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ABSTRACT

Context. The velocity dispersion ellipsoid of gas in galactic discs is usually assumed to be isotropic. Under this approximation, no
projection effect occurs in the random motions of gas, as traced by the line-of-sight velocity dispersion. However, it has been recently
shown that random motions of the neutral hydrogen gas of the Triangulum galaxy (M 33) exhibit a bisymmetric perturbation which is
aligned with the minor axis of the galaxy, suggesting a projection effect.
Aims. To investigate if perturbations in the velocity dispersion of nearby discs are comparable to those of M 33, the sample is ex-
tended to 32 galaxies from The H i Nearby Galaxy Survey (THINGS) and the Westerbork H i Survey of Spiral and Irregular Galaxies
(WHISP).
Methods. We studied velocity asymmetries in the disc planes by performing Fourier transforms of high-resolution H i velocity dis-
persion maps corrected for beam-smearing effects, and we measured the amplitudes and phase angles of the Fourier harmonics.
Results. In all velocity dispersion maps, we find strong perturbations of first, second, and fourth orders. The strongest asymmetry is
the bisymmetry, which is predominantly associated with the presence of spiral arms. The first order asymmetry is generally orientated
close to the disc major axis, and the second and fourth order asymmetries are preferentially orientated along intermediate directions
between the major and minor axes of the discs. These results are evidence that strong projection effects shape the H i velocity dis-
persion maps. The most likely source of systematic orientations is the anisotropy of velocities, through the projection of streaming
motions that are stronger along one of the planar directions in the discs. Moreover, systematic phase angles of asymmetries in the H i
velocity dispersion could arise from tilted velocity ellipsoids, that is when the velocities are correlated. We expect a larger incidence
of correlation between the radial and tangential velocities of H i gas with |ρRθ | ∼ 0.6, which could be tested against the kinematics of
the youngest stellar populations of the Milky Way.
Conclusions. H i velocity dispersions cannot be considered devoid of projection effects. The systematic orientations of asymmetries
can be explained by the projection of unresolved streaming motions mainly arising from spiral arms. Our methodology is a powerful
tool to constrain the dominant direction of streaming motions and thus the shape of the velocity ellipsoid of H i gas, which is de facto
anisotropic at the angular scales probed by the observations. The next step is to study the shape of the velocity ellipsoids of molecular
and ionised gas and their link with galaxy mass and/or morphology, in addition to extending the sample size.

Key words. galaxies: fundamental parameters – galaxies: kinematics and dynamics – galaxies: spiral – galaxies: structure –
galaxies: ISM

1. Introduction

In discs of galaxies, large-scale perturbations such as bars, spi-
ral arms, warps, or lopsidedness make the orbits non-circular.
They generate streaming motions, which are asymmetric radial
and tangential velocities in the stellar and gaseous media in
galactic discs (e.g. Visser 1980). This is beautifully illustrated
from an observational viewpoint via the kinematics of millions
of individual stars in the Large Magellanic Cloud (LMC), for
which the Gaia Collaboration used astrometry to deduce the
velocity fields of both the radial and tangential components of

a disc galaxy (Gaia Collaboration 2016, 2018a,b, 2021a), and
from which significant asymmetries are observed in the veloc-
ity maps, as caused by the bar and spiral arms of the LMC
(Gaia Collaboration 2021b).

The study of kinematic asymmetries has become relevant
in galactic dynamics, as it impacts our knowledge of the struc-
ture of dark matter halos and the comparison with simulations
made in a cosmological context. Interstellar gas is thought to
follow circular orbits as it undergoes dissipative collisions. If
asymmetries are important, then there is no guarantee that rota-
tion curves perfectly trace the mass distribution of galaxies.
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Asymmetries could affect the inner slope of gaseous rotation
curves and require a model including asymmetries to determine
the scale parameters of dark matter halos (Hayashi & Navarro
2006; Oman et al. 2019). Strategies have been developed
to quantify asymmetries in gaseous velocity fields in the
last 25 years. One approach is to measure harmonic veloc-
ity components that overlap with the axisymmetric motions
(Schoenmakers et al. 1997; Krajnović et al. 2006). Early works
focussed on the large-scale kinematic lopsidedness in H i veloc-
ity fields, a perturbation of first order that causes the kinematic
centre to drift with radius. In this case, rotation curves from
the approaching and receding halves are not consistent with
each other. This could be due to a misalignment between the
axes of the disc and the host dark matter halo (Swaters et al.
1999). Trachternach et al. (2008) estimated asymmetries for a
large sample of H i velocity fields to study the elongation of the
gravitational potential. They found that the asymmetries do not
alter the mass distribution inferred from the axisymmetric rota-
tional motions. Spekkens & Sellwood (2007) measured bisym-
metric perturbations in CO and Hα velocity fields to highlight
the importance of bisymmetric flows caused by a stellar bar on
the inner shape of the rotation curve. Chemin et al. (2016) mod-
elled the harmonics observed in the Hα velocity field of a grand
design spiral through direct derivation of gravitational potentials
and assessed the impact of asymmetries on the structure of the
host dark matter halo.

