small satellites with optical payloads, constellations of SAR-carrying satellites
can improve observation revisiting time (e.g., ICEYE (ICEYE Ltd. of Espoo), cf. Table 2).

Passive instruments operating in the microwave range are termed as microwave
radiometers (MWRs). They collect microwave radiation naturally emitted by the Earth,
guaranteeing continuous, large-scale, all-day, and almost all-weather Earth Observations,
which are of paramount importance for environmental monitoring, for instance soil mois-
ture and sea surface salinity [74,75].

MWRs can be built by means of the “aperture synthesis” approach too [76], allow-
ing spatial resolutions that otherwise would require the use of antennas with a larger
aperture [77]. Synthetic aperture microwave radiometers (SA-MWRs) are based on the
cross-correlation of signals collected by different pairs of antennas, placed at varying
antenna-pair spacings [76]. Such baselines represent the visibility function in the frequency
domain, which must then be transposed into the brightness temperature map in the spatial
domain through an inversion algorithm (e.g., Fourier transform) [78].

MWRs can be designed to allow measurements at a given combination of frequency
and polarization (single-channel MWRs), such as the Soil Moisture Active Passive (SMAP)
radiometer and the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS),
which is part of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS)
mission, or they can call for multi-frequency and multi-polarization capabilities (multi-
channel MWRs). The latter category includes instruments that can perform measurements
at different channels (i.e., using different frequency/polarization combinations), e.g., (i) the
Special Sensor Microwave Imager (SSM/I), which covers four frequencies (ranging from
19.35 GHz to 85.5 GHz) and seven channels (i.e., all the frequency channels, with the
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exception of the 23.235 GHz one, allow for collecting measurements at both vertical and
horizontal polarizations); (ii) the Special Sensor Microwave Imager Sounder (SSMIS), which
is a 24-channel, microwave radiometer with channel frequencies ranging from 19 GHz
to 183 GHz; (iii) the 12-channel Advanced Microwave Scanning Radiometer 2 (AMSR2);
and (iv) the 10-channel Microwave Radiation Imager (MWRI) [79]. Although MWRs are
mesoscale sensors, a number of products have been also proposed to retrieve parameters
on a regional scale [79–81].

2.3. CubeSats for Earth Observation as an Endpoint Case of Small Satellites

CubeSats are a class of research spacecraft that are classified in the borderline be-
tween nano- and pico-satellites. The original CubeSat is a 10-cm cube, less than 1.33 kg
in weight [82], but this standard shape, the so-called 1U factor form, can be typically
extended to 2U and 3U ones, and up to 27U [83]. CubeSats have recently sprung into
the spatial marketplace to address targeted science questions in a rapid and affordable
manner (e.g., [57,84]). The advantages given by lower costs, fast development, and the
possibility of launching several dozen CubeSats by means of a single rocket, have brought
forth the potential for radically new mission architectures. These consist in very large con-
stellations of CubeSats, which allow to combine the temporal resolution of GEO missions
with the spatial resolution of LEO missions, thus breaking a traditional trade-off in EO
mission design (e.g., [15,85]). Several EO measurements, such as natural-disaster and water-
resource monitoring [86], could potentially be compatible with the current state-of-the-art
CubeSat technology, even if some of them have never been addressed by any mission of
this class [52].

2.4. DORA: Deployable Optics for Remote Sensing Applications

The development of small satellites highlighted how EO through remote sensing
relies on the compromise between the necessity of high spatial, spectral, and temporal
resolutions, payload miniaturization, and the availability of resources from space agencies
and companies for the space program. The data acquired in the spectral range from VIS
to MW suffer particularly from the smaller size of the telescope or antenna. The limited
size and weight resources, mandatory for small satellites, implies a small primary mirror,
and/or a lower length of the telescope assembly, reducing its performance in terms of
spatial resolution and SNR. Large satellites can indeed host sensors as large as 500–600 mm
in diameter, whereas small satellites can accommodate sensors with diameters as large as
300–400 mm (cf. Table 2 and Table S1 in the Supplementary Material). The lower area of the
collector represents the troublesome challenge for having data at a high resolution. Remote
sensing payloads operating in the MW suffer as well because of the antenna’s size and the
platform’s altitude (the higher the platform altitude, the larger the antenna needs to be to
obtain a reasonable spatial resolution).

The new design concept, based on a deployable approach (e.g., [24]), represents a
viable architecture to accomplish scientific objectives and applications that are otherwise
difficult to reach by small satellites. The deployable technology allows both minimization
of the payload volume during the launch and the cruise to the final orbit, and good perfor-
mances, similar to those of the instruments mounted in larger platforms, during the period
of activity. Precision-deployable, stable, optical telescopes, which can fit inside small and
low-cost launch vehicles, are prime examples of a technology that will yield breakthrough
benefits for future scientific and commercially-oriented applications (e.g., [87]). Similarly,
SAR technology synthesizes the flying altitude through a tailored signal processing, al-
lowing to increase the spatial resolution using an antenna much smaller than the physical
antenna used in an RAR system [70].

The Italian Ministry of Research funded the “Deployable Optics for Remote sensing
Applications” (DORA) project in the framework of the Italian National Research Plan
2015–2020, which will be active until April 2022. DORA is a partnership between private
companies (led by SITAEL, the largest Italian private company operating in the space
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sector), research institutes (INAF—Institute for Space Astrophysics and Planetology (Rome)
and INAF—Astronomical Observatory of Padua), and academic centers (University of
Naples “Parthenope” and Politecnico of Milan) (e.g., [87]). The objective of the project is
to design, realize, and test a prototype of a deployable optical system for remote sensing
applications in the VIS to TIR spectral range, and a planned application in the MW spectral
range. A deployable telescope and a straylight shield will be interfaced to a focal plane
instrument, which can include either a camera or a Fourier spectrometer. The telescope,
kept in a closed configuration during the launch to minimize the volume, is then fully
deployed by means of actuators in its operative configuration once in flight. A similar
deployable system could be eventually modified for extending the antennas used for
microwave instrumentations (e.g., [65,88]).

The DORA system has been realized as a prototype for the next generation of space
instruments for EO. It has, therefore, been designed to satisfy the requirements of a selection
of applications in the ecological and environmental fields, which would best take advantage
of deployable instrumentations. These applications will be presented and discussed in the
following Section 3, to highlight the efficiency of the deployable systems, and to discuss
more generally the efficiency of small space platforms for remote sensing acquisitions. The
heterogeneity of the topics and areas examined in these applications, which are used as
guidelines to define the instrument requirements, will ensure that the DORA prototype
has suitable performances not only for these specific study cases, but also for a broader
spectrum of future applications.

3. Study Cases

In this section, we present an overview of possible applications that would benefit from
remote sensing data, in particular in the new perspective provided by small satellites. The
applications discussed in this paper cover highly dynamic processes in the environments
ranging from mid-latitude to polar seas and atmospheres. See Table 2 and Table S1 in
the Supplementary Material for details about the small and large satellites, respectively,
mentioned in this section.

3.1. Application 1: Composition of the Atmosphere

The Earth’s atmosphere composition is primarily N2, O2, Ar, and H2O, plus trace gases
(in the order of ppm) (e.g., [89]). Despite their negligible amount, these trace molecules
represent a key factor in controlling the radiation budget of the Earth. Compounds such as
H2O, CO2, CH4, O3, N2O, SO2, and halocarbons are examples of greenhouse gases, which,
trapping the incident solar radiation, determine the degree of heating at the Earth surface,
and at the end influence the climate (e.g., [89,90]).

