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Satellite Tides Background Thermal tides on a
tidally-locked satellite have been studied as gas flows on
a rotating surface since the ’60s [1]. The authors de-
rived two relations nT5/2 and nT = constant, by allow-
ing non-uniform gas concentrations (number density (n)-
gradients)) to drive lateral flows at a given temperature,
T. In effect, when tenuous gas in an exosphere is cou-
pled to a rotating surface, the semidiurnal thermal tide
(∝ rotation rate Ω, and temperature gradient dT/dϕ) pulls
the gas away from the expected thermal flux maxima F
at noon (see Figure 1 sketch, motivated by tidal density
perturbations at close-in exoplanets [2]). The expres-
sions studied for lateral transport in planetary exospheres
are unable to reproduce the location ϕ and timing t, of
the peak O2 gas column densities N, simulated on the
tidally-locked satellites Europa (JII) [3] and Ganymede
(JIII) [4], observed so far only in oxygen emission at JII
[5].

Atmospheric Evolution and Escape Model Here, we
build on the rotating 1-D mass conservation model
(nommé dishoom (desorbing interiors via satellite
heating to observe outgassing model)) in Paper I (Oza,
Johnson, and Leblanc [6]) where we showed that the den-
sity peaks consistently at dusk only if a thermal source is
used to source the oxygen aurorae observed by the Hub-
ble Space Telescope (HST). Since orbital longitude ϕ
probes the axis of time (and the associated surface heat-
ing dT/dϕ) our analytic model is fundamentally tidal in
nature. Thermal tides can therefore be useful in describ-
ing the exospheric accumulation of O2/H2O and volatiles
generally given our recent understanding on the thermal
nature of the O2 population (binding energy, Us = 0.14
eV (Johnson et al. [7]) ). Furthermore, recent HST ev-
idence suggests that at the sunlit trailing hemispheres
of JII and JIII (Roth et al. [8]) H2O may generate a
locally-collisional atmosphere, whose density remains to
be accurately constrained by future ground, space, or in-
situ spacecraft. Although, it is generally agreed these
O2/H2O atmospheres are more tenuous than SO2 (≪
1017 cm−2) at Io (JI) the simulated near-surface atmo-
spheres at JII & JIII indicate that JI, JII and JIII are all
indeed asymmetric towards dusk ((Oza et al. [3]; Leblanc
et al. [4]; Walker et al. [9]; Lellouch et al. [10]).

Implications Studying atmospheric evolution on
surface-bounded atmospheres is valuable in that proper-
ties of the icy surface Johnson et al. [7], and its interior

Figure 1: Birds-eye view illustrating the two tidal
components acting on a tidally-locked satellite atmo-
sphere/exosphere. Adapted from Arras and Socrates [2].

Hesse et al. [11] can be revealed. These constraints may
also be able to inform the formation of primordial icy
bodies (e.g comets) in the protosolar nebula (Oza and
Johnson [12]).

Thermal Outgassing of O2/H2O at Europa,
Ganymede, and Callisto Unlike JI, where the
freezing point of SO2 frost (201 K) poses no challenge
to our understanding of the Ionian surface-atmosphere
boundary layer, the trapped O2 observed at JII, JIII,
and JIV continues to be puzzling (Spencer, Calvin, and
Person [13]; Spencer & Calvin 2002) as the trapped O2

in amorphous or crystalline ice grains must thermally
outgas since Pvap,O2 ≫ PJII−JIV . Figure 2 provides a
model considering the diurnal tide acting on the surface
ice, from a range of regolith temperatures representative
of the Galilean satellite surfaces. If the diurnal tide is
able to sufficiently anneal and release trapped volatiles
from inclusions/bubbles Johnson and Jesser [14], this
model is a reasonable feedback mechanism for the
icy Galilean satellite atmospheres, providing a direct
parallel to volcanic SO2 frost on JI. This continues the
idea that O2 is indeed accessible to the atmosphere as a
surface frost in quasi-vapor pressure equilibrium (Paper
I).

Summary If a resonance exists between the atmo-
spheric lifetime and rotation rate a dusk-over-dawn at-
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Figure 2: Surface-Atmosphere Exchange system mod-
eled by dishoom where the trapped column is esti-
mated following Johnson & Jesser 1997 and Johnson et
al. 2019. The sublimation and ice crystallization temper-
atures are illustrated for O2 sublimation (54.36 K) and
H2O ice crystallization (≈ 150 K) [15]. Thermal out-
gassing/sublimation of water is observed in the lab to be
significant ≫ 150 K [16]. The outgassed column densi-
ties are normalized to rough constraints by HST oxygen
aurorae observations (Hall et al. 1998).

mospheric asymmetry appears on tidally-locked satel-
lites as shown for ultraviolet HST observations in Paper I
[6]. Evidence of thermal outgassing of trapped volatiles
may be present in spectra of the newly launched JWST,
equipped with the mid-infrared detector MIRI [17]. Fu-
ture observations may reveal thermal tide signatures, in
the form of phase-curve variability as also studied for
close-in, asynchronous exoplanets [2])
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