While studying streaming motions in ordered velocity fields
has become routine, little is known about asymmetries in maps
of apparently random motions of interstellar gas, as traced by
the line-of-sight velocity dispersion (σlos). The velocity dis-
persion can be used to assess the dynamical heating of discs,
and to estimate the support due to pressure and how it com-
pares with rotational motions (e.g. Combes & Becquaert 1997;
Koyama & Ostriker 2009; Bershady et al. 2010; Oh et al. 2015).
The main reason dispersion has not been studied extensively is
that σlos mixes turbulence, asymmetric drift, shear, superposi-
tion of multiple elliptical orbits, and unresolved motions on rela-
tively large scales. The local velocity dispersion ellispoid of gas
is also usually considered isotropic because the gaseous compo-
nent dissipates energy through collisions between clouds in all
directions. Within this hypothesis, no projection effect occurs in
the random motions of gas, as traced by σlos, unlike that of col-
lisionless stars. Furthermore, the projection of the velocity ellip-
soid can be degenerate if the ellipsoid is anisotropic. The finite
velocity and spatial resolution further complicate the interpreta-
tion of maps of σlos.

In a recent study of the Local Group spiral M 33,
Chemin et al. (2020) found perturbations in the random motions
through Fourier transforms of σlos maps of 21-cm H i data at var-
ious angular resolutions. Bisymmetry dominated in the outer half
of the disc with a phase aligned with the minor axis of M 33. The
question of whether this is a typical characteristic of spiral galax-
ies in general remains open. One possibility could be that these
observations are due to the influence of an anisotropic velocity
ellipsoid, which harbours a dominant radial component, as sug-
gested by these authors. The goal of this study is to determine
whether what was observed in M 33 is a general feature of spiral
discs.

Our goal is to systematically search for asymmetries in
velocity dispersion maps, identify their origin, and evaluate the
consequences for galactic dynamics. In this paper, we present
the first census of asymmetries in the velocity dispersion of H i
gas in local, massive discs. The samples used for this analysis
are described in Sect. 2. The asymmetries are measured through

fast Fourier transforms (FFTs) of velocity dispersion maps from
interferometric data with a careful treatment of the effect of beam
smearing (BS hereafter), as detailed in Sect. 3. The properties of
the asymmetries are presented in Sect. 4, and the discussion of
their origin is given in Sect. 5. Finally, we provide a synthesis
and conclusions in Sect. 6.

2. Selection of a working sample

Several factors limit the modelling of spatially resolved velocity
dispersions. The smearing induced by the finite telescope beam
can produce systematic asymmetries in velocity dispersion maps
(see Sect. 3). For a given instrumental configuration of spatial
and spectral resolution and sampling, the BS effect increases
with the distance and inclination of the galaxies.

For these reasons, our sample is from The high-resolution
H i Nearby Galaxy Survey (THINGS, Walter et al. 2008). With
galaxy distances between 2 and 15 Mpc, THINGS yields lin-
ear resolutions up to ∼900 pc. The velocity resolution is 2.6
or 5.2 km s−1, and the pixel size 1.5′′, except for the galaxy
NGC 2403 (1′′). We have used the three moment maps of the
integrated H i emission (0th moment), line-of-sight velocity and
velocity dispersion (1st and 2nd moments, respectively), which
are made available by the THINGS collaboration1. In particu-
lar, we used the data obtained with natural weighting. We how-
ever verified that the conclusions of this analysis are not changed
by using higher resolution kinematics, from maps obtained with
robust weighting. A discussion of the impact of the angular res-
olution can be found in Sect. 5.2.3.