The effects of anthropogenic gases on the atmosphere can be evaluated by monitoring:
(i) the ozone loss in the lower stratosphere, (ii) the source of the polluting gases, and
(iii) how these gases are transported vertically and horizontally through the atmosphere [89].
For instance, the mapping of SO2, which can have either a natural (e.g., from volcanic
eruptions, [91]) or anthropogenic (e.g., air traffic and industrial processes, [92]) origin,
is important, as it contributes to aerosols formation, which cause variations in the total
radiative balance and in the air navigation visibility when injected in large quantities into
the atmosphere [93]. At a spatial resolution <1 km, it would be possible to monitor SO2 in
volcanic plumes and from air and maritime navigation, through their emission trails.

Spectrometers, operating from the near UV up to TIR, are used to study the atmo-
spheric composition, e.g., the main IR absorption lines are associated with vibro-rotational
transitions of trace gases [94], and concentration, by iterative inverse methods (c.f., [94–96]).
As reported in [97,98], differential absorption spectroscopy is commonly adopted to detect
and quantify the narrow absorption lines in the UV–VIS spectral range characteristics of a
specific trace gas. Micro- and nano-satellites have taken a leading role in the atmospheric
characterization (e.g., HARP [99], PARASOL [100], and PICASSO [101]), coming up be-
side and replacing the large satellites (e.g., satellites such as ESA Sentinel-5P [102,103],
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NASA/Aura [104], or programs such as EUMESAT MetOp [105,106], or fleets such as the
NOAA’s Joint Polar Satellite System (JPSS) [107,108]).

SO2 can be monitored by micro- and nano-satellites equipped with innovative interfer-
ometers, such as the Fabry–Pérot interferometer (FPI) [97,98]. FPI technologies have been
developed and applied, from UV to TIR, to micro-spectrometers placed in CubeSat-type
hyperspectral imagers [109,110]. An operational version is aboard a CubeSat 2U form factor
Nano satellite (a CubeSat multiple of the standard size 1U), which mounts a hyper-spectral
infrared camera (0.9–1.4 µm). The FPI interferometer can also be realized by means of the
Micro-electromechanical system (MEMS) technologies, which can determine the concentra-
tion of multiple gases at a nanometer resolution (e.g., [111–115]). To perform a global SO2
coverage, e.g., to monitor volcanic emissions, the revisiting time should be at least 24 h.
For regional/local acquisitions, e.g., to monitor aerial or naval routes, or industrial and
urban plumes, the revisiting time should be few hours, which is feasible only by means of a
constellation of satellites. The SNR for the FPI technique can be a factor of six to nine with
respect to what can be obtained with the differential optical absorption spectroscopy [97].

3.2. Application 2: Polynya Monitoring in Polar Areas

Polynyas are open water or very thin layers of sea ice (with a threshold of ice content
varying between 0.5 and 0.7, e.g., [116,117]), which interpose the continuous ice blanket of
the polar ice pack. They can be rectangular or oval shaped areas, reaching a size as large as
10 to 105 km2 (e.g., [118]). Polynyas are quasi-permanent and highly dynamic, evolving
through occasional openings and closings at the same location for up to several months,
and they can reform over many years [119–121]. They can be formed by the combined
influence of geological features, e.g., seamount, upwelling of warm water into the upper
ocean from the thermocline (induced by a large cyclonic ocean eddy and negative wind
stress curl), and large-scale anomalous atmospheric warming [122]. Polynyas, due to their
nature, play a key role in regulating heat, energy, mass, and momentum exchanges between
the ocean and the atmosphere, because they are openings in an otherwise solid ice pack,
which performs as a barrier to hinder heat flows and to prevent ocean evaporation [123].

The monitoring of polynya dynamics in the polar regions represents an important
science quest. Occurring in polar, mostly inaccessible areas, polynyas can benefit from
remote sensing observations. On one side, passive microwave radiometers, such as the
Advance Microwave Scanning Radiometer AMSR-E onboard the NASA/Aqua EOS satel-
lite, are one of the most useful instruments to cover large areas without being affected
by light conditions and cloud presence, but they suffer from a very coarse resolution
(6.5 to 25 km), which prevents disentangling sea ice and open water areas, as well as the
thin ice thicknesses [124]. On the other side, satellite thermal infrared imagery (TIR), such
as that acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instru-
ment on the Aqua EOS satellite, has better resolutions (down to 1 km) and wider swaths
than microwave radiometers, but it has the drawback effect of being sensitive to the cloud
coverage [125]. SAR and optical sensors represent an alternative for both a better spatial
resolution (down to 10–150 m) and for the possibility to be mounted in small platforms.
TecSAR and DubaiSat-2 are examples of small satellites equipped with an X-band SAR [126]
and an optical system in the VIS to NIR range [127], respectively. In addition, working
in the microwaves, SARs are independent from atmospheric perturbations. Because their
revisiting times (days to weeks) and swaths are unsuitable for the long-term continuous
monitoring of phenomena occurring in polynyas [128], only constellations of satellites
are adequate for monitoring polynya dynamics (e.g., Cappella X-SAR [57], Flock imaging
constellation [129], and RapidEye [130]).

Alternatively, the simultaneous use of complementary sensors (optical, thermal, and
radar) has been thus suggested as the optimal approach for the long-term monitoring of
polynyas, and/or the implementation of algorithms to strengthen the final output from the
available data [124,131,132]. As, for instance, a multi-band TIR sensor, with at least two bands
centered at about 11.0 µm and 12.0 µm, would be feasible to investigate polynyas [124,131].
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Temperatures measured at different TIR provide the ice surface temperature (IST), i.e., the
sea ice surface temperature, which is fundamental in monitoring the periods of ice blanket
opening and closing and its production curve in the polar regions [133,134]. To determine
IST value and polynya extent, a minimum revisiting time of 12 h, a swath of about 100 km,
a minimum spatial resolution of about 500 m at nadir, and a noise-equivalent temperature
difference (NE∆T) of 0.05 K, are required. This observation strategy would overcome the
current space and time resolutions of the existing satellite performances that are limiting the
monitoring of polynya.

Multispectral measurements, therefore, provide important characteristics of the polar
oceans, e.g., the position of the marginal ice zone, presence and dynamics of icebergs, and
eddies. Small satellites (eventually in a constellation configuration) represent the most con-
venient solution to study polynyas and improve the knowledge of their dynamics, allowing
for a continuous monitoring of specific polar ocean areas at a very high resolution [135].

3.3. Application 3: Coastal Area Monitoring

Coastal zones, i.e., sea areas within ~50 km from the mainland, are heavily affected by
anthropogenic activities (e.g., [136–138]). Their continuous observation is thus crucial to
formulate recovery plans, as well as the identification of new tools and methods to optimize
both monitoring and management. Remote sensing in the spectral range from VIS to MW
represents a key to monitoring the coastal zones [139]:

• VIS: 0.46 and 0.54 µm channels provide chlorophyll and other plankton pigment
contents; the 0.7 to 0.8 µm region detects the presence of sediments and coastal areas
pollution and/or erosion;

• IR: the ~1 to 5 µm range allows to clearly distinguish water from other surfaces;
• TIR: the 8 to 14 µm spectral range detects sea radiation emissions, allowing for the

determination of the sea surficial temperature;
• MW: this spectral range provides sea roughness, which allows to obtain information

on surface wind, and which affects emissivity, a quantity used to derive sea salinity
once the sea surface temperature and the observational conditions are known.

