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ABSTRACT

Context. To mimic the evolution of protoplanetary discs (PPDs), 2D simulations that incorporate self-gravity must introduce a soft-
ening prescription of the gravitational potential. When the disc is only composed of gas, the smoothing length is proportional to the
scale height of the gas. On the other hand, when a dust component is included, the question arises as to whether the smoothing length
approach can still be used to not only quantify the dust self-gravity, but its gravitational interaction with gas as well.
Aims. We identified grey areas in the standard smoothing length formalism for computing self-gravity in PPDs entirely made up of
gas. Our goal is to revisit the smoothing length approach, which can then be generalised to two phases, whereby the dust component
may be considered as a pressureless fluid.
Methods. We used analytical developments to approximate the vertically averaged self-gravity when the smoothing length is not
assumed to be constant, but by taking a spatial function instead.
Results. We obtained an analytical expression for the space-varying smoothing length, which strongly improves the accuracy of
the self-gravity computation. For the first time, this method is generalised to address bi-fluid interactions in a PPD: two additional
smoothing lengths are proposed for featuring an isolated dusty disc and gas-dust self-gravity interactions. On computational grounds,
we prescribe the use of tapering functions for the purpose of avoiding numerical divergences. We also checked that our method con-
tinues to be compatible with standard fast Fourier transform algorithms and evaluated computational costs.
Conclusions. Our space-varying smoothing length allows us to: (i) solve the contradictions inherent in the constant smoothing length
hypothesis; (ii) fit the 3D vertically averaged self-gravity with a high level of accuracy; and (iii) render it applicable to a bi-fluid descrip-
tion of PPDs with the use of two additional smoothing lengths. Such results are crucial to enable realistic 2D numerical simulations
that account for self-gravity and are essential to improving our understanding of planetesimal formation and type I migration.

Key words. protoplanetary disks – planet–disk interactions – gravitation – hydrodynamics – methods: analytical –
methods: numerical

1. Introduction

Despite huge developments in 3D numerical computations and
the advent of progressively more sophisticated computational
facilities, thin-disc (2D) simulations remain much less expen-
sive and more widely used in the study of protoplanetary discs
(PPDs). The 2D approximation relies on the vertical averag-
ing of the 3D physical quantities and governing equations.
When dealing with self-gravity (SG), the issue becomes more
sensitive since the equations cannot be vertically integrated.
In practise, in PPDs studies an equivalent smooth potential,
known as the Plummer potential, is used to mimic (as much as
possible) the vertically averaged SG force and, in this approxi-
mation, a smoothing length (SL) is introduced to account for the
disc vertical stratification.

As expected, this approach applies to 2D studies of planet–
disc interactions where different values have been suggested
(Li et al. 2009; Dong et al. 2011). In particular, Masset (2002)
and Huré & Pierens (2009) showed that in the planet case, the
SL should be proportional to the scale height of the gas disc,
whereas Müller et al. (2012) proposed that ϵg/Hg = 0.7,where ϵg
and Hg are the gas SL and the pressure scale height, respectively.
Müller et al. (2012) also explored the case of self-gravitating

gas discs and found that for vertically isothermal and stratified
structures, we should instead use ϵg/Hg = 1.2 to avoid a system-
atic overestimation of the SG term. They also showed that when
accounting for vertical SG, a deviation in the vertical Gaussian
distribution occurs and in this case, the SL is also proportional
to the disc’s Toomre parameter.

The Müller et al. (2012) prescription clearly leads to small
errors (<2%) at large distances, but it also has an important draw-
back (that is not, however, mentioned by the authors); namely,
SG is strongly underestimated at short distances with 100%
errors. Indeed, in agreement with Huré & Pierens (2009), the
authors found that the accuracy in the approximation of SG
terms is strongly improved if the SL is a space varying function
(Müller et al. 2012, Fig. 13). However, despite a discernible curve
shape and (for unknown reasons), the authors did not test analyt-
ical expressions that could adequately fit the numerical curve.
Furthermore, they found that the best approximation is obtained
when the SL vanishes at the singularity – this is a statement
that is inconsistent with the divergence of the error in the
SG computations (Figs. 12 and 13 of their paper). The reasons
for this inconsistency are subtle mathematical details at the sin-
gularity that were not explained by the authors and which, to our
knowledge, have gone unnoticed to date.
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In a bi-fluid description of PPDs, a dust layer is embedded
in the gas disc and the evolution of gas and dust are coupled by
aerodynamic forces. In this case, the momentum equations for
the gas and the dust, both contain two SG terms: one is attributed
to the gas disc and the other to the dust layer. In other words,
each fluid parcel (gas or dust) is submitted to the gravity of the
gas disc and to the gravity of the dust sub-layer. In contrast to
the gas disc, the dust layer has a thickness which is governed
not by pressure but turbulent stirring in the vertical direction.
The scale height of the dust layer can be estimated using the

form: Hd =

√
α̃
α̃+St Hg (Dubrulle et al. 1995; Weber et al. 2019),

where α̃ = α/Scz, α is the dimensionless constant featuring tur-
bulent α-viscosity (Shakura & Sunyaev 1973), Scz is the vertical
Schmidt number, and St is the Stokes number. A vertical aver-
aging over the dust layer faces the same numerical issues than
averaging over the gas disc. These problems can be solved in the
same way as for a single gas disc and a simple extrapolation pro-
vides the dust disc’s SL, namely, ϵd ∝ 1.2Hd. Since the dust layer
is much thinner than the gas disc (due to dust settling), the two
SLs are very different from one another with ϵd ≪ ϵg. Thus, any
error between these two parameters may lead to an incorrect and
significant underestimation of the dust layer contribution to the
SG terms. The question becomes more complex when account-
ing for the crossed SG terms. At the present time, we do not
possess any rigorous theoretical approach that would allow us to
evaluate this gravitational bi-fluid interaction. We do, however,
think that this problem can also be addressed with a SL and,
intuitively, we can expect it to lie between the gas SL and the
dust SL. To our knowledge, both issues raised here with respect
to bi-fluids are new and have not been previously addressed in
numerical and theoretical studies of PPDs.

The improvements we perform in this study are crucial to
enabling realistic 2D numerical simulations when SG is taken
into account and they are also particularly important in plan-
etary formation theories to better understand the formation of
planetesimals. Indeed, it makes it possible to study the gravita-
tional fragmentation of the dust layer (Goldreich & Ward 1973),
formation of coherent clumps under the streaming instability
(Johansen & Youdin 2007), and gravitational clumping of dust
particles trapped in a large-scale vortex (Barge & Sommeria
1995) or in a co-orbital trapping scenario. Indirectly, we found
that this work could also have implications for studies of type I
planet migration.