To perform the Fourier analysis of velocity dispersion fields,
robust constraints on the geometry of the discs are necessary,
and particularly the variation of the inclination and the position
angle of the discs as a function of galactocentric radius. The
disc warping parameters for 19 of the 34 THINGS galaxies have
been measured with tilted-ring models of the velocity fields by
de Blok et al. (2008). Among several methods applied to obtain
velocity fields from the H i data cubes, these authors adopted
results from Hermite h3 polynomials fittings, due to their stabil-
ity at low signal-to-noise ratio (S/N). They explained that two
masks were successively applied to filter low-quality regions
from the velocity fields. The first one consisted in rejecting H i
profiles (i) for which the fitted maximum intensity was lower
than 3σch, with σch being the average noise in the profile outside
of the emission line, and (ii) for which the dispersion of the fit-
ted function was lower than the channel separation. The second
mask consisted in a sigma-clipping on the H i column density
maps to suppress noise pixels and to exclude regions inside rmin
and outside rmax, which are respectively the innermost and out-
ermost radii of the tilted-ring models fitted of the final velocity
fields. They finally measured the warp parameters and rotation
curves, adopting a sampling of two points per synthesised beam
size.

We masked the moment maps following de Blok et al.
(2008) and adopted the parameters of their tilted-ring models.
This makes our gaseous and kinematic distributions, and the
galaxy cylindrical frames fully consistent with their analysis. A
minor difference with their study is that we considered sampling
the radial profiles with one data-point per beam only, to min-
imise the correlation between adjacent rings. Finally, among the
19 galaxies, we selected the 15 massive, regular galaxies, exclud-
ing dwarfs or strongly disturbed galaxies (NGC 2366, DDO 154,
IC 2574 and NGC 4826).

1 https://www2.mpia-hd.mpg.de/THINGS/Data.html
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Table 1. Parameters of the galaxy sample.

Galaxy α (J2000) δ (J2000) D Vsys Incl. PA Bmaj Bmin BPA ∆V
name (hh mm ss) (dd mm ss) (Mpc) (km s−1) (deg) (deg) (arcsec pc−1) (arcsec pc−1) (deg) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

NGC 925 02 27 16.5 +33 34 44 9.2 546 66 287 5.9/263 5.7/254 31 2.6
NGC 2403 07 36 51.1 +65 36 03 3.2 133 63 124 8.8/136 7.7/119 25 5.2
NGC 2841 09 22 02.6 +50 58 35 14.1 634 74 153 11.1/756 9.4/641 –12 5.2
NGC 2903 09 32 10.1 +21 30 04 8.9 556 65 204 15.3/659 13.3/573 –51 5.2
NGC 2976 09 47 15.3 +67 55 00 3.6 1 65 335 7.4/129 6.4/112 72 5.2
NGC 3031 09 55 33.1 +69 03 55 3.6 –40 59 330 12.9/225 12.4/216 80 2.6
NGC 3198 10 19 55.0 +45 32 59 13.8 661 72 215 13.0/867 11.6/774 –59 5.2
NGC 3521 11 05 48.6 –00 02 09 10.7 804 73 340 14.1/730 11.2/580 –62 5.2
NGC 3621 11 18 16.5 –32 48 51 6.6 729 65 345 15.9/508 10.2/326 4 5.2
NGC 3627 11 20 15.0 +12 59 30 9.3 708 62 173 10.6/477 8.9/400 –48 5.2
NGC 4736 12 50 53.0 +41 07 13 4.7 307 41 296 10.2/232 9.1/207 –23 5.2
NGC 5055 13 15 49.2 +42 01 45 10.1 497 59 102 10.1/493 8.7/425 –40 5.2
NGC 6946 20 34 52.2 +60 09 14 5.9 44 33 243 6.0/171 5.6/160 7 1.3
NGC 7331 22 37 04.1 +34 24 57 14.7 818 76 168 6.1/433 5.6/398 34 5.2
NGC 7793 23 57 49.7 –32 35 28 3.9 226 50 290 15.6/295 10.9/206 11 2.6
UGC 01256 01 47 53.9 +27 25 55 8.8 426 70 69 25.6/1090 11.6/494 –1.0 16.5
UGC 01913 02 27 16.9 +33 34 44 10.8 553 59 287 16.7/872 8.6/449 0.0 4.1
UGC 02455 02 59 42.5 +25 14 19 7.5 373 42 208 27.4/1417 11.2/580 –1.0 2.1
UGC 04284 08 14 40.1 +49 03 42 10.7 547 60 170 13.1/855 10.2/666 0.0 4.1
UGC 04305 08 19 04.3 +70 43 18 5.3 158 51 195 12.3/607 11.6/572 –1.0 2.1
UGC 04325 08 19 20.5 +50 00 35 10.3 506 68 60 15.1/490 11.8/383 –1.0 4.1
UGC 04499 08 37 41.5 +51 39 09 13.5 687 81 151 14.8/937 11.7/741 –1.0 4.1
UGC 05414 10 03 57.2 +40 45 27 10.2 604 54 216 17.7/583 11.4/375 –1.0 2.1
UGC 05721 10 32 17.2 +27 40 08 6.6 532 62 273 29.7/1236 13.0/540 1.2 4.1
UGC 05789 10 39 09.5 +41 41 13 13.1 738 63 38 18.4/863 11.9/558 0.0 4.1
UGC 07323 12 17 30.2 +45 37 09 8.6 516 52 23 17.5/728 12.7/528 0.0 4.1
UGC 07766 12 35 57.7 +27 57 35 9.7 814 65 328 22.1/589 9.3/283 0.0 4.1
UGC 07831 12 39 59.3 +61 36 33 4.4 146 70 302 13.0/773 8.6/511 0.0 4.1
UGC 07853 12 41 32.9 +41 09 04 8.6 538 58 212 19.8/1006 12.9/655 0.0 4.1
UGC 08490 13 29 36.6 +58 25 14 5.5 202 59 185 13.5/490 11.3/410 –1.0 4.1
UGC 11891 22 03 33.7 +43 44 56 12.3 461 43 130 16.5/854 11.4/590 –1.0 4.1
UGC 12632 23 29 58.7 +40 59 25 10.5 422 37 20 18.4/472 12.2/313 0.0 4.1