Coastal oceanography is traditionally focused on measuring several geophysical
variables, e.g., ocean color, surface temperature, salinity, sea surface height, and surface
wind field. Coastal oceanography would benefit from synoptic observational strategies
targeted at the ocean, both to monitor natural marine dynamics, and to track the evolution
of anthropogenic phenomena (e.g., pollutant dispersion), in order to address any potential
risk for the environment in a timely manner [140]. Combining different spectrum bands
allows to: (i) distinguish the original ocean color, by limiting any atmospheric interference;
and (ii) define the altimetry, by improving re-tracking techniques, taking into account
coastal waveform characteristics [141–143]. In the following, we separately present the
main sea variables.

3.3.1. Ocean Color

The ocean color (OC) is determined by the concentration of the phytoplankton, organic
materials, and sediments, as well as anthropogenic materials such as sewages and fertilizers,
which provide a nutrient base for organisms in the coastal ocean (e.g., [136,144–147]). It
is therefore a key variable to investigate the primary productivity in the upper layers of
the coastal zones, together with the phenomena such as the mesoscale eddies (circular
currents on the ocean spanning 10 to 100 km in diameter, which persist from a few days up
to months), fronts (boundaries between distinct water masses), upwellings (where deep
cold water rises to the surface), and internal waves (e.g., [148–152]).

To study the OC, two types of instruments are needed: (i) multispectral radiometers,
sensitive to a narrow, discrete wavelength band, ranging between 0.94 and 2.26 µm, and
(ii) imaging spectrometers, sampling across the spectrum with a defined spectral resolution.

Small satellites can also be a powerful option to monitor narrow regions at high spatial
resolutions, in various spectral ranges [135], e.g., coastal areas to track anthropogenic
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and pollutant compounds, on a daily basis and at a ground resolution of a few hundred
meters [153,154]. For instance, OC measurements are the main goal of CubeSats, such
as SeaHawk-1 (belonging to the SOCON constellation) [155] and ZACUBE-2 [156], with
ground resolutions better than about a hundred of meters.

3.3.2. Sea Surface Temperature

The sea surface temperature (SST) is a critical input to study the sea current systems,
eddies, jets, and any upwelling in coastal areas, if measured with a sensor accuracy of at
least 0.5 K, which is not yet reachable by small satellites (e.g., [157,158]). In addition to
being a tool for monitoring sea phenomena and bacteria activities, SST variation in space
and time is used for weather forecasting and for maritime services, as well as for studying
the sea–atmosphere interactions [158].

SST can be passively measured from the radiometric TIR or MW components of the
electromagnetic spectrum. Examples of radiometers operating in the TIR range are MODIS,
onboard NASA Aqua and Terra, and AVHRR, onboard the European MetOp and NOAA
Polar Orbiting Environmental Satellites (POES), which can provide a global coverage within
1–2 days at a spatial resolution down 1 km [159]. However, TIR acquisitions depend on
a clear sky without clouds or volcanic dust. Alternatively, for guaranteeing all-weather
continuous acquisitions, SST can be obtained from radiometer data taken at 4 to 12 GHz,
because it is proportional to the surface radiance in this frequency range [160]. However,
microwave emissions from the sea surface are weak and coarser in resolution (46 km), and
the first high-quality data were possible with the Microwave Imager onboard the Tropical
Rainfall Measuring Mission (TRMM), a large space mission [160,161].

3.3.3. Sea Surface Salinity

Sea surface salinity (SSS) represents the quantification of salts dissolved in seawa-
ter [162]. It is thus a key parameter to measure variations of the fresh water amount within
the ocean, as, for instance, a sudden entry of non-salty water through precipitation or
melted ice [163] can affect ecosystems. SSS is fundamental for tracking horizontal and verti-
cal water mass movements and/or mixing [163–165]. In particular, SSS, together with SST,
can be used to derive ocean density, and, therefore, salinity allows to estimate the long-term
variations of the water cycle, ocean–atmosphere exchanges, and the density-driven global
ocean circulation [163,165].

The first map of SSS on a global scale, at 40–150 km spatial resolution, was made
possible via remote sensing by means of the ESA Soil Moisture and Ocean Salinity (SMOS)
mission, launched in 2009, the NASA Aquarius mission, launched in 2011, and the NASA
Soil Moisture Active-Passive (SMAP) mission, launched in 2015 [164,166]. SSS is derived
from the polarized brightness temperature, which is measured by a radiometer at the
L-band, once the dielectric constant of sea water is known [167]. By combining the mea-
surements obtained by sensors onboard all these missions, it is possible to enhance by ~30%
the global salinity map [162].

3.3.4. Altimetry: Sea Surface Wind and Height

Altimetry has been used to retrieve surface topography (including sea level and wave
height), ocean currents, and bathymetry (submarine topography) (e.g., [168,169]). Addi-
tionally, it is one of the most reliable ways to observe mesoscale eddies, detected through
the small displacements of the sea surface elevation, and scalar wind speeds (e.g., [170]).
The most common instruments for altimetry are nadir pointing radar altimeters, sampling
along the ground track (e.g., [168,171]). The radar signal is assembled in a waveform of
20 Hz frequency (~300 m along track), where the peaked waveforms correspond to a low
sea state condition, whereas broad waveforms correspond to high sea state conditions.

The sea surface wind (SSW) field is a key parameter affecting oceanic and atmospheric
processes. Satellite-derived sea surface wind observations are currently routinely used in a
wide variety of oceanic, atmospheric, and climate applications. Within this context, real-
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aperture microwave active (i.e., scatterometers [172]) and passive (i.e., radiometers [173])
sensors are widely employed to provide sea surface wind observations to the oceanic and
atmospheric operational communities. Although not specifically designed to estimate sea
surface wind field, the SAR has been shown to result in reliable enough estimates of sea
surface wind field on a finer spatial resolution scale and, therefore, has potential for coastal
area applications [174,175].

Sea surface height (SSH) represents the difference of the ocean surface from a constant
geopotential surface of reference (level of no motion). SSH is, therefore, key to measuring
the thermal expansion and contraction occurring through the different seasons, or to
providing information on tides and wind, e.g., [176]. The wave height is estimated from
the extent of the leading edge, and typically averaged every 7 km along the tracks (the
so-called 1-Hz sampling rate) (e.g., [177,178]). Initially designed for observations on the
high seas, such as the sea level change, ocean circulation, and ocean tides [179], the satellite
radar has recently shown its relevance for observations of the coastal regions too [180,181].

Large satellites, such as TOPEX/Poseidon and Sentinel-6, can provide altimetric
measurements of the global ocean, but they have been also cooperating with the small
satellite series Jason (Jason-1, 2, and 3), equipped with a dual frequencies (C and Ku-band)
radar altimeter [182,183], for monitoring the global ocean surface topography and thus
measuring variations in the height above the sea surface [184].

However, altimeter-derived SSH measurements can come with large errors due to the
rapid variation of the coastal topographic surfaces, leading to complex waveforms that
are not accurately analyzed by classical re-tracking algorithms [185]. Mesoscale processes
instead require altimetric measurements with high spatial and temporal resolutions. At the
same time, measuring satellite altitude requires the ability to accurately and independently
determine a satellite’s orbital trajectory, e.g., its exact longitude, latitude, and altitude. In
more recent years, the Global Navigation Satellite System reflectometry (GNSS-R) technique
was introduced to measure ocean parameters such as SSW and SSH [186]. In this case,
altimetry calculation relies on the position and timing information obtained from several
simultaneous measurements of the entire GPS constellation, distributed over an area of
thousands of km across-track [187,188].