In this paper, our goal is to provide a method based on the
SL formalism to accurately compute the SG terms in thin discs at
small and large separations. We aim to introduce the substantial
SG interaction of gas and dust, when the latter is considered as a
pressureless fluid. In Sect. 2, we carry out a theoretical develop-
ment from first principles which justifies the use of the Plummer
potential. In Sect. 3, we explore the SG estimation through the
prism of the SL paradigm. We correct and complete the Plummer
potential formalism thanks to a spatially dependent SL and gen-
eralise it to the case of bi-fluids. In Sect. 4, we handle practical
aspects of the study, such as the numerical divergences, compu-
tational costs, and the calculation of the corrected SG thanks to
fast Fourier transforms (FFT) methods. Finally, in Sect. 5, we
suggest a discussion followed by a conclusion.

2. Self-gravity terms for bi-fluid simulations

In this section, we set up the theoretical background for com-
puting gas and dust SG contributions when solid material is
considered as a pressureless fluid in a thin-disc approximation.

In this context, we also recall the role of the Plummer potential
in 2D SG calculations and generalise this formalism to bi-fluids.

2.1. 2D approximation and formal derivation

In 3D, the SG force per unit volume exerted by the PPD on a gas
and dust parcels are expressed as:

f g,tot
3D (r, z)=−ρg(r, z)

[
∇Φg + ∇Φd

]
,

f d,tot
3D (r, z)=−ρd(r, z)

[
∇Φg + ∇Φd

]
,

(1)

where Φg and Φd are the distinct gravitational potentials of the
gas and dust discs, respectively. For the sake of generality and
concision, we denote both fluid phases as a and b, which reduces
each term on the right-hand-side of Eq. (1) to:

f a→b
3D (r, z)=−ρb(r, z)∇Φa

=−G ρb(r, z)"
disc

+∞∫
z′=−∞

ρa(r′, z′)
||r − r′||2 + (z − z′)2 el d2r′ dz′,

(2)

where f a→b
3D is force per unit volume the a-disc exerts on an ele-

mentary b fluid element. The density of phase a is noted as ρa

and el =
[

r − r′ + (z − z′) ez
] / √
||r − r′||2 + (z − z′)2. Assuming

a vertical hydrostatic equilibrium and an isothermal approxima-
tion in the vertical direction for gas, the volume density can be
written as ρg(r, z) = ρ0,g(r) e−

1
2 z2/Hg(r), where Hg(r) is the gas

pressure scale height. We assumed the same vertical Gaussian
profile for dust density than for gas, but this time, the vertical
equilibrium is instead governed by turbulent stirring, which sets
a different scale height for dust: Hd(r). This permits us to write
both surface densities as:

Σa(r) =

∞∫
z=−∞

ρa(r, z) dz =
√

2πHa(r) ρ0,a(r). (3)

The 2D analogue of the SG force is simply obtained integrating
the 3D SG force in the vertical direction:

f a→b
2D (r)=

∞∫
z=−∞

f a→b
3D (r, z) dz

=−G ρ0,b(r)
!

disc
ρ0,a(r′) s es

+∞∫
z,z′=−∞

e−
1
2 z2/H2

b (r)e−
1
2 z′2/H2

a (r′)(
s2 + (z − z′)2)3/2 dz dz′

 d2r′,

(4)

where s = ||r− r′|| is the separation (or mutual distance) between
two fluid elements and es = (r − r′)

/
s. In this 2D approximation,

it is implicitly assumed that the disc is symmetric with respect
to the z = 0 plane, which allows us to naturally cancel the ver-
tical component of the above force during the integration. After
substituting the variables, we finally obtain:

f a→b
2D (r) = −

G
π
Σb(r)

"
disc

Σa(r′)
Hg(r) s

Lab
sg (dg, db, η) es d2r′, (5)
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where

Lab
sg (dg, db, ηab) =

1
2

d3
b(r)

dg(r)

+∞"
u,v=−∞

e−
u2
2 e−

v2
2[

db(r)2 + (u − ηabv)2]3/2 du dv

(6)

is a normalised quantity that we refer to as the ‘self-gravity
force correction’ (SGFC)1, with respect to the 3D case, db(r) =
s/Hb(r) is the separation normalised with respect to the scale
height of fluid b, and ηab = Ha(r′)/Hb(r) is the a-to-b scale
height ratio. In the following, we use the notation db = db(r),
except when a distinction is necessary. We want to highlight
that in our reasoning, ηab is a spatial varying quantity, but,
henceforth, we prefer to use:

ηab = ⟨Ha(r′)⟩/⟨Hb(r)⟩, (7)

where ⟨⟩ stands for space averaging over the 2D disc. This
simplifies the next theoretical developments. We note that the
scale heights used in this paper could be time-varying func-
tions, but for concision, the time dependence is not explicit in
the equations.

The numerical determination of SG in thin-disc and bi-fluid
simulations mainly relies on the computation of the SGFC, but
no analytical expression of this integral has been found in terms
of standard mathematical functions. This is why a Plummer
potential is commonly used to most optimally approximate this
integral.

2.2. Fitting self-gravity terms thanks to smoothing lengths

Both vertical averagings in Eq. (6) cannot be performed analyt-
ically, but (in practice) we can introduce a Plummer potential,
Ψab
ϵ , into the 2D gravitational potential, Φab

ϵ , which permits us to
approach the 2D SG force defined in Eq. (5):

f a→b
2D,ϵ (r) = −

Σb(r)
π
∇sΦ

ab
ϵ (r)

with Φab
ϵ (r) = −G

"
disc

Σa(r′)Ψab
ϵ (s) d2r′,

(8)

where:

Ψab
ϵ (s) = π

/ (
s2 + ϵ2ab

)1/2
, (9)

and ϵab is the SL between phases a and b. Usually, ϵab is assumed
to be constant, so that:

||∇Ψab
ϵ || = πs

/ (
s2 + ϵ2ab

)3/2
. (10)

For a gas disc, Müller et al. (2012, Fig. 13) have shown that the
SL that gives the best fits to the SGFC is a spatial function of dg;
however, this is, in fact, inconsistent with Eq. (10). Indeed, the
additional term ∂sϵ

2
ab/2 should be present in the numerator of

the aforementioned equation. So, in order to remain mathemati-
cally correct and to retain the possibility of making comparisons
with the work of Müller et al. (2012), we decided to consider
1 Müller et al. (2012) defined as force correction a quantity that they
defined as Isg. We noticed that in some of their graphics, they mistook
sIsg(s) for Isg(s). Therefore, for clarity and consistency with their work,
we did not adopted this naming convention.

Table 1. Definitions and list of abbreviations.

