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Frequency conversion is a hallmark of nonlinearity. The spectral manifestations, emergent within a system,
can typically be attributed to a marked nonlinearity within the material properties, complex geometric config-
urations, and/or the unique functional form of interactions taking place in the constitutive subsystems. These
phenomena, irrespective of their origins, have been harnessed and exploited in applications ranging from the
generation of entangled photons, a cornerstone in quantum technologies, to nanomechanical frequency mixing,
advancing subsurface scanning probe microscopy. Here, we propose a frequency conversion mechanism based
on time-varying metasurfaces, an emerging frontier in metamaterial research. We show how temporal properties
of metasurfaces can effectively emulate a nonlinear medium, thereby facilitating frequency conversion. The
proposed material configuration has the potential not only to advance integrated photonics and quantum optics,
but also to create opportunities in quantum sensing, quantum materials, and crucially quantum communications.
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I. INTRODUCTION

Metamaterials, encompassing metasurfaces, are herald-
ing a new era in functional materials, exhibiting complex
and tailored behaviors [1]. Time-varying metasurfaces, as a
subclass of four-dimensional metamaterials [2] are gaining
considerable prominence in integrated photonics and quan-
tum devices [3]. Exploring metamaterials holds promise not
only for ushering in information processing, for example
via manipulating optical fields [4] but also as use cases for
emerging quantum computing optimization algorithms [5].
Frequency conversion typically harnessed through nonlinear
media [6], is an important instance, where single photons
participating in forming hybrid light-matter networks aid
in connecting shorter wavelengths employed in process-
ing and storage in qubit systems with sources and media
at telecommunications bands [7]. Frequency manipulation,
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without necessarily invoking nonlinear materials, may be
exploited, e.g., via nonlinear nanomechanical processes to
achieve subsurface nanometrology [8,9]. In the present work
on the interaction of light with the specific class of materials of
temporal metasurfaces, to be more precise when reflecting the
underlying physical processes, it seems prudent to consider
a brief note on the spectral components generated when a
pump frequency is introduced. The traditional understanding
of nonlinear optical (or others, e.g., mechanical and optome-
chanical [9]) interactions, such as those observed in a Kerr
medium [10], invokes the concept of harmonics or the fun-
damental frequency’s integer multiples, appearing as distinct
and widely spaced spectral lines in relation to the primary
frequency. The orderly progression from the fundamental to
the second harmonic, and so on, is a testament to the ma-
terial’s inherent nonlinearity and its response to the driving
(e.g., electric, stress) field. Contrasting this with the time-
varying metasurfaces subject to a pump frequency leading
to frequency mixing that generates sidebands, which can be
symmetrically spaced about the pump frequency but are not
integer multiples of it. The proximity of these sidebands to the
pump frequency is typically predicated on the modulation fre-
quency being considerably smaller than the pump frequency.
This spectral proximity may be seen as a distinctive signature
of temporal metasurfaces, differentiating them from the well-
separated harmonics due to traditional nonlinear interactions.
However, as shown here, when the modulation frequency is
of a magnitude that is not insignificant in comparison to the
pump frequency, the resultant sidebands are no longer subtle
shifts but are more spread out, potentially mimicking the
spacing one would associate with traditional harmonics. Yet,
despite this resemblance, the generation mechanism remains
distinctly different. Unlike harmonics, which are a natural
consequence of nonlinearity and are strictly tied as integer
multiples to the original frequency, sidebands are a result of an
external and controllable imposed modulation. Naturally, the
distinction between harmonics and sidebands is not only about
their spectral position but also the underlying mechanism.
While harmonics in nonlinear optics originate directly from
the intrinsic properties of the material, sidebands emerge via
deliberate, time-dependent manipulation of the metasurface,
that is, control versus intrinsic property, or tunability versus
predetermined outcome. It is important to note that our ap-
proach, as delineated in this work, imposes no limitations on
the frequency separation between the converted frequencies
and the original incoming frequency. This lack of restriction
highlights the versatility and broad applicability of our pro-
posed methodology.

Metasurface advancements, paving the way for innovative
manipulations of light and waves through time-modulated
metasurfaces, promise revolutionary applications, particularly
in secure communications, nonreciprocal devices, and dy-
namic control over wavefronts. Examples include the work
of Taravati and Eleftheriades [11] who introduced a concept
of linear-frequency conversion, providing new pathways for
manipulating fields, and the work of Guo et al. [12] who ex-
plored nonreciprocal metasurfaces through space-time phase
modulation, adding a new dimension to control principles.
Similarly, the work of Shaltout et al. [13] exploring spatiotem-
poral control, offer intricate light manipulation strategies,

paralleled by Shaltout, Kildishev, and Shalaev’s insights [14]
into Lorentz nonreciprocity, highlighting temporal variations
in metasurfaces. Sedeh, Salary, and Mosallaei [15] further this
exploration by enabling time-varying optical vortices through
time-modulated metasurfaces, with Sedeh et al. [16] provid-
ing new perspectives on topological space-time transitions.
Salary and Mosallaei’s work [17] integrates conducting oxide
metasurfaces with time modulation for adaptive communi-
cations, a theme advanced by Wu and Grbic [18] through
their work on serrodyne frequency translation. Sedeh et al.
[19] also propose a novel approach for secure communication
via graphene-based time-modulated metasurfaces. Conceptu-
alizing spacetime metamaterials, Caloz and Deck-Léger [20]
redefine perceptions of material properties in electromagnetic
theory.