3.4. Application 4: Posidonia Oceanica Monitoring

Posidonia oceanica (L.) Delile, an endemic seagrass of the Mediterranean Sea, forms
extensive meadows, which are among the most efficient ecosystems on the planet in
terms of the number of services per area [189–194]. These include the stabilization of the
sediment and the mitigation of hydrodynamic stress on the coastline, by protecting it from
erosive processes (e.g., [195–199]). At the same time, P. oceanica meadows are essential
for preserving coastal biodiversity and natural resources, and are serviceable for nursery
grounds and fish habitats [193,200,201]. Additionally, they represent one of the largest
carbon supplies in the Mediterranean Sea [201,202] and other shallow coastal areas across
the world [203].

P. oceanica meadows can extend from the surface down to 35–40 m deep, depending
mostly upon water transparency, and they colonize multiple substrates (e.g., [195,196,204]).
The variation of the geomorphological, chemical, and physical characteristics that follow
one another along the environmental gradients (e.g., bathymetric variations) determine very
heterogeneous grasslands in terms of density, biomass, and associated fauna (e.g., [204]).
In recent decades, P. oceanica underwent a gradual areal regression, by as much as ~34%
in the Mediterranean basin, and 25% in the Italian seas, when comparing historical and
the early 2000s maps (e.g., [205]). This regression was caused by anthropogenic processes
including fish farm activities, such as trawling and anchoring, gas pipeline refilling, and
polluting agents in the coastal areas [198,205–208]. An updated database is thus crucial to
study the evolution of the ecosystems formed by the meadows [209], and to safeguard and
manage such habitats and biodiversity [189,210].
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Remote sensing would be very effective in obtaining a spatial and temporal survey of
the meadows, through the generation of a broad and synoptic view of the coastal system,
and a complete study of biotic and abiotic variables [200,211–214]. Aquatic ecosystems
are indeed characterized by strong optical signals deriving from the distinctive photo-
synthetic pigments of the various plant groups, from phytoplankton to submerged or
emerged macroalgae, from marine phanerogams to coastal-terrestrial plants [215]. How-
ever, a good optical depth of water is a necessary condition for mapping the meadows
on the sea floor, urging the emergency of contrasting coastal pollution and anthropogenic
activities [200]. The evolution of the P. oceanica and their erosion can be then modelled
from the optical images (once they have been geometrically and radiometrically corrected,
e.g., [213]) by means of machine learning techniques (e.g., [216–218]). Additionally, biotic
properties of meadows (primary production and density) and abiotic factors (turbidity,
bathymetry, and the presence of suspended solids) can be identified in the processed images
as geomorphological characterization of the coastal area (e.g., [194]).

The predicted complexity and diversity of the P. oceanica environment requires spatial
resolutions down a few meters (e.g., [219]). For a detailed P. oceanica mapping, remote sens-
ing images at a spatial resolution of about 1 m at nadir in the panchromatic (0.45–0.8 µm),
and 2 m at nadir in the multispectral filter band are demanded for an accurate mapping of
the meadows. At the same time, a high spectral resolution is required for a finer ocean color
acquisition and the correct identification and mapping of the grassland. The multispectral
band should include eight filters: (i) ‘Blue’ (0.45–0.51 µm) and (ii) ‘Green’ (0.51–0.58 µm),
which are reflected by the water column and leaves of P. oceanica, with peak reflectivity of
the leaves at 0.53 µm; (iii) ‘Red’ (0.63–0.69 µm), which is strongly absorbed by the water
column; (iv) ‘Near InfraRed 1’ (0.77–0.895 µm), the wavelengths of which have the lowest
water absorption, while being strongly reflected by the meadows’ leaves; (v) ‘Coastal
Blue’ (0.4–0.45 µm), whose penetrating power into the water and its additional contribu-
tion for the atmospheric correction would allow for the identification of coastlines and
the analysis of bathymetry; (vi) ‘Yellow’ (0.585–0.625 µm), which better renders the nat-
ural colors of images, and thus allows to optimize the classification processes; (vii) ‘Red
Edge’ (0.705–0.745 µm), which is fundamental for the in-depth analysis of the health of the
vegetation covering the wavelength range most affected by the chlorophyll content; and
(viii) ‘Near InfraRed 2’ (0.86–1.04 µm), which is poorly affected by atmospheric conditions,
and therefore extremely useful in supporting the analysis of vegetation, as it allows to
increase the discriminatory capacity with other habitats.

The latest generation of sensors onboard large (e.g., QuickBird 2 [220,221] and World-
View [221,222]) and medium (e.g., Ikonos [223] and Ikonos-2 [211,220]) satellites have spec-
tral and spatial resolution sufficiently high to obtain a very detailed map of the P. oceanica
(down to the meter-size resolution, e.g., [201]). However, their time resolution is not suffi-
cient for mapping the spatio-temporal changes of the meadows or to systematically study
the coastal and estuarine bio-physical dynamics (e.g., [201]). A short revisiting time (daily
to weekly order) does not guarantee the observability of the study area, caused by cloud
coverage and/or water turbidity after rainfalls. Therefore, the shorter the revisiting time,
the better and more detailed the mapping of P. Oceanica, to detect possible dangerous
regressions. The constellation of SmallSats can thus be the best solution to satisfy such
multi-temporality characteristics, although current small satellites, such as the RapidEye
constellation [201,222,224,225], still might not reach the satisfactory spatial resolutions,
and new design should be considered for the next SmallSat generation (e.g., deployable
optical systems).

3.5. Application 5: Precipitations in the Mediterranean Basin

The Mediterranean basin was defined as a “hot-spot” by [226], being one of the most
responsive regions to climate changes. Different global and local scale studies agree on
both a rainfall decrease and a growing trend of the minimum and maximum temperatures
(e.g., [227–229]). Models also foresee long dry periods, interrupted by extreme intense
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summer precipitations, increasing flooding risks (e.g., [230]). Therefore, ameliorating the
quality and quantity of the monitoring network represents an asset in order to reduce the
effects, and the damages, of extreme weather events.

Precipitation is one of the key measurements, but it is also extremely hard to access the
space and time scales of interest and/or because of the complexity or inaccessibility of the
studied area (e.g., [231]). Although ground-based weather radars allow to monitor precipi-
tation variability, they are not uniformly and/or sufficiently densely distributed, and gaps
for monitoring cloud dynamics on large vertical extension can be filled only by remote sens-
ing observations (e.g., [232]). The Italian Constellation of small satellites for Mediterranean
basin Observation (COSMO-SkyMed), First and Second Generations, are medium-large
satellites equipped with SAR instrumentations for EO-focused disaster monitoring, includ-
ing the one caused by flooding [233,234]. Precipitation measurements in the Mediterranean
region are currently limited to just a few missions [235], such as the Global Precipitation
Measurement mission (GPM) and TRMM, both being large satellites (e.g., [236–239]). In
the last few years, the advacement in the miniaturization technology for space instruments
has made small satellites an alternative to the larger ones [240]. In particular, CubeSats,
such as the NASA Earth Science Technology Office RainCube, TEMPEST-D, and TROPICS,
have been developed with specific meteorological goals [51,65,241,242]. Such missions
provided useful information on storm structure and distribution, but their high-cost in-
frastructures are not counterbalanced by a satisfactory scientific return in terms of data
temporal resolution for a continuous and real-time characterization of the fast-changing
vertical structure of convective cells (e.g., [243–246]). Constellations of small satellites
(e.g., NASA CYGNSS) could be a cost-effective solution that can provides meteorologica
data with high temporal sampling [247].

