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Introduction: The Dragonfly mission, selected 

through NASA's New Frontiers program, will improve 

our understanding of Titan's chemistry and geology by 

sending a rotorcraft to its equatorial dune fields in the 

mid-2030s (expected launch in 2027) [1, 2]. The land-

ing site is in the Shangri-la dune field near the 80-km-

wide Selk crater (6.5°N, 161.5°E), which features trac-

es of erosion by both aeolian and fluvial processes [3, 

4]. The region has been imaged by the Cassini RADAR 

(Ku band, 2.2 cm) in Synthetic Aperture Radar (SAR) 

mode at incidence angles varying from 5° to 72° and 

polarizations varying from parallel to perpendicular (to 

the incidence plane). We take advantage of this dataset 

to fit backscatter models and extract new constraints on 

the dielectric constant, root-mean-square (rms) slope, 

and scattering albedo.  

Methods: The region of interest around Selk crater, 

defined by [2], has been imaged by the Cassini 

RADAR on 9 occasions, brought together in the mosa-

ic shown in Fig. 1a. From this data, we mapped 6 ter-

rain units (Fig. 2b): crater rim, crater ejecta, hummocky 

terrains, plains, dune fields, and dark terrains (in order 

of decreasing radar brightness). These terrains are 

largely the same as those identified and mapped by [2] 

and [4], with the exception of the “dark terrains”, 

which we define as very radar-dark regions located 

near dune fields but without clearly apparent dune 

structures. Within dune fields, the dunes and interdune 

regions were separated using the method described in 

[5], adding two more terrains (which are combined in 

the dune fields unit). The normalized backscatter cross 

section (σ0) values of each unit within a 0.25° grid 

were averaged and plotted against the incidence angle 

in order to assemble backscatter curves.  

The dominant mechanism contributing to radar 

backscatter varies with incidence angle: quasi-specular 

scattering on facets oriented towards the radar domi-

nates at low (≲30°) angles, whereas at higher angles 

diffuse scattering from surface roughness and subsur-

face structures takes over. The quasi-specular compo-

nent has the dielectric constant and surface rms slope 

as parameters, and tests three different scattering laws 

previously applied to Titan: Hagfors, exponential, and 

Gaussian [e.g., 6, 7]. For the diffuse component, we 

used either the empirical Acosn model [6, 7] or the 

simple but physical single-scattering Swift model [8], 

which can also derive the dielectric constant from the 

degree of polarization. All six quasi-specular + diffuse 

model combinations were fit to the data to find the best 

dielectric constant, rms tilt angle, and scattering albe-

do. We note that the rms tilt angle is measured at the 

wavelength scale (centimetric) and could be due for 

example to coarse gravel. Although absolute values of 

these parameters are model-dependent, the relative 

values from one terrain to another indicate real varia-

tions in surface properties. 

Results and interpretations: The parameters de-

rived for each terrain are represented graphically in 

Fig. 2. The interpretations of these values are summa-

rized below:  

 Dunes and plains exhibit the same microwave scat-

tering properties both inside and outside the crater, 

indicating likely aeolian infilling and/or crater rim 

erosion bringing the same materials into the crater 

as are available elsewhere. 

 The crater rim is among the brightest terrains on 

Titan and exhibits strong diffuse scattering, con-

sistent with an icy (low-loss) subsurface with bur-

ied scattering structures, although surface rough-

ness likely also plays a role. 

 The dune fields and especially the dunes have a 

low dielectric constant (between 1.5 and 2.2 medi-

an values for all models) consistent with previous 

work [e.g., 6, 9, 10], a low rms tilt angle, and little 

diffuse backscatter. These properties all point to 

organic sand. Meanwhile, the interdune regions 

have a higher dielectric constant, indicating a like-

ly icier and/or less porous surface. 

 The dark regions have a low dielectric constant 

and little to no diffuse scattering. This is consistent 

with organic sand over depths thicker than ~1 m, 

and likely corresponds to a sediment sink due to 

converging winds or low topography. 

 The active radar data can be used to derive the 

dielectric constant not only from the shape of the 

quasi-specular component, but also from high-

incidence data at different polarization angles, us-

ing Fresnel’s equations in a way similar to the 

method used on passive microwave radiometry 

[10]. The disparity between dielectric constants 

derived from backscatter modeling (up to ~4.5 for 

some terrains) and polarization studies (<2.2 eve-

rywhere) suggests either the existence of a depo-
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larizing process (surface roughness or multiple 

scattering, [10]) or that the quasi-specular compo-

nent inaccurately models Titan’s surface.   
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Figure 1: Left: mosaic of the incidence angle corrected SAR swaths within the region of interest. Right: geomorphological map 

of the region of interest. For easy comparison with previous work, we use a color scheme similar to Malaska et al. (2016).  

 

 
Figure 2: Values of the effective relative dielectric constant (from the quasi-specular component), rms tilt angle at the wave-

length scale, and scattering albedo derived for all 8 terrains and for all 6 combinations of quasi-specular and diffuse scattering 

mode.  Note that the dune and interdune regions are mixed together in the dune fields unit. 
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