II. INHOMOGENEOUS TEMPORAL CONVOLUTION

In the linear regime, the response of a system to an optical
field uin is governed by the frequency ω-dependent suscep-
tibility, χ (ω), of the system. Outside of the linear regime,
frequency mixing can occur, and the system response becomes
a function of the order of nonlinearity. As a prelude to our
theory, it is instructive to consider, in the time t domain, a
perturbative expansion of the response function in terms of
different orders of susceptibilities: for an input (scalar) field
uin(t ), the output field, in the absence of a permanent output,
may be expressed as:

uout (t ) = χ (1)(t ) ∗ uin(t ) + χ (2)(t, t ′) ∗ [uin(t ) ∗ uin(t ′)]

+ χ (3)(t, t ′, t ′′) ∗ [uin(t ) ∗ uin(t ′) ∗ uin(t ′′)] . . . ,

(1)

where χ (n) is the nth-order susceptibility of the medium (al-
ternatively one may write uout in the integral form, where
the causality variables t ′, t ′′, · · · are integrated over). The
higher-order terms are known to lead to harmonic generation,
four-wave mixing, spontaneous parametric down conversion,
and other nonlinear phenomena. We may consider the con-
volution χ (1)(t ) ∗ uin(t ) in (1), which characterizes the linear
response of the system, as depicted in Fig. 1, such that in

Fourier domain u(t )
F−→ U (ω), the output reads Uout (ω) =

χ (ω)Uin(ω). In this work, we will exploit the extension of
this linear response to the more general form χ (t, t ′), that is,
a susceptibility that accounts for externally induced memory
effects.

Let u = e, h select the electric Xe = E, or magnetic Xh =
H field. Then, for the response Pu to an input field Xu, we
write:

Pu = χu ∗ Xu =
∫

χu(t, t ′)Xu(t − t ′)dt ′, (2)

taking into account possible delayed response of the mate-
rial to the field, and potentially noninstantaneous effects, if
χu(t, t ′) is not a δ function of t ′. Thus, the specificity of active
metasurfaces (having physical properties that vary with time)
lies in the inhomogeneous temporal convolution (2), which
involves an additional dependence of the susceptibility versus
the current time variable t .
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FIG. 1. Linear-frequency conversion via a metasurface with
memory. The active metasurface (z = 0, thickness δz) generates a
continuum of frequencies {ω} when illuminated by a harmonic of
pulsation ω1. The blue arrow indicates the interaction e(t ) with
the external environment, which changes the susceptibility χ of the
metasurface at high frequency over time. Annotated are the indices n
of the media, excitation, and scattered fields E and their transforms,
and (in white) the reduction of the continuum to a single frequency
ω1 in reflection, and a single frequency ω2 in transmission.

Prior to setting up the metasurface equations, a brief clar-
ification of the necessity and implications of χ (t ) → χ (t, t ′)
transition, that is, introducing a temporally generalized sus-
ceptibility, seems logical. We first note that the susceptibility
χ (t ′) represents the metamaterial’s response to an incoming
field, accounting for memory effects linked to the inertia of
the material’s charges and the retardation effects due to the
finite time for the polarization to respond to field changes.
Here, inertia refers to the resistance of the charge carriers
to (motional) changes, e.g., the delay before electrons reach
a new equilibrium position in response to the electric field.
This delay or memory of past interactions is embedded in
the susceptibility χ (t ′) and is what imparts the material with
dispersive and absorptive properties, observable in the form
of phase shifts and attenuation in the transmitted light. How-
ever, when considering a metasurface under an additional
time-varying external stimulus, such as electrical, optical,
mechanical, or thermal excitations, the system’s response at
any given time t becomes influenced by the external control
exerted up to that point. This is not merely a retardation effect;
it is a dynamic modulation of the metasurface’s properties
over time. Therefore, we expand the conventional suscep-
tibility to χ (t, t ′) to account for these additional memory
effects, where χ (t, t ′) signifies that the response of the ma-
terial at time t now depends on both the historical electric
field and the time-evolving state of the material due to the
external excitation. This expanded formalism χ (t ) → χ (t, t ′)
is crucial for capturing the response of the metasurface given
its properties are no longer static but evolving, leading to a
time-variant interaction with the incident field. This evolution
introduces a form of temporal inhomogeneity, akin to spatial
inhomogeneity in traditional metasurfaces. Just as spatially
varying features can cause the incident light to experience dif-
ferent local environments, the temporally varying properties
mean that light at different times {t} encounters effectively

different materials. Thus, our work draws a distinction be-
tween the classical memory effects encapsulated by χ (t ′)
(characterized by dispersion and absorption due to inertia and
retardation) and the additional time-dependent modulations
described by χ (t, t ′). The adoption of χ (t, t ′) in our work is
not merely a formal generalization but a necessary framework
to model the interactions that define the adaptive, tunable
metasurfaces.

Our objective is to explore the conversion process ω
χ−→ ω′

for photons transmitting through a metasurface characterized
by χ (t, t ′) and to elucidate its spectral versatility. Let us
consider a metasurface positioned at z = 0 (Fig. 1) at the
separation of two nondispersive transparent media, with real
refractive indices n1 and n2. The thickness of the metasurface
(δz in Fig. 1), is small compared to λ, the wavelengths of
the radiation. The physical properties of this metasurface are
assumed to vary at high frequency versus time t , thanks to
the interaction with an external channel e(t ). The component
is illuminated by collimated, monochromatic radiation at fre-
quency ω1. A continuum of frequencies {ω} is then generated
by reflection and transmission, in the specular directions. Let
Pe and Ph denote the electric and magnetic polarizations of
the metasurface. Then, Maxwell’s equations (classical, macro-
scopic) can be written in the space-time domain and in the
sense of distributions, as:

rotE = −∂B

∂t
+ Mδ(z), (3)

rotH = ∂D

∂t
+ Jδ(z), (4)

with:

M = −μ0
∂Ph

∂t
, Ph = χh ∗ H, (5)

J = ∂Pe

∂t
, Pe = ε0χe ∗ E , (6)

where, M and J denote magnetic and electric currents
proportional to the time derivatives of the Ph and Pe

polarizations of the material. In the following for nota-
tional clarity, we adhere to the following Fourier transform
definitions:

f̃ (ω, t ′) = Ft { f (t, t ′)}(ω) =
(

1

2π

)∫ ∞

−∞
f (t, t ′)eiωt dt,

f̌ (t, ω′) = Ft ′ { f (t, t ′)}(ω′) =
(

1

2π

) ∫ ∞

−∞
f (t, t ′)eiω′t ′

dt ′,

f̂ (ω,ω′) = Ft,t ′ { f (t, t ′)}(ω,ω′)

=
(

1

4π2

) ∫ ∞

−∞

∫ ∞

−∞
f (t, t ′)eiωt eiω′t ′

dt dt ′. (7)

The specificity of the so-called active metasurface (whose
physical properties vary with time) lies in the inhomogeneous
temporal convolution noted ∗, namely:

χu ∗ Xu =
∫

χu(t, t ′)Xu(t − t ′)dt ′,

u = e, h, and X = E , H, (8)

where the susceptibility χu(t, t ′) is a function of two time vari-
ables t and t ′. The electromagnetic field X is calculated at time
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t , while the variable t ′ (the causality variable) allows inertial
phenomena to be taken into account. The (causality) variable
t ′ is understood to account for intrinsic inertial phenomena
[χu(t, t ′) = 0, ∀t ′ < 0].

We note here, by comparison with the classical case of
so-called passive surfaces, that time t intervenes in the sus-
ceptibility. This means that the weighting of inertia in Eq. (8)
depends not only on the delay t ′, but also on the time t because
of an external action acting in parallel on the material at
high frequency. Under these conditions, harmonics of the type
e−iωit are no longer eigenvalues of the polarization, since we
have for example for u = h, that is, Xh = H :

H (t ) = e−iωit �⇒ Ph(t ) = χh ∗ H

= e−iωit
∫

χh(t, t ′)eiωit ′
dt ′ = 2π e−iωit χ̌h(t, ωi ), (9)

where the Fourier transform of χh(t, t ′) with respect to the
variable t ′ is denoted χ̌h(t, ω). We thus see in Eq. (9) that
the response to a harmonic is no longer a harmonic, given
the time dependence of χ̌h(t, ωi ), which is characteristic of the
generated continuum. The classical case of a passive surface
can be found by writing χh(t, t ′) = χh(t ′), that is, χ̌h(t, ωi ) =
χ̌h(ωi ) in the Fourier plane, so that the harmonics once again
become eigenvalues of the polarization, without continuum
generation.

III. FIELD CALCULATIONS

The aim of this work is to demonstrate that both the
electrical and magnetic susceptibilities χu=e,h(t, t ′) of the
metasurface may be found such that this continuum {ω} trans-
forms into a single predefined frequency ω2, that is, achieving
conversion in a way similar to that of nonlinear optics. To cal-
culate the fields, let X̃ and X̌ stand for the Fourier transforms
of X with respect to t , and t ′, respectively. We obtain, for
the monochromatic incident field in the superstrate (z < 0) at
frequency ω1 (omitting the spatial dependence for simplicity):

E+
1 (t, ω1)

A+
1 (ω1)

= e−iω1t �⇒ Ẽ+
1 (ω,ω1)

A+
1 (ω1)

= δ(ω − ω1), z < 0.

(10)

As for the reflected field, it carries a priori a frequency con-
tinuum in the superstrate in the form:

E−
1 (t, ω1) =

∫
Ẽ−

1 (ω,ω1)e−iωt dω. (11)

Now, noting that the transmitted field also carries a continuum
{ω}, we introduce a reflection r and transmission t coefficient
and write:

Ẽ−
1 (ω,ω1) = r(ω,ω1)A+

1 (ω1), z < 0, (12)

Ẽ+
2 (ω,ω1) = t (ω,ω1)A+

1 (ω1), z > 0. (13)

For simplicity, we will restrict the treatment to the transverse
electric polarization mode of the incident field. In the presence
of surface currents, the tangential discontinuities z × δX at
surface z = 0 read:

z × δE = M = −μ0
∂Ph

∂t
, and z × δH = J = ∂Pe

∂t
, (14)

and thus in the Fourier plane:

z × δẼ = M̃ = iωμ0P̃h, and z × δH̃ = J̃ = −iωP̃e. (15)

We now need to develop these expressions by taking into
account the analytical form of the fields in the surrounding
media with indices n1 (the superstrate) and n2 (the substrate).
Since these media are assumed to be homogeneous, linear,
and isotropic, the fields have been written in the form of
a frequency packet, see Eq. (11). We may omit the space
variable ρ = (x, y, z) = (r, z) in the argument of the field. In
fact the spatial variation of the field is a linear combination of
terms of the form

ei[σ.r±αi (σ,ω)z], where σ = ki sin θi(1, 0),

is the media-independent spatial pulsation, with

αi =
√

k2
i − σ 2 = ki cos θi, and ki = 2πni/λ.