Remote sensing payloads suitable to measure the precipitation distribution host a Ka
band radar (e.g., [248]). The monitoring of the rainfall in the Mediterranean area can be
ensured by a Ka (35.75 GHz) weather radar, with a horizontal resolution of 5 km (or better),
a time resolution of 30 min (or better), a vertical resolution of 250 m, and a sensitivity of
20 dBZ. Such requirements are consistent with time and spatial scales of thunderstorm
cloud formation (from early to decaying stage) (e.g., [244]). It is necessary to rely on a swath
of 500 km and a maximum speed at ground of 5 km/s on a low Earth orbit. Thus, a dense
constellation of mini-satellites providing high revisiting times in the entire Mediterranean
area could be an effective and less expensive alternative to the current missions.

A typical output of this application consists of reflectivity measurements collected at
different altitudes within the tropospheric columns, called the Vertical Profile of Reflectivity
(VPR) (e.g., [249]). A quality control chain is needed to remove random and systematic
errors, including the correction of the vertical reflectivity profiles (i.e., removal of bright
band effects), and the mitigation of attenuation along the path (e.g., [250–252]). This quality
control procedure is propaedeutic for a proper validation of the measures, performed
through reflectivity data collected by traditional ground-based weather radar, and for a
real time application inherent to the monitoring of precipitation events.

3.6. Application 6: Earth Observation for Vessel Detection

Marine vessels detection is currently a very hot topic because it represents a key
asset in different domains, e.g., maritime traffic monitoring, surveillance, and smuggling
(e.g., [253]). Those vessels that do not voluntarily report any information about their
identity, vessel type, route, etc. can be detected and tracked only under a non-cooperative
system. Radars or visual surveillance standard methods are usually adopted for vessel non-
cooperative detection. A non-cooperative system, which calls for all-day and all-weather
capabilities, large area coverage, dense revisiting times, and fine spatial resolution details,
is thus a key asset to provide added-value products for the end-users (e.g., policymakers,
local authorities, etc.) [254].

Vessels SAR observation is a well-established and mature application, and it is unani-
mously recognized as one of the most suitable remote sensing tools because it can meet
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most of the above-mentioned requirements, in addition to operating in all weather and
lighting conditions (e.g., [255–258]). Indeed, most of these systems work in the X-band of
SAR payload, with resolutions of the order of the meters, such as for instance the TerraSAR-
X satellite, and its twin TANDEM-X [259,260]. Very high resolution (VHR) instruments
are able to provide extremely detailed images of the observed scenes (e.g., [261]). The
limitations of SAR satellites, such as the long revisiting time, are overcome by using a
constellation of micro and nano satellites, which are able to provide VHR images with
revisiting times of the order of 2 to 3 h, and at lower costs (e.g., [84,262]), such as Capella
X-SAR and ICEYE constellations [57].

In SAR images, the vessel signature appears as a spot brighter than the background
due to the vessel scattering, i.e., direct reflection from areas perpendicular to the radar
beam, corner reflections, and multiple reflections from the vessel and sea surface [255]. In
addition, when imaged by fine spatial-resolution SARs and under specific weather-marine
conditions, waves associated with moving vessels can be also observed in the data.

However, radar images suffer from large intrinsic noise (speckle), in addition to the
azimuth displacements (“train-off-the-track effect”), which are caused by the Doppler
effect, and the azimuth ambiguity patterns (“ghost”), which are weaker, repetitive artefacts
appearing in coastal areas, caused by the presence of brighter objects on the mainland
(e.g., [263]). False positive detections can occur in non-homogeneous areas of the images
due to changes in ocean backscattering or to oceanographic phenomena, e.g., atmospheric
fronts, internal waves, current boundaries, breaking waves, outlying rocks, shoal sea
currents, and coastal effects, while high wind and rough sea states can hamper the correct
identification of small vessels [255,264].

The comparison of the pre- and post-event images collected by the micro-satellites
can provide an efficient method to detect map changes, robust both to speckle phenomena
and co-registration problems (e.g., [265]). In order to increase the accuracy of vessel
detection, X-band SAR data are processed through four fundamental stages: land masking,
pre-processing, pre-screening, and discrimination [255,266]. Such processing allows the
presence of a non-negligible coherent component in the backscattered sea surface signal to
be highlighted by evaluating the corresponding Rice Factor (RF) image of the area under
study [267]. The RF represents the coherent-to-incoherent received power ratio of the
backscattered signal, and therefore the pre-processing stage consists in evaluating the RF of
the calibrated SAR image. The pre-screening stage is based on a vessel search by applying
the “bright anomalies” method on the RF images [255,268]. Because it was proven that
the RF image follows a log-normal distribution, a threshold can be straightforwardly set
according to a constant false alarm rate (CFAR) approach to remove false positives [266].

A similar approach is also used for change detection (CD) in urban areas, which adopts
a convolutional neural network (CNN) algorithm to process the SAR-generated dataset
and retrieve changes of urban structures and buildings (e.g., [269]).

3.7. Application 7: Sea State from SAR and Instrumentation Located Onboard the Vessel

As shown in the previous chapter Section 3.6, remote sensing observations repre-
sent a powerful tool for providing the kinematic properties of vessels. In turn, the ship
motion analysis allows for the real-time assessment of the sea state parameters, which
can contribute to minimizing the navigation risks by supporting the onboard decision
to handle potentially dangerous phenomena in following and quartering seas, such as
surf-riding, broaching, and parametric rolling, and to reduce the fuel costs (e.g., [270,271]).
Sea state condition monitoring improves the statistics of long-term wave data, providing
additional information, especially in open ocean waters, where the weather buoys are very
scattered [272]. In addition, it allows to optimize the ship route by balancing variations
of the weather conditions and navigational constraints [273]. Additional benefits arise
from the assessment of the onboard comfort level, mainly related to the motion sickness
incidence (MSI) parameter, which needs to be continuously monitored to increase the
seakeeping performances of passenger ships [270,274].
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The characteristic parameters of the sea waves can be efficiently determined from SAR
imaging systems, because they are operative in all the light and weather conditions and have a
wide swath. The radar system needs an X- or C-band, with a resolution better than a few tens
of meters. So far, several large (e.g., the pioneer USA SeaSat [275], ESA Sentinel-1 [276], and
DLR TerraSAR-X [259]) and medium-large (e.g., Italian COSMO-SkyMed [233,234]) satellites
have been employed to accurately estimate the wave parameters, such as height, average
length, and direction, using SAR system in various bands, e.g., C-, X-, and L-bands [277,278].
However, despite their lower swath and space resolution, small platforms are taking hold
(e.g., UK NovaSAR-1 and Israeli TecSAR [57]), thanks to the opportunity of multiple launches
and the use of non-sun-synchronous orbits [57].