Abbrev. Definition + name Symbol

SG Self-gravity
Mutual distance or separation s = ||r − r′||
Normalised separation for db = s/Hb
phase b

SL Smoothing length
CSL Constant smoothing length ϵab = const.
SVSL Space varying smoothing length ϵab(dg)
SGFC Self-gravity force correction Lab

sg (Eq. (6))
SLFC Smoothing length force correction Lab

ϵ (Eq. (11))
PDFC Planet–disc force correction Lp (Eq. (20))

a-to-b scale height ratio ηab
Gas-to-dust scale height η = ⟨Hg⟩/⟨Hd⟩

the potential that satisfies only Eq. (10) and not Eq. (9). This
is a slight change in the SL paradigm that does not affect the
approximation of the 2D SG terms and leads to meaningful 2D
results. Based on this clarification, we can define an analogue of
the SFGC that is compatible with the SL approach:

Lab
ϵ (dg)=Hg(r) s ||∇Ψab

ϵ ||

=
πd2

g[
d2

g + (ϵab(dg)/Hg(r))2
]3/2 .

(11)

This normalised quantity, which we call the smoothing length
force correction (SLFC) should fit the SGFC to correctly esti-
mate SG in 2D simulations. This is only possible by wisely
choosing a spatially dependent SL, namely, ϵab(dg), as depicted
in the next section. The definition and abbreviation of the main
quantities encountered in this paper are given in Table 1.

3. Mutual self-gravity interactions based on the
smoothing-length approach

We aim here to provide a suitable SL that most closely
approaches each of the possible exact gravitational interactions:
gas-gas, dust-dust, and dust-gas. We started by retrieving and
rectifying Müller et al. (2012) results for a disc only made of gas.

3.1. Contribution of the gas disc on a gas parcel

This case corresponds to a=b=g. From the general definition
provided by Eq. (6), the gas SGFC is equal to2:

Lgsg(dg) =
1
2

d2
g

∞"
u,v=−∞

e−
u2
2 e−

v2
2[

d2
g + (u − ηgv)2

]3/2 du dv, (12)

where ηg = ⟨Hg(r′)⟩/⟨Hg(r)⟩ = 13. We present in Fig. 1 (top
panel) the exact SGFC (blue solid line), evaluated numeri-
cally, and the equivalent SLFC (dashed lines) for three constant
smoothing lengths (CSLs): ϵg(dg)/Hg(r) = [0.0, 0.6, 1.2]. In the

2 For sake of simplicity in the whole article we replaced all superscripts
gg by g.
3 We think that Müller et al. (2012) implicitly assumed this equality in
their work.

A96, page 3 of 12



A&A 675, A96 (2023)

Fig. 1. Force corrections for the gas only. We compare the SGFC (exact
value, in blue solid line) and the SLFC model for different smooth-
ing lengths based on constant values for the SL (red, green and orange
dashed lines) or on function ϵg(dg) (black cross markers). For a CSL,
ϵg = const., the SLFC and SGFC do not match at short separations:
the error curve either tends either towards 0 or towards infinity. On
the contrary, for a SVSL, ϵg = ϵg(dg), the SLFC matches SGFC with
an accuracy better than 0.5%. We found that L0 =

√
π (Appendix C).

Top: SGFC and SLFC. Bottom: relative error between SGFC and SLFC
(in %): 100 · |SLFC/SGFC − 1|.

bottom panel, we show the respective errors in percentage. These
curves support the results from Müller et al. (2012) for the case
of a self-gravitating disc and also validates our approach. For
long distances, the three aforementioned SLFC exhibit the same
behaviour and the error becomes negligible. For instance, the
CSL value, ϵg(dg) = 1.2Hg, offers the smallest error at long dis-
tances, namely, less than 2% for dg ≥ 4. On the contrary, at short
distances, the SLFC either vanishes or diverges, which leads to
significant errors since the exact SGFC converges towards L0 ≃

1.772. Such behaviour is indeed intrinsic to the CSL formalism
at short distances:

if ϵg(dg) = 0 : Lϵ(dg) =
π

dg
→ +∞

if ϵg(dg) = const. , 0 : Lϵ(dg) ∼
dg→0
π

(
Hg

ϵg

)3

dg → 0.

(13)

Fig. 2. Space-varying smoothing length for gas only. We compare the
SVSL obtained numerically by Müller et al. (2012) and that proposed
in this work which was obtained by analytical computations and curve
fitting. Top: Müller et al. (2012). Bottom: this work.

The above limits demonstrate that the CSL formalism either
leads to 100% or infinite errors at short distances, when ϵg =
const. , 0 and ϵg = 0, respectively. This divergence between the
SGFC and SLFC was not highlighted by Müller et al. (2012).
A possible reason for this is that the behaviour is suitable since
it allows for numerical divergences to be avoided at dg = 0 when
ϵg(dg) = const. , 0. Even if Müller et al. (2012) did not shine
a light on these divergences at short distances, they neverthe-
less carried out a numerical evaluation that demonstrates that a
space-varying smoothing length (SVSL) is necessary to fit the
exact SGFC (reproduced in the top panel of our Fig. 2). From
this figure, we can infer that the SVSL should tend towards 0 so
that the SLFC matches the SGFC. Yet this is in contradiction to
Fig. 1 and Eq. (13), since the SLFC is supposed to diverge ana-
lytically for ϵg(dg) = 0 at short distances. In general, no matter
the choice of CSL, the gas SG was underestimated by a factor
100 at short distances. This contradiction went unnoticed and we
intended to resolve it, as described in the next section.

The analytic expression of the gas SL that provides a better
fit to Fig. 2 (top panel) and thus permits the SLFC to fit the exact
SGFC should fulfill the following constraints:

lim
dg→0
ϵg(dg)= 0,

lim
dg→+∞

ϵg(dg)=
√

2 Hg(r)

Łeg(dg = 0)= L0.

, (14)
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Table 2. Fitting parameters for space varying smoothing lengths and
δ models.

(α, n) (0.04319874, 1.14791757)

(β, q) (0.06427627, 1.14735482)

(γ,m) (0.98362092, 0.75552227)

Thanks to analytical arguments completed by a curve fit (made
explicit in Appendix A), we found a model for the SVSL which
permits us to accurately approach the SGFC:

ϵg(dg) =
√

2 Hg(r)
[
1 − exp

(
−
ϵg,0
√

2
d2/3

g − αdn
g

)]
, (15)

where ϵ0,g = [π/L0]1/3 and the numerical values of (α, n) are col-
lected in Table 2. In particular, the power of 2/3 and of ϵ0,g allow
us to reach a finite value of L0 for the SLFC at dg = 0. In Fig. 2
(bottom panel), we show the SVSL analytic model. In Fig. 1, we
show the respective SLFC and error with respect to the exact
SGFC (black cross markers). Within this correction, the SLFC
and SGFC overlap and the error is reduced to less than 0.5%
across the whole distance range. As a matter of comparison, this
correction allows us to decrease the error up to factors 200 and
40 at short and long distances, respectively, compared to the CSL
where ϵg(dg) = 1.2Hg(r).