The wavelength (in vacuum) is denoted by λ and the direction
of the wave in the plane of incidence xz is denoted θi in
medium i. In the following, for simplicity, we will continue
omitting this spatial variation, which is justified since the
discontinuity will be written specifically at z = 0, and the xy
variation remains the same in all media. Using the notion of
an effective index (̃n) to relate the tangential components of
the Fourier transforms of the electric and magnetic fields in a
homogeneous medium, i.e., in TE polarization, we establish:

H̃±
i = ±ñi z × Ẽ±

i ,

ñi = αi

ωμi
=

(
1

η0μi
r

)
ni cos θi,

η0 =
√

μ0

ε0
, (16)

where μi
r is the relative permeability and η0 is the vac-

uum impedance. The + sign must be taken for progressive
waves, and the − sign for retrograde waves. Finally, Eqs. (14)
and (15), combined with Eq. (16), give for TE polarization:

M̃

A+
1 (ω1)

= δ(ω − ω1) − t (ω,ω1) + r(ω,ω1), (17)

J̃

A+
1 (ω1)

= ñ1(ω)[δ(ω − ω1) − r(ω,ω1)] − ñ2(ω)t (ω,ω1).

(18)

The next step is to develop the currents M and J . By the virtue
of the convolution (2), we write: J̃ (ω) = −ε0Ie, and M̃(ω) =
μ0Ih, with

Iu = 2π iω
∫

χ̂u(ω′, ω − ω′)X̃u(ω − ω′)dω′, (19)

where u = e, h, and χ̂u denotes the double Fourier transform
of the susceptibility. A question that now arises is what fields
to choose in these convolutions that are integrals of discontin-
uous quantities taken at z = 0. To overcome this difficulty, we
invoke a suitable mean field Xua = [Xu1(t ) + Xu2(t )]/2, and
thus obtain:

2Ẽa

A+
1 (ω1)

= r(ω,ω1) + t (ω,ω1) + δ(ω − ω1), (20)
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2H̃a

A+
1 (ω1)

= ñ1r(ω,ω1) − ñ2t (ω,ω1) − ñ1δ(ω − ω1). (21)

These average fields will be introduced in Eq. (19), which will
allow the development of the currents in Eqs. (17) and (18).
It will be assumed from here that the index dispersion of the
substrate and superstrate is negligible [̃ni(ω) = ñi], especially
since our study will be reduced to a moderate spectral window.

IV. FREQUENCY CONVERSION

To achieve a linear-frequency conversion, we must meet
the conditions to reduce the continuum. Our frequency
conversion objective to limit the continuum to discrete fre-
quencies requires the reflection and transmission coefficients
to be written in the form of Dirac distributions. We will
therefore seek here a condition such that the reflected field
is reduced to a harmonic of frequency ω1 (identical to the in-
cident field), and the transmitted field to an arbitrary harmonic
of frequency ω2 (see Fig. 1), or:

r(ω,ω1) = r0(ω1, ω1)δ(ω − ω1), (22)

t (ω,ω1) = t0(ω1, ω2)δ(ω − ω2). (23)

This allows the development of the average field in the form
of Dirac distributions, which simplifies the inhomogeneous
convolution product given for the polarization currents in (19).
However, this simplification also requires the susceptibility to
be written in the form of Dirac distributions (which will be
discussed in Sec. V), that is:

χ̂u(ω − ω1, ω1) = χ̂11
u δ(ω − ω1) + χ̂12

u δ(ω − ω2), (24)

χ̂u(ω − ω2, ω2) = χ̂21
u δ(ω − ω1) + χ̂22

u δ(ω − ω2), (25)

using which, Eq. (19), Eq. (17), and Eq. (18), we get:

J̃ (ω)

iπε0A+
1

= −(1 + r0)
(
�11

e + �12
e

) − t0
(
�21

e + �22
e

)
, (26)

M̃(ω)

iπμ0A+
1

= ñ1(r0 − 1)
(
�11

h + �12
h

) − ñ2t0
(
�21

h + �22
h

)
,

(27)

where

�11
u = ω1χ̂

11
u δ(ω − ω1), �12

u = ω2χ̂
12
u δ(ω − ω2), (28)

�21
u = ω1χ̂

21
u δ(ω − ω1, ) �22

u = ω2χ̂
22
u δ(ω − ω2). (29)

It then remains to identify the coefficients, which weigh the
Dirac distributions after identification of Eq. (26), Eq. (27),
and Eq. (17), Eq. (18), that is:

ñ1(r0 − 1)
[
ω1χ̂

11
h δ(ω − ω1) + ω2χ̂

12
h δ(ω − ω2)

] − ñ2t0
[
ω1χ̂

21
h δ(ω − ω1) + ω2χ̂

22
h δ(ω − ω2)

]
= 1

iπμ0
{(1 + r0)δ(ω − ω1) − t0δ(ω − ω2)}, (30)

(1 + r0)
[
ω1χ̂

11
e δ(ω − ω1) + ω2χ̂

12
e δ(ω − ω2)

] + t0
[
ω1χ̂

21
e δ(ω − ω1) + ω2χ̂

22
e δ(ω − ω2)

]
= 1

iπε0
{̃n1(r0 − 1)δ(ω − ω1) + ñ2t0δ(ω − ω2)}. (31)

Each time, for the magnetic aspect of Eq. (30), and for the
electrical aspect of Eq. (31), we have two equations involving
four susceptibility coefficients. These equations will make
it possible to express the reflection and transmission coeffi-
cients as a function of the susceptibility parameters, and also
to highlight the constraints on these parameters. Following
Eqs. (30) and (31), we get a system of four equations with two
unknowns (r0, t0) and eight susceptibility coefficients. With
the magnetic parameters of Eq. (30), we first obtain:

r0

{̃
n1χ̂

11
h − 1

γω1

}
+ t0

{−ñ2χ̂
21
h

} =
{̃

n1χ̂
11
h + 1

γω1

}
, (32)

r0
{̃
n1χ̂

12
h

} + t0

{
−ñ2χ̂

22
h + 1

γω2

}
= {̃

n1χ̂
12
h

}
, (33)

and, following Eq. (31) with the electric parameters:

r0

{
χ̂11

e − ñ1

γ ′ω1

}
+ t0

{
χ̂21

e

} = −
{
χ̂11

e + ñ1

γ ′ω1

}
, (34)

r0
{
χ̂12

e

} + t0

{
χ̂22

e − ñ2

γ ′ω2

}
= −χ̂12

e , (35)

where

(γ , γ ′) = iπ (μ0, ε0). (36)