The characteristic parameters of the sea waves provided by the SAR system mounted
on small platforms can be used as references to verify the performance of a parametric wave
spectrum resembling procedure that can be applied to detect the sea state parameters based
on the measurement and analysis of the heave and pitch motions of a vessel in a seaway,
recorded by positioning sensors located onboard the ship [279,280]. In detail, the heave
and pitch motions in a seaway can be estimated starting from the survey of the amplitudes
of the ship vertical motions in a point of known coordinates, located on the centerline
plane, using the GNSS (Global Navigation Satellite System), and pitch acceleration, using a
gyroscope [281,282]. The pitch acceleration allows to determine the pitch motion amplitude
of the ship (by double integration in the time domain), and, from the vertical translational
motion (composed by heave and pitch motions), it is possible to compute the heave motion
amplitude of the center of mass. These data allow to determine the response spectra related
to the heave and pitch motions in the encounter wave frequency domain [280,281,283]. The
response spectra as a function of the absolute frequency can be evaluated on the basis of
two additional input data, namely the vessel speed, which is measured by the GNSS, and
the encounter angle between the true course of the ship (determined by GNSS system)
and the prevailing direction of the sea, which is derived from images obtained by the SAR
systems. Given both the response spectra and the ship complex transfer functions, it is
possible to determine the sea spectrum by generating the motions [282]. Finally, from
the spectral distribution of the sea in the absolute frequency domain, the characteristic
parameters are obtained, namely, significant wave height, wave peak period, and spectrum
peak enhancement factor.

The idea is to use the radar imaging systems mounted on the micro-satellites constella-
tion, which are to be integrated with the GNSS and the instrumentation on board, in order
to provide an integrated ship monitoring system, which can be considered as a mobile
laboratory capable of carrying out in situ measurements for the estimation of ship motions
and, subsequently, to derive the characteristics of the incident wave (e.g., [270,279,281,282]).

4. Data Fusion Techniques Applied to Remote Sensing Data

The heterogeneity of the study cases presented in the previous chapter highlighted the
advantage of using remote sensing for investigating various environments and aspects of
the Earth surface by means of a number of different sensors, each one gathering different
intervals of the electromagnetic solar flux reflected back by the surface, and varying in terms
of spatial and spectral resolutions [284,285]. Optical sensors in the VIS to NIR spectral range
may better serve for mapping horizontal patterns, and SAR systems allow to characterize
the targets in all weather conditions, whereas LiDAR technology provides for accurate
vertical profile measurements (e.g., [284]). At the same time, the revisiting capability of
the satellites allowed to include the temporal information to a given 2D scene [286]. This
additional information provided by space-born sensors enables to monitor the evolution
of a certain process or of a natural disaster, and/or the variation over time of a certain
area [287]. One explicative example is given by the case of P. Oceanica (chapter §3.4), whose
mapping at various times allows to appraise the eventual active degradation processes,
and to establish mitigation plans.
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The growth in the number and variety of both space platforms and remote sensing
sensors has opened the path to new techniques of data analysis, which can provide more
reliable, coherent, and comprehensive information about the observed scene [286,288]. The
data fusion approach thus relies on coupling observations acquired by different sources,
whose joint analysis can favor a better interpretation of a certain process or of the observed
scene, because the resulting fused data encompass more detailed information than each
single acquisition, merging together all the meaningful information acquired by the dif-
ferent sensors (e.g., [284,289–292]). Data fusion techniques enable for the monitoring of
fast-evolving environmental processes, e.g., highly dynamic natural processes such as
polynyas [132], climate changes [293], desertification processes [294], deforestation [295],
coastal erosion [296], and the phases of urban development [297], as well as object recogni-
tion and tracking or classification, and change detection [288].

Data fusion has been firstly adopted to blend the high spatial resolution of PAN with
the high spectral resolution of MS acquisitions [287]. The accessibility to both the panchro-
matic and usually four multispectral bands will enable the application of pan-sharpening
techniques, and the consequent availability of multispectral data at the same geometric
resolution as the panchromatic. Indeed, due to their constructional constraints, MS sensors
have a very narrow spectral bandwidth, which in turn requires a larger instantaneous
field of view (IFOV), and are thus characterized by a lower spatial resolution than PAN
sensors [284,285]. On the contrary, the smaller IFOV of PAN sensors allows to achieve
better spatial resolutions, but their broader bandwidths do not allow to reach high spectral
resolutions. Such a distinctiveness in the bandwidth properties of PAN and MS images
means that a single sensor is unable to simultaneously have both high spatial and spectral
resolution [284,292]. Nevertheless, both PAN and MS sensors simultaneously acquire the
same ground scene, with the same acquisition mode too, facilitating the synthesis of the
PAN high spatial resolution with the MS high spectral resolution properties [284]. This
is the so-called pan-sharpening technique, which stands for its key role for producing
high-resolution multispectral images (e.g., [284,292,298–300]), opening to the possibility of
mapping the territory at the highest resolution and of having color ortho-images compa-
rable to those obtainable from aircrafts, which becomes particularly useful for land cover
classification, visual interpretation, and target recognition [284,286].

The strength of the data fusion approach can be appraised when considering dif-
ferent types of instruments. For instance, the fusion of multispectral satellite imagery
and LiDAR data allows for an accurate object recognition and classification, when the
spectral signature is supported by the altimetric variations provided by the digital eleva-
tion model [287,301]. Another useful multi-instrument data combination relies on fusing
optical images with SAR data, which, being based on radar backscatter measurements,
extend the information on the observed scene acquired in the VIS to NIR spectral bands,
especially when the cloud coverage causes gaps in the time series of any continuous
monitoring [284,286,287].

On the other hand, another convenient data fusion technique is related to the revisit
capability characterizing spaceborne instruments, which can acquire the same ground area
with a frequency of up to a daily basis (e.g., small satellites in constellation configuration,
cf. Table 2) [286,302]. The spatio-temporal fusion allows to fuse low spatial/high temporal
resolution data with high spatial/low temporal resolution data, providing multitemporal high
spatial-resolution data. This data fusion, which benefits from the data acquired in the same
acquisition mode reducing any co-registration issues, allows for applying change detection
techniques to monitor highly dynamic processes, including hazard handling [284,286,287,292].
Similarly, the spectral and/or back-scattering data can also be integrated with the tempo-
ral data [286].

The fusion of data acquired at different times from the same sensor or different
sensors, such as VIS–NIR optical, SAR, and LiDAR instruments, enables the creation of a
comprehensive 4D representation of the observed ground scene [284,286,302]. The initial
set of data used for fusion and/or the degree of information to be extracted from the final
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output determine the data fusion level: (i) raw data level (e.g., pan-sharpening), where the
input data from the various sources are integrated into one single, higher spatial resolution
data; (ii) feature level (e.g., classification and change detection), where surface features
can be extracted and re-arranged; and (iii) decision level (e.g., fusion of data acquired by
multiple sensors—optical, SAR, and LiDAR), where the results from multiple algorithms
are combined and fused into one single, fused decision [284,287,288]. Such an increase
in the degree of data fusion level brings the current trend out, where this approach has
become a fundamental tool for data analysis, partly due to the increase in the number of
the launched satellites (eventually in constellation configuration), to the improvement of
the spatial and spectral resolutions of space sensors, and to the opportunity of validating
and integrating the remote sensing data with ground data [284].

In this framework, the DORA project can greatly benefit from the data fusion tech-
niques outlined above. On one hand, the current telescope prototype under development
is equipped with an optical sensor operating in the VIS to TIR spectral bands, for which
the various study cases requested a ~300–400 nm panchromatic filter and several ~50 nm
multispectral filters. On the other hand, a similar instrument equipped instead with an
SAR antenna is under study, as well as the possibility of having a constellation of small
platforms flying deployable optics. At the present state of activities, with only the optical
sensor under development, we will consider here only the pan-sharpening technique for
the data fusion application.