3.2. Contribution of the dust layer on a dust parcel

In this Sect., we take a = b = d. From the general definition
provided by Eq. (6), the dust SGFC is4:

Ld
sg(dg, dd) =

1
2

d3
d

dg

∞"
u,v=−∞

e−
u2
2 e−

v2
2[

d2
d + (u − ηdv)2

]3/2 du dv

=
1
2
η
(
ηdg

)2
∞"

u,v=−∞

e−
u2
2 e−

v2
2[

(ηdg)2 + (u − v)2
]3/2 du dv

= ηLg
sg(ηdg),

(16)

where ηd = ⟨Hd(r′)⟩/⟨Hd(r)⟩ = 1 and η = Hg(r)/Hd(r) is
the gas-to-dust scale height ratio that, in general, is greater
than unity. Again, for simplicity, we prefer to use η =
⟨Hg(r)⟩/⟨Hd(r)⟩. The above relation naturally applies to the dust
SLFC, but it is convenient to write it one of two different ways:

Ld
ϵ (dg) = ηLg

ϵ (ηdg) or ϵd(dg, η) =
ϵg(ηdg)
η
. (17)

Both equations are equivalent, but the former provides a physi-
cal insight while the latter allows for a simple implementation in
hydrodynamical codes. In Fig. 3, the top and bottom panels show
the SLFC and the error with respect to the SGFC for different
gas-to-dust scale height ratios, respectively. The dust SLFC and
SGFC curves overlap over the whole η and distance ranges, so
we did not plot these two quantities in the same figure to avoid
duplication. The error is again lower than 0.5% in the whole dis-
tance range, as expected from the unique gas disc case. We want
to highlight that at long separations the dust SLFC matches the

4 For sake of simplicity in the whole article we replaced all superscripts
dd by d.

Fig. 3. Self-gravity force corrections for dust only. We show the depen-
dence of the dust force corrections for different values of the gas-to-dust
scale-height ratio (η). For the whole range of η values, the accuracy
is better than 0.5%. The dust SGFC is proportional to η at short dis-
tances (dg ≤ 1.5/η). For large values of η, this could favour gravitational
clumping. Top: SGFC. Bottom: relative error between SGFC and SLFC
(in %): 100 · |SLFC/SGFC − 1|.

gas SLFC, Ld
sg(dg) = Lgsg(dg), while at short distances, the dust

SG is η times stronger than gas SG and we get Ld
sg(dg = 0) = ηL0.

This latter equality is important because (1) if the gas SLFC is
used instead of the dust SLFC and (2) if a CSL is used instead
of a SVSL – then the dust SG is underestimated by a factor of
∼100 η at short distances. These aspects are of primary inter-
est in an astrophysical context since it is typical to see η ≳ 10,
which could have important implications for planetary formation
theories (as discussed in Sect. 5.2).

3.3. Crossed contributions

In this section, we take a = d and b = g. We highlight that the
SGFC is commutative with respect to phases a and b. This can be
demonstrated thanks to Newton’s third law or based on analytical
arguments (see Appendix B). Therefore, in the following, we will
adopt the notation Ldg

sg to refer to either the dust-gas or gas-dust

A96, page 5 of 12
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SGFC. In the context of this clarification and Eq. (6), the dust-
gas SGFC is:

Ldg
sg (dg, η) =

1
2

d2
g

∞"
u,v=−∞

e−
u2
2 e−

v2
2[

d2
g + (u − v/η)2

]3/2 du dv. (18)

Motivated by the SL formalism, we again aim to approach the
above double integral by a dust-gas SLFC, but to our knowledge,
this has never been done before. In the next sections, we explore,
for first time, what constraints should be satisfied in order to con-
struct a consistent SL, which allows us to accurately approach the
exact dust-gas SGFC.

3.3.1. Limiting cases for weak and strong layering

When layering is minimal (η = 1), the gas and dust are fully
mixed and we immediately retrieve the case of a pure gas disc:

lim
η→1

Ldg
sg (dg, η) = Lgsg(dg). (19)

On the other hand, when layering is strong (η ≫ 1), the dust layer
is infinitely thin and we get:

lim
η→+∞

Ldg
sg (dg, η) =

√
2π Ip(d2

g/4) = Lp(dg), (20)

where Ip(x) = xex[K1(x)−K0(x)] and K1 and K0 are the modified
Bessel functions of the second kind. Interestingly, Ip(d2

g/4) is a
force function in the limiting case of a planet interacting with
a gas disc, as exposed in Müller et al. (2012, Sect. 4). Accord-
ingly, we recall the quantity Lp the planet–disc force correction
(PDFC). The PDFC can be approached in the SL formalism and
using the same analytical approach conducted in Sect. 3.1 and the
results in Müller et al. (2012, Sect. 4.1), and further described in
Appendix A. Thus, we find the planet–disc SVSL:

ϵp(dg) = Hg(r)
[
1 − exp

(
−ϵ0,p d2/3

g − βdq
g

)]
, (21)

where ϵ0,p = (π/2)1/6 and the power 2/3 were obtained by ana-
lytical means, while (β, q) by curve-fitting. The latter parameters
are gathered in Table 2. We note that, contrary to our initial
guess, for strong dust layering, the dust-gas SLFC tends towards
the PDFC – rather than towards the dust SLFC. In summary,
the dust-gas SL equals the gas SL or planet–disc SL when the
gas-to-dust height, η, tends towards unity or infinity, respectively.

3.3.2. Behaviours at short and long separation

To study dust-gas SGFC at short distances, it is convenient to
take the following function:

δ(η) = lim
dg→0

Ldg
sg (dg, η)/L0. (22)

We did not succeed to express this function in terms of standard
mathematical functions, but we estimated it numerically in top
panel of Fig. 4 (blue solid line). As expected, δ is equal to 1
for η = 1 (Ldg

sg matches Lgsg) while for an infinitely thin layer of
dust this quantity tends to

√
2. Accounting for these boundary

conditions and a noticeable curve shape, we get:

δ(η) =
√

2 + (1 −
√

2) exp
[
−γ(η − 1)m]

, (23)

Fig. 4. Model functions for defining the dust-gas SVSL. Top: δ function:
model and numerical estimation with respect to the gas-to-dust height
ratio (η). Bottom: λ model with respect to η.

noting that the couple (γ,m) can be found in Table 2. This ana-
lytic model is also shown in top panel of Fig. 4 (orange dashed
line). In contrast, for long separations, the dust-gas SGFC should
satisfy:

lim
dg→+∞

Ldg
sg (dg, η) =

π

dg
. (24)

This implies that at long distances, the dust-gas SVSL is
expected to be negligible compared to the square of the dis-
tance, ϵdg(dg)/Hg(r) = o(d2

g), which is undoubtedly satisfied if
the SVSL is constant at long distances.