At this point, all that remains is to identify the image space of
the reflection coefficient (r0 = re = rh) and transmission coef-
ficient (t0 = te = th). Note here that (re, te) are calculated from
the electric parameters in Eq. (34), Eq. (35), while (rh, th)
are calculated from the magnetic parameters in Eqs. (32)
and (33). Because these solutions must be identical, we get
a relationship between the electric and magnetic parameters,
that is:

χ̂22
h = 1

iπμ0ω2ñ
+

(
re − 1

te

)
χ̂12

h , (37)

χ̂11
h = 1

iπμ0ω1ñ

(
1 + re

re − 1

)
+

(
te

re − 1

)
χ̂21

h , (38)
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where (re, te) are calculated from the four electric coefficients,
and:

χ̂22
e = ñ

iπε0ω2
−

(
1 + rh

th

)
χ̂12

e , (39)

χ̂11
e = −ñ

iπε0ω1

(
1 − rh

1 + rh

)
−

(
th

1 + rh

)
χ̂21

e , (40)

where (rh, th) are calculated from the four magnetic coef-
ficients. This shows that the number of free parameters is
reduced to six. More precisely, (re, te) can be calculated from
Eq. (34), Eq. (35) with four electric coefficients, and the
resulting value of (re, te) reduces the number of free mag-
netic parameters to two [see Eqs. (37) and (38)]. In a similar
way, (rh, th) can be calculated from Eqs. (32), and (33) with
four magnetic coefficients, and the resulting value of (rh, th)
reduces the number of free electric parameters to two [see
Eqs. (39) and (40)]. Having said that, we also need to know in
which range of values it is interesting to vary the parameters
to observe notable variations in the pair (r0, t0). To do this, we
solve Eqs. (32)–(35) while highlighting the dimension of the
susceptibility, as:

rh =
(
χ̂11

h + 1
ñγω1

)(
−χ̂22

h + 1
ñγω2

)
+ χ̂12

h χ̂21
h(

χ̂11
h − 1

ñγω1

)(
−χ̂22

h + 1
ñγω2

)
+ χ̂12

h χ̂21
h

, (41)

th =
1

ñγω1
χ̂12

h

−χ̂12
h χ̂21

h +
(
χ̂22

h − 1
ñγω2

)(
χ̂11

h − 1
ñγω1

) , (42)

re =
−

(
χ̂11

e + ñ
γ ′ω1

)(
−χ̂22

e + ñ
γ ′ω2

)
− χ̂12

e χ̂21
e(

χ̂11
e − ñ

γ ′ω1

)(
−χ̂22

e + ñ
γ ′ω2

)
+ χ̂12

e χ̂21
e

, (43)

te =
−2̃n
γ ′ω1

χ̂12
e

−χ̂12
e χ̂21

e +
(
χ̂22

e − ñ
γ ′ω2

)(
χ̂11

e − ñ
γ ′ω1

) . (44)

With θ defined in Fig. 1, we note for the magnetic coefficients
in Eqs. (41) and (42), that:

1

ñγωi
= − i

2π2

μr

n cos θ
λi, (45)

and for the electric coefficients in Eqs. (43) and (44):

ñ

γ ′ωi
= − i

2π2

n cos θ

μr
λi. (46)

Furthermore, for the links between the susceptibility parame-
ters, we obtain:

χ̂22
h = −i

2π2

μr

n cos θ
λ2 +

(
re − 1

te

)
χ̂12

h , (47)

χ̂11
h = −i

2π2

μr

n cos θ
λ1

(
1 + re

re − 1

)
+

(
te

re − 1

)
χ̂21

h , (48)

χ̂22
e = −i

2π2

n cos θ

μr
λ2 −

(
1 + rh

th

)
χ̂12

e , (49)

χ̂11
e = i

2π2

n cos θ

μr
λ1

(
1 − rh

1 + rh

)
−

(
th

1 + rh

)
χ̂21

e . (50)

For all these equations, the order of magnitude of the coef-
ficients is the wavelength λ1 or λ2, at least for r 
= ±1 and
t 
= 0. Consequently, for any numerical calculation, it will be

interesting to zoom in to the vicinity of |χ̂ i j
h | ≈ λ1,2, or more

precisely between 0.1λ1,2 and 10λ1,2.

V. DISCUSSIONS

Analysis of the previous equations shows that the space
of susceptibility parameters, which lead to the same value of
(r0, t0) is of dimension 4. To show that, one can write the
equations at a given couple (r0, t0), with the susceptibility
parameters as the unknowns. Therefore, apart from the couple
(r0 = ±1, t0 = 0), any pair of value (r0, t0) can be achieved
using the susceptibility coefficients. However, the arbitrary
values that can take (r0, t0) do not disagree with the energy
balance that we discuss now. Contrary to usual, the values
Rh = |rh|2 and Th = |th|2 are not bounded by unity. This is
because the reflected (φr ) and transmitted (φt ) fluxes have
been conventionally defined as if we were illuminating a
passive component from the outside, that is, as φr = Rφi and
φt = T φi, with φi being the incident flux. This does not work
anymore with an active metasurface, since the reflected and
transmitted fluxes are provided by the sum of the incident flux
φi and the external power Fext supplied to the metasurface. In
other words, the energy balance is written as:

Fext + φi = φr + φt = φi(Rh + Th). (51)

In the classical case (no external action), we have Fext = 0
and we find Rh + Th = 1, bearing in mind that absorption
is zero because of the negligible thickness of the metasur-
face. Here, in stating the negligible absorption, we do not
ignore the possibility of other surface modes that might be
supported by a metasurface. While this should be interesting
to explore, it does not present any obstacle to achieving the
presented conversion objectives. By devising a metasurface
that does not exhibit interfering modes (unless beneficial for
the conversion), we may either avoid excitation of such modes
or design a metasurface that forbids those modes. The in-
teraction dynamics of light with matter can be intensified
under certain resonant conditions, even with negligible mate-
rial thickness. While the metasurface’s thinness does reduce
volumetric absorption, the exact amount is also contingent
on specific resonant modes, if present at all. We emphasize
that the design of our metasurface can be tailored to minimize
such resonances that could potentially hinder the desired fre-
quency conversion. Given the tunable nature of metasurface
design, this requirement does not seem to present a prohibitive
factor. The situation is not unlike noble metal nanosystems
that support resonant excitation of plasmons [21], or unlike
quasicrystals and all-dielectric stacks [22] that support Bloch
waves or sharp resonances. In all such systems, while material
volume is small, strong but tunable resonant excitations can
be tailored. Following Eq. (51), with the active metasurface
the two fluxes (φr, φt ) must be normalized by the total energy
(Fext + φi ), which supplied, and this leads to the introduction
of the normalized coefficients:

(RN , TN ) = 1

Rh + Th
(Rh, Th). (52)

Preliminary numerical calculations of the fluxes for the sim-
plified case of χ̂

i j
e = χ̂e are visualized in Figs. 2 and 3.

This calculation is carried out for an illumination wavelength
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FIG. 2. Normalized fluxes relative to the wavelength ratio λ2/λ1

simulated for an incident illumination wavelength λ1 = 1000 nm.
All susceptibility parameters are identical. At the condition where
λ2 = λ1, indicating no frequency conversion, the transmission is at
its theoretical maximum, signifying the complete passage of light
with no reflection due to the matching media on either side of the
metasurface.

λ1 = 1000 nm, while the conversion wavelength is λ2. We
observe in Fig. 2 at λ2 = λ1 (no frequency conversion), the
normalized transmission is equal to 1, given that the extreme
media are identical. From this value, conversion efficiency
decreases for λ2 < λ1, then stabilizes at 80%. On the other
side (λ2 > λ1), the efficiency decreases to zero. However,
we must keep in mind that this is a specific result of equal

susceptibility parameters (all equal to λ1 in Fig. 2), while we
should explore the four electric coefficients. In Fig. 3, the
conversion efficiency is plotted versus the two wavelengths.
We first observe that the straight line λ1 = λ2 is in accordance
with the previous remark (T = 1, R = 0). We also observe
that the range of conversion wavelengths λ2 by transmission
is reduced at small λ1 wavelengths.

Here, it is worth noting that the frequency ω2 is un-
derstood to arise in the system via the modulation of the
metasurface properties in time. This could be analogous to
an external pump in a pump-probe setup, where the meta-
surface undergoes dynamic changes influenced by a separate
control beam or electromagnetic influence, effectively intro-
ducing ω2. Relevant temporal control schemes have been
reported, e.g., based on the concept of thermoplasmonics [21]
(in which the dielectric function of a thin film undergoes
a modulation), further underscoring the feasibility of this
approach.

So far we have not discussed the temporal form of the
susceptibility, the relevance, and existence of which must be
verified. Starting from (24)–(25), we can immediately write,
after an inverse Fourier transformation:

χ̌u(t, ω1) = χ̂11
u (ω1, ω1) + e−i(ω2−ω1 )t χ̂12

u (ω1, ω2), (53)

χ̌u(t, ω2) = ei(ω2−ω1 )t χ̂21
u (ω2, ω1) + χ̂22

u (ω2, ω2), (54)

implying that the time shape of the Fourier transform of the
susceptibility with respect to t ′, i.e., χ̌u(t, ω), must be imposed
at the two frequencies ωi involved in the conversion. We note
that this condition is only imposed at these two frequencies.
In this context, we therefore need to check that this condition
is realistic, i.e., compatible with causality. In fact χ (t, t ′) is
causal versus t ′, so that χ̌u(t, ω) is the Fourier transform
of a causal function. In this context, we impose two values
χ̌u(t, ωi ) on the Fourier transform of a causal function. We

FIG. 3. Normalized fluxes for reflection and transmission contoured against the incident wavelength λ1 and conversion wavelength λ2.
The efficiency of the metasurface is represented by the color gradient, with yellow for high and blue for low efficiency. The diagonal where
λ1 = λ2 marks the condition of no frequency conversion with maximum transmission (T = 1) and no reflection (R = 0), denoting the state
of the metasurface where the incident and converted wavelengths are identical. The maps highlight how the conversion efficiency diminishes
when λ2 > λ1 and reveal a restricted conversion range for shorter incident wavelengths.
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therefore need to ensure that the image space spanned by
the Fourier transform of a causal function can include two
arbitrary values. We can show that this is indeed the case, and
that the result generalizes to a discrete set of frequencies ωi.
It is not useful to give the general proof here, as we are now
going to explicitly describe such a function in the case of two
frequencies.