So far, large satellites, such as the WorldView, have optical sensors with very high
resolutions (of the order of a meter or less) and multiple spectral bands, which allow
for the pan-sharpening technique. However, since its initial conceptualization, data
fusion has become an essential tool to process data acquired by small satellites, which
can (i) guarantee a great ground coverage by means of constellations, and (ii) ensure a
wider utilization of the final data products, because they are cheaper. An example can be
provided by the SkySat constellation (in the case of SkySat 16 to 21, the resolutions of the
panchromatic and the spectral bands are 0.57 m and 0.75 m, respectively). See Table 2 for
more examples.

Here, we present the results of pan-sharpening applied to panchromatic and multi-
spectral images taken by Pléiades HR-1B, a large satellite that acquired images at the spatial
resolutions of 0.5 m and 2 m for the panchromatic and multispectral filters, respectively,
i.e., similar to those achievable with small satellites. Figure 1, showing the RGB compo-
sition of Lesbos Island (Greece), is taken as a sample image, where four pan-sharpening
techniques are tested: multiplicative, simple mean, intensity hue saturation (IHS), and
Brovey transformation. Figure 2a–d show the same scene of Figure 1 in RGB, each one
after the application of one of the pan-sharpening techniques listed above. Because the
best performing method cannot be fixed in an absolute way, but depends on the charac-
teristics of the study area, several methods must be compared each time to select the one
which provides suitable results for a defined purpose, by means of visual, spatial, and
spectral analysis [303,304].
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5. Radiometric Model as Tool for DORA Feasibility Study

In this paper, we have presented a selection of study cases that are not exhaustive of all
the possible marine, atmospheric, and oceanographic research topics, but they have been
selected for being quite wide-ranging to carry out the feasibility study of the DORA project.
In Table 3, we summarize the state-of-the-art of the presented study cases, which will
highlight how new space missions, such as the one studied within the DORA project, can
be of great benefit for their investigation and progress. Indeed, current remote sensing data
are only partially available because of the high costs of the large satellite data acquisition
and/or the still limited use of small satellites.

Table 3. Summary of the study cases presented in Section 3. The forth column reports the current
available data to study the specific research case, whereas the last one shows what it is still missing
for a complete understanding of the related topics.

ID Scientific Area Goals State-of-the-Art What We Need

A1
Composition of the

atmosphere
(SO2)

Continuous monitoring of
traces gases, e.g., SO2, from

natural (volcanic) and
anthropogenic (traffic,

industry) sources

Large satellites (e.g., ESA
Sentinel, NOAA/NASA

POESS, or EUMESAT
MetOp programs) and
recently small satellites
(e.g., PARASOL, HARP,

and MIOSat) were
inserted into polar and
geostationary orbits to

monitor the atmosphere

• Having the payload on a con-
stellation of small satellites
allows for a short revisiting
time, critical to study real-time
evolution of natural and an-
thropogenic events

• MEMS technology can be
used on integrated chips,
avoiding complex and heavy
mobile optics

A2 Polynyas monitoring
in polar areas

High resolution continuous
monitoring of polynyas
dynamics to study the

evolution of the seasonal
ice production

MODIS onboard Aqua
EOS has a short revisiting

time, but a low spatial
resolution (1 km)

A short revisiting time provided by
a constellation is associated with

higher resolution to investigate the
small-scale variability that

characterizes the ice-water border

A3 Coastal area
monitoring

Ocean color, sea surface
temperature monitoring, and

the sea state and altimetry

Available data are not at
resolutions of space and
time needed to have a

comprehensive
monitoring of the

dynamics and variability
of coastal

natural phenomena

Monitor narrower regions,
allowing the acquisition of data at

higher spatial resolution (few
hundred meters), in various

spectral ranges, on a daily basis,
allowing for instance to track the

evolution of pollutant spillage

A4 P. oceanica
monitoring

Before a gradual regression
over the whole

Mediterranean basin, an
update of the dynamics and

extension/distribution
variation is needed

Instruments onboard
large or medium sized

satellites (e.g., QuickBird,
WorldView, and Ikonos-2)

have high spectral and
spatial resolution for

mapping the meadows,
but long revisiting times

• Remote sensing images at spa-
tial resolution of 1 m (PAN)
and 2 m (MS), with a re-
visiting time of 5 days (on
the nadir) and 7–8 days (off-
nadir): (i) systematic monitor-
ing of meadows, (ii) study of
the coastal and estuarine bio-
physical dynamics

• Marine Protected Areas effec-
tiveness

A5 Precipitations in the
Mediterranean basin

The Mediterranean basin is a
hot-spot: measuring vertical
precipitation profiles in this

area can be of essential
relevance for capturing the
entire development process

of a thunderstorm clouds and,
therefore, to reduce

their impacts

In many regions, such as
the Mediterranean basin,
precipitation surveillance

networks are still
incomplete and inadequate:

available data consist of
rain-gauges punctual

measurements, or
ground-based weather

radar, and very few
satellite missions

(e.g., TRMM)

Data with spatial and temporal
resolutions good enough for a

continuous and real-time
characterization of fast-changing
vertical structure of convective
cells originated during extreme

rainfall in the
Mediterranean region
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Table 3. Cont.

ID Scientific Area Goals State-of-the-Art What We Need

A6
Sea state from the

vessel motions
analysis

• Continuous monitoring
of sea state conditions
to improve the statis-
tics of long-term wave
data and optimize the
route by balancing vari-
ations of the weather
conditions and naviga-
tional constraints

• Develop an integrated
ship monitoring system,
based on the integration
of satellite positioning
and radar imaging meth-
ods for determining
the sea spectrum start-
ing from the survey and
analysis of vessel motions

SAR imaging (e.g.,
Sentinel-1, TerraSAR-X) to

accurately estimate the
wave parameters such as

height, average length,
and direction

• Radar imaging
• GNSS and onboard instrumen-

tation to determine the sea
states from the ship movements

• Daily/hourly revisiting time

A7 EO for vessel
detection

All-day and all-weather
capabilities, large area

coverage, dense revisit time,
fine spatial resolution details

are key assets to generate
added-value products to be

delivered to end-users
(e.g., policymakers,

local authorities)

SAR observation of
vessels is a

well-established and
mature application

The possibility of having a
constellation of platforms with a
very short revisiting time (2–3 h)

VHR images at lower costs

Generally, for all the cases considered here, the remote sensing system should include
instrumentation operating in the spectral range from VIS to NIR and in MW range, and on a
global coverage, in order to accurately investigate and monitor the terrestrial environment.
Such a system might be launched on a small satellite (mass ≤ 100 kg), operating on a
circular polar orbit, with an altitude of ~400 to ~800 km (LEO), resulting in an orbital speed
of ~7.5 km/s, which corresponds to a 6.91 km/s ground speed. The orbit should be also
heliosynchronous, with an orbital period of about 100 min, i.e., about 15 orbits in one day,
and equatorial passes at ~10:00 ÷ 14:00 local time.

We performed a feasibility study only of those applications that demanded a sensor in
the VIS to IR spectral range. We carried out a radiometric analysis on the system, which
allowed to quantify the radiation flux gathered by the optical system, at varying observing
conditions and needed resolutions, and the signal-to-noise ratio (SNR). The SNR is then
compared to the specific values given by each application to determine whether or not
DORA can reach the requested requirements. In Table 4, the columns 2 to 5 and 7 summarize
the requirements, from each of the applications listed in Section 3, to accomplish their
specific goals. We also included for completeness the MW-related applications, listing all
their requirements, and for a couple of them we assessed their feasibility.