3.3.3. Dust-gas space-varying smoothing-length construction

Now, we have on hand all the necessary information needed to
build a consistent dust-gas SVSL. We made the choice to look
for the dust-gas SVSL in the form of a linear combination of the
previous asymptotic cases:

ϵdg(dg, η) = λ(η) ϵg(dg) + (1 − λ(η)) ϵp(dg), (25)

where λ(η) ∈ [0, 1]. For matching Sect. 3.3.1 constraints, we
chose:

lim
η→1
λ(η) = 1 =⇒ lim

η→1
ϵdg(dg, η) = ϵg(dg),

lim
η→+∞

λ(η) = 0 =⇒ lim
η→+∞

ϵdg(dg, η) = ϵp(dg). (26)
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Additionally, from the results given in Sect. 3.3.2 and the Taylor
expansion described in Appendix C, we get:

λ(η) =
ϵ0,g (1/δ(η))1/3 − ϵ0,p

ϵ0,g − ϵ0,p
. (27)

This λ function is plotted in the bottom panel of Fig. 4, where we
checked that the above-mentioned boundary conditions are met.
We also plotted, in the top panel of Fig. 5, the dust-gas SVSL,
defined in Eq. (25), for different gas-to-dust scale height ratios.
For η = 1, the dust-gas SVSL matches the gas SVSL while for
modest dust layering (i.e. η ≥ 5), the SVSL tends rapidly to the
one of the planet–disc interaction case. This allows us to use
the approximation: ϵdg(dg) ≃ ϵp(dg) for η ≥ 5. Finally, we found
that our results are mathematically consistent provided that L0 =√
π. Comparing this theoretical prediction with the value of L0

obtained numerically, we find that both results match with an
accuracy of up to six decimal points.

3.3.4. Summary for the dust-gas space-varying smoothing
length

The middle and bottom panels of Fig. 5 show the exact dust-gas
SGFC and the error between both estimations for different η val-
ues, respectively. The dust-gas SLFC and SGFC curves overlap
for the whole η and distance range, so we did not plot these two
quantities in the same figure to avoid duplication. This overlap
is also reflected in the error, which this time depends on the
dust layering: for η ∈ [1, 5[, the error is lower than 2% and for
η ∈ [5, 100], the error is lower than 0.5% for the whole dis-
tance range. Compared to both cases studied in Sects. 3.1 and
3.2, the error is slightly higher but it remains acceptable. We
want to stress that the dust-gas SLFC rapidly tends (with respect
to η) toward the planet–disc SLFC, which makes the following
simplification possible:

Ldg
sg (dg, η) = Lp(dg) or ϵdg(dg, η) = ϵp(dg) if η ≥ 5.

(28)

This approximation could simplify the numerical treatment.

4. Numerical treatment

The main goal of our study is to implement an accurate SG com-
putation method for multi-fluids in 2D numerical codes. This
could be beneficial for the 2D version (r, θ) of hydrodynam-
ical codes such as RoSSBi3D (Rendon Restrepo et al. 2022),
FARGO (Masset 2000) or Athena (Stone et al. 2008). We start by
treating the singularity for vanishing separations, responsible of
numerical divergences, then we explain explicitly under which
conditions results of Sect. 3 could be used for estimating SG
thanks to FFT methods. Finally, we quantify the computational
costs for 2D N-fluid simulations with SG.

4.1. Removing numerical divergences

From Eq. (11), it is obvious that ||∇Ψab
ϵ || ∝ d−1

g is valid at short
separations, which makes it necessary to have a product with a
tapering function, so as to cancel SG for vanishing separations.
The tapering function, f , must be equivalent to dp

g at short dis-
tances, with p > 1. On the other hand, it should be equal to unity
at large distances. In order to avoid losing the accuracy achieved

Fig. 5. Force corrections and space-varying smoothing-length for dust-
gas. We show the dependence of all quantities for different values of
the gas-to-dust scale-height ratio (η). For thin (η ≫ 1) and thick (η = 1)
dust layers, the SVSL tends towards the one of the gas and of the planet,
respectively. At short distances the dust-gas SLFC is restricted to the
interval [L0,

√
2L0]. The accuracy of the SL method for the gravitational

interaction of the gas disc with the embedded dust is better than 2% for
the whole separation range. Top: SVSL. Middle: SGFC. Bottom: relative
error between SGFC and SLFC (in %): 100 · |SLFC/SGFC − 1|.
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Fig. 6. Normalised Plummer potential gradient with and without a
tapering function. In the SVSL method, the introduction of a taper-
ing function (Eq. (29)) avoids the divergence of the Plummer potential.
At the same time, the low tapering length, ds(= 3/127 ≃ 0.024) ensures
that most of the SG contribution is not lost over short distances (dg ≤

1.5). Under the CSL approach (red dotted), the gradient is cancelled out
at the singularity, although most of the short distance contribution to the
SG is lost.

in the steps described in Sect. 3, the tapering length should be
approximately as long as the finest numerical resolution in the
grid: rs ∼ 3 min(∆r, r∆θ)5,6, where ∆r and ∆θ are the resolution
in the radial and azimutal directions, respectively. To satisfy the
above constraints, we arbitrarily chose p = 2 and the tapering
function as follows:

f (dg) = 1 − exp

−1
2

(
dg

ds

)2 ∼dg→0

1
2

(
dg

ds

)2

, (29)

where ds = rs/Hg is the normalised tapering length. In Fig. 6,
we show the normalised gradient of the gas Plummer potential
with (orange dashed line) and without (blue solid line) the taper-
ing function correction for ds = 3/127. We also plotted the same
quantity under a CSL assumption (red dotted line). Such a taper-
ing length choice was motivated by the high resolution achieved
by Rendon Restrepo & Barge (2022), namely: 146 cells/Hg and
127 cells/Hg in the radial and azimuthal directions. As expected,
both Plummer potential gradients exhibit the same behaviour
for dg ≳ ds but only the corrected one converges towards 0 for
vanishing distances, which should avoid numerical divergences.
Regarding the CSL assumption, we clearly see that SG is under-
estimated for dg ≤ 1.5, but there is no need to resort to a tapering
function since the potential gradient is cancelled out analyti-
cally at the singularity. This may be the reason why Müller et al.
(2012) did not mention that there were 100% errors with the CSL
method at short separations.