Indeed, until now the general form of the susceptibility has
not been made explicit in the initial time space (t, t ′), although
this is essential for future numerical implementation. With
reference to Appendix A, we obtain an expression of the form:

χu(t, t ′)
A(t ′)

= fu(t ′) + gu(t ′) cos[(ω2 − ω1)t]

+ qu(t ′) sin[(ω2 − ω1)t], (55)

where A(t ′) is a causal envelope given by:

A(t ′) =
(

ξ

2

)
t ′2e− t ′

τ H (t ′), (56)

where, the 1/2 factor is for normalization, ξ a constant scaling
factor for the quadratic growth, H (t ′) is the Heaviside distribu-
tion for the activation of the envelop, and τ is a characteristic
decay time. Each function vu = fu, gu and qu (recall that u = e
or h) is defined with four parameters (λv

iu, μ
v
iu) as:

vu(t ′) = λv
1u cos ω1t ′ + μv

1u sin ω1t ′

+ λv
2u cos ω2t ′ + μv

2u sin ω2t ′. (57)

Finally, these parameters are given by the following matrix
relationships:

wv
2u = [G2 − H2(G1)−1H1]−1

[
2βv

2u − 2H2(G1)−1βv
1u

]
,

wv
1u = 2(G1)−1βv

1u − (G1)−1H1w
v
2u, (58)

with: wv
iu = (λv

iu, μ
v
iu), and βv

iu = [�(αv
iu), (αv

iu)], and αv
iu

being the complex coefficients:(
α

f
1u, α

f
2u

) = (
χ̂11

u , χ̂22
u

)
,(

α
g
1u, α

g
2u

) = (
χ̂12

u , χ̂21
u

)
,(

α
q
1u, α

q
2u

) = i
( − χ̂12

u , χ̂21
u

)
,

while the four matrices Gi, Hi are given in Appendix A. Thus,
we have obtained the analytical expression for the process

ω1
χ (t,t ′ )−−−→ ω2, that is, a susceptibility that gives rise to a fre-

quency conversion in transmission.
In addressing the practical implications of our study, it

is crucial to discuss the feasibility and practical aspects of
temporal metasurfaces. The considerations are multifaceted,
encompassing whether there is a need for a side band distant
from the pump frequency, and how closely the modulat-
ing frequency should match the pump’s order. Despite these
factors, we do not encounter prohibitive theoretical con-
straints or practical limitations, even when the metasurface
operates within high-frequency domains such as visible or
near-infrared spectra. Indeed, the feasibility of relevant high-
frequency modulation schemes has been substantiated in
various photonic systems [23]. Thus, the scope of applica-
bility for temporal metasurfaces, as advanced in our study,

remains viable and broad. In implementing the described con-
version, our central assumption has meant that the response of
the material at a particular moment is determined not only by
the interactions up to that moment (the ordinary memory) but
also by the way in which the material’s properties have been
altered up to that point. Metaphorically, it is as if the material’s
history is being rewritten in real time, which changes the
instruction that the memory supplies about how the material
should respond to current stimuli.

VI. CONCLUSION

In conclusion, while in the classical sense, frequency con-
version typically arises due to nonlinear interactions, we
have shown here that linear-frequency conversion is feasible
in a metasurface without resorting to nonlinear interactions
in materials. By invoking only linear equations, we de-
scribed how single-frequency conversion may be achieved
in transmission through a metasurface, similar to parametric
processes in time-varying systems. As captured by the intro-
duced generalized time-inhomogeneous convolution product,
the time variation itself via a susceptibility that features ex-
ternal memory effects, introduces an effective nonlinearity.
The introduced conversion was shown to respect causality
and energy conservation. Our theoretical prediction paves the
way to the experimental realization of a powerful frequency
conversion and control platform. The obtained solutions sug-
gest that time-varying planar metasurfaces offer a viable path
to mimicking nonlinear devices while providing optimal lin-
ear frequency conversion from one medium to another. This
is remarkable, since in the proposed approach, no extraor-
dinary assumptions were made for the type of materials or
range of frequencies envisioned. All materials were chosen
to be isotropic, homogeneous, and nonchiral. Within this
framework, the generalized susceptibilities, represented by
two-variable functions χu(t, t ′) and first-Fourier transform
χ̆u(t, ω) rendered the system to be time and frequency dis-
persive. Such double dispersion furnished sufficient additional
degrees of freedom to provide the opportunity for frequency
conversion. The calculations indicate no limit on the number
of arbitrary frequencies that can be converted allowing, albeit
at the cost of added analytical complexity, for the process
(ω1, ω2, . . .) → (ω′

1, ω
′
2, . . .) by reflection or transmission.

Under the assumption of perfect monochromaticity of the
incident field, we also have full coherence among all the
fields. As with any analytical prediction, numerical solutions
are indispensable for validation and in further investigation.
Tackling the derived equations for obtaining numerical solu-
tions, beyond the simplified results shown in Figs. 2 and 3, is
forthcoming. Extending our findings into the quantum regime
is also being considered for future direction.
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APPENDIX: TIME SHAPE OF SUSCEPTIBILITY AND PROOF OF CAUSALITY

In fact, χ (t, t ′) is causal versus t ′, so that χ̌u(t, ω) is the Fourier transform of a causal function. In this context, conditions
Eqs. (53) and (54) mean imposing two values χ̌u(t, ωi ) on the Fourier transform of a causal function. We therefore need to ensure
that the image space spanned by a causal function can include two arbitrary values. We can show that this is indeed the case and
that the result generalizes to a discrete set of frequencies ωi. It is not useful to give the general proof here, as we are in fact going
to explicit such a function in the case of two frequencies. To that end, the relations given by Eqs. (53) and (54) are first rewritten
as:

χ̌u(t, ω1) = χ̂11
u + χ̂12

u cos[(ω2 − ω1)t] − iχ̂12
u sin[(ω2 − ω1)t], (A1)