To evaluate the characteristics and performances of the optical instrument, a radio-
metric model has been developed. The core of such a model represents the response of
the instrument, by correctly assessing the spectral response of all its constituting optical
elements [305]. On the other hand, the final signal gathered by the detector also depends
on the observed sources, which varied from one application to another, and the targets
of which have been thus used to compute the output signal and related SNR. Due to the
lack of a physical model of the instrument we are considering, in order to produce reliable
and meaningful results, the spectral properties of the instrument were assumed based on
previous similar projects or instruments in operation [305,306].
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Table 4. Measurement requirements of the case studies presented in Section 3.

0 1 2 3 4 5 6 7 8 9

ID Scientific Area Albedo Measure
Kind

Spectral Range
(µm When Not

Explicitly
Written)

Minimum
Ground

Resolution
(m/pix)

Maximum
Integra-

tion Time
(ms)

Requested
SNR

Model
SNR a

Optimal
Ground

Resolution
(m/pix) b

A1
Composition of the

atmosphere:
SO2 and NO2

0.43
spectral

measures in
UV–VIS–IR

0.308 (SO2)
100 10.13 50–100

47 200

0.434 (NO2) >few
hundreds 20

A2
Polynyas

monitoring in
polar areas

0.75
2 spectral

bands
in SWIR

1.075–1.125
<10–150 * 50.65 100

>few
hundreds

5

1.175–1.225 50

A3

Coastal area
monitoring:
ocean color

0.10

12 spectral
bands in
VIS–NIR

(0.4–1.0 µm)

0.400–0.450

30–100 * 3.04 >few
hundreds

>few
hundreds

30 **

0.450–0.500
0.500–0.550
0.550–0.600
0.600–0.650

25

0.650–0.700
0.700–0.750
0.750–0.800
0.800–0.850
0.850–0.900
0.900–0.950
0.950–1.000

15

0.10

12 spectral
bands in

SWIR
(0.9–2.5 µm)

1.000–1.125

30–100 ** 3.04 >100–200

>few
hundreds 10

1.125–1.250
1.250–1.375
1.375–1.500
1.500–1.625
1.625–1.750
1.750–1.875
1.875–2.000

~35 ÷ 60 60

2.000–2.125
2.125–2.250
2.250–2.375
2.375–2.500

~30 ÷ 35 80

Coastal area
monitoring:

ocean altimetry
- radiometer Ku-band

C-band 50–100 ** - <20 - -

A4 P. oceanica
monitoring 0.1

1 panchro-
matic
filter

0.450–0.800 1 0.10 100 22 3

8 spectral
bands

0.400–0.450
0.450–0.510
0.510–0.580
0.585–0.625
0.630–0.690
0.705–0.745
0.770–0.895
0.860–1.040

2 0.20 100 ~20 ÷ 40 6

A5
Precipitations in

the Mediterranean
basin

- Punctual Ka-band (35.75
GHz)

Hor. Res.:
<5000

Vert. Res.:
<250

- 20 dBZ -

A6 c
Sea state from the

vessel motions
analysis

-
Single-pol

either VV or
HH

X- or C-band <10
≈0.5 s

(standard
for SAR

Better
than −20

dB
- 5

A7 EO for vessel
detection -

Single-pol
(HH)/dual-
pol (HH +

HV)−
X- or C-band <10

≈0.5 s
(standard
for SAR

−20 dB - <5

a The “model” SNR was derived considering the minimum ground resolution requested by the specific application.
b An exploratory study has been carried out to evaluate the optimal ground resolution to satisfy the condition of
having a “Model” SNR higher than the requested value. c Most of the operational satellite SARs are designed with
a specific “wave mode (WM)” that, for instance, in the case of the Copernicus Sentinel-1 mission, collects 20 km
by 20 km images at 5 m by 5 m spatial resolution every 100 km along the orbit. * A wider range is considered
necessary to be further tested. ** Spatial resolution effectively requested by the specific application.
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The radiometric model is developed from the solar radiation flux at the terrestrial
upper atmosphere, which was shaped as the Plank function, assuming the sun as a black
body at a temperature of 5800 K (BB model), and decreased in intensity to consider the
radiation travel to the Earth’s orbit. The characteristics of the telescope and platform
were assumed on the basis of the most recent optical design. The deployable telescope is
assumed with an aperture of 300 m, with an obstruction of 60 mm due to the presence of
a secondary mirror. This is coupled with panchromatic and multispectral filters, ranging
from about 0.3 to 2.5 µm, with a bandwidth from about 0.05 to 0.2 µm, depending on
the considered application. In order to derive the final flux, we considered the optical
efficiency (varying between 0.65 and 0.85 in the 350 to 1100 nm wavelength range, and
0.001 otherwise) and the detector quantum efficiency (set to 0.6). The reflected solar flux
was obtained by assuming the albedo (which was different for each application, cf. Table 4),
whereas no corrective factor was included to account for the terrestrial atmosphere effects,
assuming to avoid the stronger absorption bands. The total radiation was derived using the
maximum integration time, set to 70% of the dwell time. The SNR was estimated assuming
as the main error source the shot noise, and was therefore computed as a square root of
the signal.

In Table 4, column 8, the results of the radiometric analysis are provided. We draw
attention to the fact that these SNR values are functions of the maximum integration time,
which is in turn computed from the ground resolutions (depending on the requirements
requested by each applications), and the ground track speed (depending on the spacecraft
speed and the altitude). We found that the DORA system is capable of resolving the
majority of the targets and features described by the various applications. One of the most
problematic observations is given by the P. oceanica. We therefore performed a parametric
study to evaluate the downgrading of the ground resolution (Table 4, column 9) to have an
SNR sufficient for observations. In this case, we obtained that P. oceanica colonies can be
observed and monitored by the DORA system with a ground resolution three times larger
than requested.

6. Conclusions

In this paper, we reviewed several environmental applications in marine, atmospheric,
and oceanographic thematics, and selected both for having pivotal advancements by using
remote sensing data and for being quite comprehensive to evaluate the capabilities of
deployable optical systems. In particular, we focused on the Deployable Optics for Remote
sensing Applications (DORA) project, which is currently under development, and tested
its optical performances through radiometric analysis.

The analyzed study cases show how past and current small satellites can be of great
benefit to improve such topics, in terms of data resolutions, revisiting times, and lower
acquisition costs. On the other hand, manufacturing constraints imposed by small satel-
lites, i.e., size and weight limitations, might severely limit data quality (high spatial and
spectral resolutions) with respect to the requirements needed for a specific application. We
showed that the DORA deployable telescope is a valuable solution for EO, in particular
for monitoring ecological issues, so as to be able to implement arrangements in a timely
manner to protect our natural environment.

The successful development of deployable remote-sensing payloads onboard small
satellites might also represent a pathway for the exploration of planets and small bodies,
whose variety of properties, in terms of size, shape, composition, and internal structure,
calls for newer space missions to fill the gaps in the understanding of our solar system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092066/s1, Table S1: Lists of all the medium to large space
missions cited in the text, reporting all their 34 relevant characteristics for the study cases in the
spectral range from VIS to MW. References [43,56,57,63,307–317] are cited in supplementary materials.
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