4.2. Numerical calculation with FFT methods

An important question regarding our results is whether FFT
methods can still be used when we resort to a SVSL. Indeed,
the classic SG computation in 2D was based on a CSL.
We find it instructive to recall here how SG is computed
when including a SVSL and a tapering function. Guided by

5 In cylindrical coordinates.
6 The factor 3 was chosen for ensuring a safety margin.

Baruteau & Masset (2008) and Surville (2013, in french) we get
the radial component of the SG mass force (divided by Σb)7:

−
∇Φab

ϵ · er

π

=

"
disc

f (dg)
Σa(r′)(r − r′)[

s2 + ϵab(dg, r)2
] 3

2

es · err′dr′dθ′

=

"
disc

f (dg)
Σa(r′)

((
r
r′

)
− cos (θ − θ′)

)
dr′
r′ dθ′[

1 +
(

r
r′

)2
− 2

(
r
r′

)
cos (θ − θ′) + δϵ2ab

] 3
2

,

(30)

where:

δϵab =
ϵab(dg, r)

r′
=

r
r′

hg(r)
ϵab(dg, r)

Hg(r)
, (31)

dg =
r′

r
1

hg(r)

√
1 +

( r
r′

)2
− 2

( r
r′

)
cos (θ − θ′), (32)

and hg(r) = Hg(r)/r is the gas disc aspect ratio. We aim to write
the integral, defined by Eq. (30), as a convolution product that is
only possible provided that the tapering function, f , and the ratio
δϵab could be written as r

r′ and θ− θ′ functions. This constraint is
satisfied if the disc aspect ratio is a spatial constant, ha(r) = h0,a,
in the whole simulation box. Within this condition, the radial
component of the SG force is:

−
∇Φab

ϵ · er

π
=

"
disc

Σa(X′, θ′)Gab
r (X − X′, θ − θ′) dX′dθ′, (33)

where:

Gab
r (X − X′, θ − θ′)

=
f (X − X′, θ − θ′)

[
e(X−X′) − cos (θ − θ′)

]
[
1 + e2(X−X′) − 2e(X−X′) cos (θ − θ′) + δϵab(X − X′, θ − θ′)2] 3

2

,

is the modified radial Green’s function where we performed the
variable substitution: r = eX and dr = eX dX. For the azimutal
component, the calculation is similar and we obtain:

−
∇Φab

ϵ · eθ
π

=

"
disc

Σa(X′, θ′)Gab
θ (X − X′, θ − θ′) dX′dθ′, (34)

where:

Gab
θ (X − X′, θ − θ′)

=
f (X − X′, θ − θ′) sin (θ − θ′)[

1 + e2(X−X′) − 2e(X−X′) cos (θ − θ′) + δϵab(X − X′, θ − θ′)2] 3
2

is the modified azimutal Green’s function. The rewriting of both
integrals, expressed via Eqs. (33) and (34), permits us to finally
write out the equations in terms of a set of Fourier transforms:

f a→b
2D,ϵ (r) · er = Σb(r)F −1

[
F (Σa) ∗ F

(
Gab

r

)]
f a→b
2D,ϵ (r) · eθ = Σb(r)F −1

[
F (Σa) ∗ F

(
Gab
θ

)]
,

(35)

7 We took G = 1.
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where F and F −1 are the Fourier transform operator and its
inverse. The symbol ∗ denotes the convolution operator. In prac-
tice, such quantities are computed numerically thanks to fast
Fourier modules which rapidly accelerate numerical computa-
tions. For instance, in the 2D version of RoSSBi3D (Rendon
Restrepo et al. 2022), this computation is made possible thanks
to the FFTW3 library (Frigo & Johnson 2005). It is important
to highlight that the use of Fourier transforms is possible if:
(1) a logarithmic mesh is used in the radial direction; this con-
dition stems from the radial variable substitution that enabled us
to obtain the formulation with the modified Green’s functions.
Furthermore, (2) the function Σa must be periodic in radial and
azimutal directions in order to be able to use Fourier transforms.
Periodicity is obviously satisfied in the azimutal direction, but in
the radial direction this is not necessarily the case. Such a peri-
odicity is artificially ensured thanks to a zero-padding approach:
the radial domain is doubled and the function Σa is set to 0 in
half of the domain. See Surville (Fig. III.10 2013, in french) for
an example. Finally, it is necessary for (3) the disc aspect ratio
of gas and dust to be constant with respect to r (but it could be
a time-varying function). If such condition is not satisfied, the
formulation as a convolution product is not possible.

We take this opportunity to clarify that the aforementioned
assumption of a constant disc aspect ratio used in this section
only permits us to resort to FFT methods for accelerating the
numerical calculations. This condition is not new since it was
already implicit in the classical calculation of the SG by FFT.
For general scale heights, a direct summation in the radial direc-
tion and Fourier transforms in the azimuth direction, ensured by
the periodicity, is a straightforward solution.

4.3. Computational costs

For SG simulations, the computational endeavour is a non-
negligible aspect, particularly for high-resolution simulations.
For concision and without any loss of generality, we only treat
the computation of SG in the radial direction and we do not
account the Fourier transforms of the modified Green’s func-
tions, since they are computed only once. For the case of
a bi-fluid simulation, the next Fourier transforms should be
performed at each time step:
Gas into gas:

F (Σg) and F −1
[
F

(
Σg

)
∗ F

(
G
g
r

)]
, (36)

Dust into dust:

F (Σd) and F −1
[
F (Σd) ∗ F

(
Gd

r

)]
, (37)

Dust into gas:

F (Σd) and F −1
[
F (Σd) ∗ F

(
G

dg
r

)]
, (38)

Gas into dust:

F (Σg) and F −1
[
F

(
Σg

)
∗ F

(
G

dg
r

)]
. (39)

From the recapitulation above, we observe that the Fourier trans-
forms of gas and dust densities are duplicated, which reduces
the total number of Fourier operations to six during a numerical
treatment. Therefore, the numerical endeavour for computing SG
for a bi-fluid is three times larger with respect to the case of a
single fluid. In general, for N fluids with different scale heights

and interacting through SG, the number of required Fourier
transforms is:

N2 + N =
(
2N2

)︸︷︷︸
All N-tuples combinations

−
(
N2 − N

)︸    ︷︷    ︸
Duplicates

. (40)

Compared to standard self-gravitating simulations on a unique
gaseous phase, the computation time spent in the self-gravity
module is crudely multiplied by a factor ∼N2/2 for large N.
Of course, this amount can be decreased assuming that some of
the involved fluids have the same scale heights.

5. Discussion

In this section, we treat the possible impact of our findings
regarding planet migration and the early stage of planetary for-
mation. Then we identify the limitations of the SVSL approach
due to our initial assumptions and to the specificity of the studied
problem. Finally, we propose possible ways to improve and test
our model.

5.1. Consequences for planet–disc interaction

It is widely known that planets can migrate due to tidal inter-
actions with the gas disc. This is the case of type I migra-
tion, whereby the planet can exchange angular momentum with
Lindblad and co-rotation resonances (Baruteau & Masset 2013,
for a review). In 2D numerical simulations, the value ϵp/Hg(r) =
0.3–0.6 is often used to match the total torque exerted on a planet
in 3D simulations (Masset 2002; Tanaka et al. 2002).