χ̌u(t, ω2) = χ̂22
u + χ̂21

u cos[(ω2 − ω1)t] + iχ̂21
u sin[(ω2 − ω1)t]. (A2)

Then we consider three real causal functions fu(t ′), gu(t ′), qu(t ′) that satisfy, with u = e, or h:

f̌u(ω1) = χ̂11
u and f̌u(ω2) = χ̂22

u , (A3)

ǧu(ω1) = χ̂12
u and ǧu(ω2) = χ̂21

u , (A4)

q̌u(ω1) = −iχ̂12
u and q̌u(ω2) = iχ̂21

u . (A5)

The next step is to build a causal susceptibility in the form:

χu(t, t ′) = fu(t ′) + gu(t ′) cos[(ω2 − ω1)t] + qu(t ′) sin[(ω2 − ω1)t]. (A6)

That is, after Fourier transform versus t ′:

χ̌u(t, ω) = f̌u(ω) + ǧu(ω) cos[(ω2 − ω1)t] + q̌u(ω) sin[(ω2 − ω1)t]. (A7)

At this step, one can check that Eqs. (A3), (A4), (A5) allow the susceptibility χu(t, t ′) to satisfy relations Eqs. (A1) and (A2),
which can be summarized as:

v̌u(ω1) = α
vu
1 = αv

1u and v̌u(ω2) = α
vu
2 = αv

2u, (A8)

with vu = fu, gu, or qu, and αv
iu being the complex coefficients:

α
f
1u = χ̂11

u and α
f
2u = χ̂22

u , (A9)

α
g
1u = χ̂12

u and α
g
2u = χ̂21

u , (A10)

α
q
1u = −iχ̂12

u and α
q
2u = iχ̂21

u . (A11)

These αv
1u coefficients being imposed, additional degrees of freedom are required to satisfy Eqs. (A3), (A4), (A5) and lead to

write each function fu, gu, and qu as:

vu(t ′) = A(t ′)
[
λv

1u cos(ω1t ′) + μv
1u sin(ω1t ′) + λv

2u cos(ω2t ′) + μv
2u sin(ω2t ′)

]
, (A12)

with A(t ′) a common causal envelope, and λv
iu, μv

iu real parameters. Then it remains to relate, for each u and v value, the four
parameters (λv

u,i=1,2, μ
v
u,i=1,2) to (αv

1u, α
v
2u). After tedious calculation, following Eqs. (A8)–(A12) we get:

2αv
1u = (

λv
1u + iμv

1u

)
Ǎ(0) + (

λv
1u − iμv

1u

)
Ǎ(2ω1) + (

λv
2u + iμv

2u

)
Ǎ(ω1 − ω2) + (

λv
2u − iμv

2u

)
Ǎ(ω1 + ω2), (A13)

2αv
2u = (

λv
1u + iμv

1u

)
Ǎ(ω2 − ω1) + (

λv
1u − iμv

1u

)
A(ω2 + ω1) + (

λv
2u + iμv

2u

)
Ǎ(0) + (

λv
2u − iμv

2u

)
Ǎ(2ω2). (A14)

In the complex plane, Eqs. (A13)–(A14) give a system of four equations with four unknowns, that we can write in a matrix form:

G1w
v
1u + H1w

v
2u = 2βv

1u, (A15)

H2w
v
1u + G2w

v
2u = 2βv

2u, (A16)

with the vectors:

wv
iu = (

λv
iu, μ

v
iu

)
, and βv

iu = [�(
αv

iu

)
, (

αv
iu

)]
. (A17)

and the matrices:

G1 =
[�[

Ă(0) + Ă(2ω1)
] −[

Ă(0) − Ă(2ω1)
]

[
Ă(0) + Ă(2ω1)

] −[
Ă(ω1 − ω2) − Ă(ω1 + ω2)

]], (A18)
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H1 =
[�[Ă(ω1 − ω2) + Ă(ω1 + ω2)] −[Ă(ω1 − ω2) − Ă(ω1 + ω2)]

[Ă(ω1 − ω2) + Ă(ω1 + ω2)] �[Ă(ω1 − ω2) − Ă(ω1 + ω2)]

]
, (A19)

H2 =
[�[Ă(ω2 − ω1) + Ă(ω2 + ω1)] −[Ă(ω2 − ω1) − Ă(ω2 + ω1)]

[Ă(ω2 − ω1) + Ă(ω2 + ω1)] �[Ă(ω2 − ω1) − Ă(ω2 + ω1)]χe

]
, (A20)

G2 =
[�[Ă(0) + Ă(2ω2)] −[Ă(0) − Ă(2ω2)]

[Ă(0) + Ă(2ω2)] �[Ă(0) − Ă(2ω2)]

]
. (A21)

Note in Eqs. (A18)–(A21) that G1 is symmetric because of Hermiticity ([Ă(0)] = 0), and that H2 is the transposed matrix of
H1 since �(Ă) is even and (Ă) is odd. Finally, the susceptibility is fully identified since the (λv

iu, μ
v
iu) coefficients are given by:

wv
2u = {

G2 − H2(G1)−1H1
}−1{

2βv
2u − 2H2(G1)−1βv

1u

}
, (A22)

wv
1u = 2(G1)−1βv

1u − (G1)−1H1w
v
2u. (A23)

In Eqs. (A22), (A23) the matrices whose inverses are calculated are symmetrical. We therefore have the analytical expression
for a susceptibility χu=e,h(t, t ′) giving rise to a frequency conversion from ω1 to ω2 in transmission. Note that the envelope can
be chosen as:

A(t ′) = (
ξ

2

)
t ′2e− t ′

τ H (t ′) �⇒ Ă(ω) =
ξ

2π

( 1
τ
−iω)3 . (A24)
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