Similarly to our results of Sect. 3.1, the planet–disc SLFC is
not well captured by a CSL for separations inferior to ∼1.5 Hg.
Although we do not question the agreement between the 2D
and 3D simulations of the planet–disc interaction, we do believe
that our SVSL may be better suited than an adjustment factor.
Therefore, it might be constructive to verify whether (1) the
results of 3D simulations can be retrieved using our SVSL and
(2) to check whether the widely used ϵp/Hg(r) = 0.3–0.6 factor
could be retrieved from an analytical basis stemming from our
SVSL. We also think that our SVSL approach could be helpful
for addressing 2D simulations of low-mass planets embedded
in a self-gravitating disc. This would, however, require some
improvements: the vertical layering due to SG must be accounted
for, as discussed in Sect. 5.3.1, and the vertical stratification of
the gas disc due to the planet gravitation must be assessed, as
noted by Müller et al. (2012). Both aspects raised in this para-
graph require a more detailed work, which is out of the scope of
present paper.

5.2. Consequences for planet formation theories

One attractive planetary formation scenario is based on the per-
sistence of gaseous vortices in PPDs. Its main interest is in
the strong capture efficiency of the vortices and their ability to
confine large concentrations of dust grains that could collapse
to form planetesimals or a planetary core (Barge & Sommeria
1995). Even if observational findings seem encouraging in this
regard (Varga et al. 2021), numerical simulations have not yet
concluded that vortices could form objects that are bound by
gravity. The results of the present paper offer the possibility to
carry out new numerical simulations that correctly account for
SG in the gas and dust components of PPDs. In particular, we
expect that these new simulations could answer the questions

A96, page 9 of 12



A&A 675, A96 (2023)

raised by the vortices. Indeed, as demonstrated in Sect. 3.2, dust
SG could be underestimated by a factor of ∼2000 for η = 20
at short separations. At the same time, the estimation of the
dust-gas SLFC could allow us to quantify (with an acceptable
level of accuracy) a possible gaseous envelope capture by dust
clumps. From theoretical analyses, it has been found that SG
inhibit vortices formation by a Rossby wave instability (Lovelace
& Hohlfeld 2013) and this was later confirmed via numerical
simulations (Baruteau & Zhu 2016; Regály & Vorobyov 2017;
Tarczay-Nehéz et al. 2022). In the latest numerical work to date,
Rendon Restrepo & Barge (2022) also found that vortices cannot
survive in massive PPD and they provided a stability criterion
that vortices should satisfy in order to resist SG destabilising
effects. In light of our findings, the results of previous simula-
tions should be checked anew to better understand the extent to
which the SVSL affects theoretical predictions on the survival of
vortices in self-gravitating PPDs.

5.3. Limitations, improvements, and tests

The limitations of our model are inherent to the initial assump-
tions we have made about the vertical structure of the disc in
relation to gas and dust stratification.

5.3.1. Stratification and disc evolution

The SGFC studied in this paper is based on the vertical inte-
gration of Eq. (6) in the particular case of a vertically isothermal
disc. However the vertical structure could be affected by different
mechanisms, which implies that for any vertical stratification dif-
ferent from the Gaussian stratification, the entire work performed
in this paper should be repeated and adapted. For instance, this is
the case when including the disc vertical SG for gas (but neglect-
ing the vertical component of the central object gravity), which

modifies the Gaussian distribution into: cosh
(

z
QHg

)−2
, where Q

is Toomre’s parameter (Lodato 2007). A similar layering should
occur for the dusty disc and we also expect that the crossed
gravitational interaction between both phases could impact their
respective vertical stratification. Indeed, gas SG could decrease
dust scale height by a factor of ∼2 (Baehr & Zhu 2021) and we
expect that a strong dust layering will also modify the gas vertical
structure in correlation with the dust-to-gas density ratio.

The global vertical structure of PPDs evolves over time due
to accretion heating (Schobert et al. 2019) and stellar irradia-
tion (Wu & Lithwick 2021), amongst other effects. Instabilities
could also generate time variable structures which could affect
(locally) the vertical stratification of the flow. This was reported,
for instance, in 3D vortices simulations (Meheut et al. 2010) for
rings and gaps generated by poloidal magnetic winds (Suriano
et al. 2017) and for spiral density waves (Riols & Latter 2018).
The method described in this paper is not limited to a steady
vertical stratification and it is compatible with the global and
local time evolution of the vertical structure, provided that the
time dependence between gas and dust scale heights is known.
This could be done, for instance, with the 2D1D strategy adopted
by Crida et al. (2009). However, in the particular case of spa-
tially constant aspect ratios, ha(r, t) = ha(t), the computational
benefits from the FFT method could be lost. Indeed, this would
require us to perform the Fourier transforms of Green’s functions
at each time step instead of a unique computation for a steady
vertical stratification. For a simulation with only gas, this would
result in three Fourier transforms at each time step (instead of

two). We believe that for other SG computational methods, the
computational costs would be unaffected.

5.3.2. Layering of the dust particles

In this paper, the dust component of PPDs is considered as a
pressure-less fluid that is sufficiently mixed by the turbulent
motions of the gas disc to be maintained in an equatorial sub-
layer. This assumption requires that the dust particles and gas
aerodynamic coupling are governed by a Stokes number less
than unity and that dust is adequately diluted in the gas to avoid
frequent mutual interactions (if the dust-to-gas mass-ratio ≲1)
(Garaud et al. 2004). We also assumed that small-scale turbu-
lence is maintained in the gas disc by a mechanism that we ended
up disregarding. It is interesting to note that outside the bi-fluid
pressure-less assumption, turbulent stirring may be replaced by
collisional and/or gravitational stirring with the formation of
a sub-layer of solid particles, whose scale height is different
from the one deduced from turbulent stirring in the introduction.
In such cases, the necessary smoothing lengths will be different
– but the SVSL approach should remain unchanged.

5.3.3. Additional test

A relevant test for our results consists of a comparison with
the vertically averaged SG obtained thanks to a 3D simulation.
In order to satisfy our assumptions, the 3D disc should be ver-
tically isothermal and the vertical SG should be discarded. In
addition, for the bi-fluid version, the dust layer should be as
smooth as possible. Such a simulation is beyond the scope of
current paper, but still remains interesting lead that we want to
explore in the near future.

6. Conclusions

In this work, we reveal the contradictions and shortcomings of
the CSL method commonly used to compute the contribution
of SG in 2D numerical simulations. In particular, we found that
from short to intermediate separations (dg ≤ 1.5), the SG force
is analytically underestimated with an error that reaches 100%
at the singularity. We corrected these inconsistencies replacing
the CSL, ϵg = const., by a space dependent function, ϵg = ϵg(dg)
(SVSL). We found that for a gas disc, the SVSL dependence that
better fits the exact SGFC is:

ϵg(dg) =
√

2 Hg(r)
[
1 − exp

(
−
ϵ0,g
√

2
d2/3

g − αdn
g

)]
, (41)

where ϵ0,g = π1/6 and (α, n) can be found in Table 2. This SVSL
approach can be extended to the dust disc using the following
dust SL:

ϵd(dg, η) =

√
2 Hg(r)
η

[
1 − exp

(
−
ϵ0,g
√

2
(ηdg)2/3 − α(ηdg)n

)]
, (42)

where η = ⟨Hg⟩/⟨Hd⟩ is the gas-to-dust height ratio. As a side
result, we also found the planet–disc SVSL:

ϵp(dg) = Hg(r)
[
1 − exp

(
−ϵ0,p d2/3

g − βdq
g

)]
, (43)

where ϵ0,p =
(
π
2

)1/6
and (β, q) can be found in Table 2. The

crossed gravitational interaction of the gas with the embed-
ded dust can also be evaluated through the SL method.
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We constructed this dust-gas SL from a linear combination of
aforementioned planet–disc and gas SVSL:

ϵdg(dg, η) = λ(η) ϵg(dg) + (1 − λ(η)) ϵp(dg), (44)

where the analytical expression of λ is given in Eq. (27). All
these new expressions for the SVSL are valid for any scale height
if the stratification is Gaussian and remain compatible with the
common FFT method for evaluating SG in 2D hydrodynamical
simulations, provided that the gas and dust disc aspect ratios are
constant. Finally, the use of a tapering function is required to
avoid numerical divergences.

The proposed SVSL correction decreases the error up to fac-
tors 200 with respect to the latest CSL prescription proposed by
Müller et al. (2012). In particular, our SVSL allows us to match
the SGFC with a high accuracy, even at the singularity (dg → 0).
Regarding the dust SLFC, we found that it is proportional to η at
short separations. This result combined with the improvement
brought by the SVSL method demonstrates that dust SG was
generally underestimated by a factor ∼100 η at short separations
(compared to the CSL only based into the gas SL).

Our planet–disc SVSL could affect the torque exerted by the
self-gravitating disc on a planet, which suggests that type I planet
migration could be impacted. We also think that the improve-
ments we have made in the computation of the SG terms will be
decisive in future 2D simulations of PPDs inhabited by a large-
scale vortex. Hence, we forecast a much better description of the
evolution of the dust-gas mixture in the core of the vortices with
our model than with standard ones; we also expect significant
consequences in the simulations of planetesimal construction.
Indeed, on the one hand, dust SLFC could favour the gravita-
tional binding of the dust clumps trapped in the vortex and, on
the other hand, dust-gas SLFC allows us to follow the coupled
evolution of dust and gas in the various clumps. We speculate
that gas could be dragged with dust during the collapse, before
being trapped in a gaseous envelope around a dusty core.
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Appendix A: Gas and planet space varying
smoothing length derivation

Fig. A.1. Gas and planet–disc force corrections. For each force correc-
tion, we plotted the exact SGFC evaluated numerically (blue solid line)
and the SLFC approximation accounting only for the analytical correc-
tion (orange dashed line) or accounting for an additional numerical fit
(black cross markers). Top: Gas force correction. Bottom: Planet-disc
force correction.

From the results of Müller et al. (2012), we chose to look for a
SVSL of the form:

ϵg(dg)/Hg(r) =
√

2
[
1 − exp

(
−ϵ0,gdk

g

)]
, (A.1)

with the constraint Lgϵ (dg = 0) = L0. From a Taylor expansion we
get:

Lgϵ (dg) ∼
dg→0

πd2
g[

d2
g + ϵ

2
0,gd

2k
g

]3/2 . (A.2)

The SLFC converges towards L0 if (and only if) k = 2/3 and
ϵ = [π/L0]1/3. This model can be highly improved thanks to an
additional term in the exponential under the form −αdn

g . The
values of (α, n) were obtained by numerical fitting to the exact
SGFC. In Fig. A.1 (top panel), we compare the exact SGFC (blue
solid line) with the SVSL obtained only by analytical means
(orange dashed line) or the SVSL, on which we also introduced
the numerical fit (black cross markers). We observe that the

unique analytical correction decreases the error to less than 5%
for the whole distance range.

The same procedure was used for estimating the SVSL of
a planet interacting with a disc. In Fig. A.1 (bottom panel), we
compare the SVSL obtained only by analytical means (orange
dashed line) with the SVSL, which also includes the numerical
fit (black cross markers). Again, the accuracy of the planet–disc
SVSL method is excellent compared to the CSL method.

Appendix B: Commutativity of the self-gravity
force correction for different phases

Thanks to the principle of action-reaction applied to the whole
dusty disc and the whole gas disc 8 we get:"
disc

Fd→g
sg (r)d2r = −

"
disc

Fg→d
sg (r′)d2r′, (B.1)

which implies that Ld→g
sg (dg, η) = Lg→d

sg (dg, η). This commutativ-
ity is also easily recovered from Eq. 6:

Lg→d
sg (dg, η) =

1
2

d3
d

dg

∞"
u,v=−∞

e−
u2
2 e−

v2
2[

d2
d + (u − ηv)2

]3/2 du dv

but dd = ηdg

=
1
2

d2
g

∞"
u,v=−∞

e−
u2
2 e−

v2
2[

d2
g + (u/η − v)2

]3/2 du dv

= Ld→g
sg (dg, η).

(B.2)

As a consequence, throughout the whole paper, we only use the
notation Ldg

sg .

Appendix C: Derivation of λ and L0

The Taylor expansion of Eq. 11, where a=d and b=g, in the
vicinity of dg ∼ 0, is:

Ldg
sg (dg, η) ∼

dg→0

π[
λ(η)(ϵ0,g − ϵ0,p) + ϵ0,p

]3 . (C.1)

However, the SLFC also satisfies lim
dg→0

Ldg
sg (dg, η) = δ(η)L0 (Eq.

22). The equalisation of both equations leads to:

λ(η) =
ϵ0,g (1/δ(η))1/3 − ϵ0,p

ϵ0,g − ϵ0,p
. (C.2)

Since δ(η = 1) = 1, it is immediately evident that λ(η = 1) = 1.
The constraints of Sect. 3.3.1 require that the λ function is can-
celled out for infinite gas-to-dust scale height ratios. Considering
that δ(η→ ∞) =

√
2, the above condition is only possible if:

ϵ0,p

ϵ0,g
=

(
1
2

)1/6

, (C.3)

where ϵ0,g =
(

L0
π

)1/3
and ϵ0,p =

(
π
2

)1/6
. The mathematical relation

C.3 implies the constraint L0 =
√
π.

8 This rationale also works for an elementary dust volume and an ele-
mentary gas volume – but it does not work between an elementary
volume of dust and a disc of gas (and vice-versa).
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