Notes. Sources from THINGS are the NGC names, those from WHISP the UGC names. (1) Name of the object; (2) and (3) Right ascension and
Declination (J2000) of the galactic centre; (4) Galaxy distance from Walter et al. (2008) for THINGS, and deduced from the systemic velocity
taken in NED corrected from Virgo infall, assuming H0 = 67.8 km s−1 Mpc−1 for WHISP; (5)–(7) Systemic velocity, mean inclination and position
angle from de Blok et al. (2008); (8) and (9) Major and minor axes of the synthesised beam; (10) Beam position angle; (11) Spectral sampling.

Chemin et al. (2020) showed that the angular resolution did
not affect the detection of the bisymmetry and/or anisotropy
observed in H i velocity dispersion maps of M 33, as it was seen
at 70, 100, and 490 pc resolution. To increase the size of our
sample, we included sources from the Westerbork H i Survey
of Spiral and Irregular Galaxies (WHISP; van der Hulst et al.
2001). The reduction pipeline of the WHISP observations pro-
vides data at resolutions of 14′′×14′′/ sin δ, where δ is the galaxy
declination, 30′′×30′′, and 60′′×60′′, for a spectral resolution of
2.06 to 16.5 km s−1. At distances out to more than 100 Mpc, the
implied linear resolution for many WHISP galaxies is beyond
the kiloparsec scale. Considering the balance between spatial
resolution and sensitivity, and, due to the necessity to work with
an appropriate spatial resolution, we only selected the sources
with a physical resolution better than 1.5 kpc (Adamczyk 2021).
This corresponds to lower S/N measurements than for THINGS
targets, and consequently to a smaller extent of the gas distri-
bution and kinematics. We further required the neutral gas to
cover seven times the size of the beam (as suggested in Bosma
1978, to derive rotation curves), in the same inclination range as
THINGS, and with no obvious signs of tidal interactions. In the
end, 17 WHISP galaxies were added to the THINGS sample. We
produced moment maps for them by means of CAMEL, a Python

tool2 described in Epinat et al. (2012). We then performed tilted-
ring models of WHISP data cubes using the package 3D-Based
Analysis of Rotating Object via Line Observations (3D-Barolo,
Di Teodoro & Fraternali 2015). This software creates a model
data cube from input centre of the rings, inclination and position
angle, systemic velocity, scale height of the disc, and velocity
dispersion, which is fitted to the observations. To determine the
kinematic centre, we first kept the inclination and position angle
fixed, with the centre of radial rings and the systemic velocity as
free parameters. Then, we fixed the centre and let the inclination
and position angles vary to get the warp parameters.

The final sample of galaxies is presented in Table 1 which
lists the coordinates, distance, systemic velocity, the mean incli-
nation and position angle of the discs, and the properties of the
synthesised beam. With mean source distances of 8 and 9 Mpc
for THINGS and WHISP respectively, the mean beam Bmaj of
11′′ and 18′′ correspond to average linear resolutions of 470 pc
and 80 pc, respectively. The THINGS sample is the main refer-
ence and the WHISP sample is used to check the observed trends
are not linked to a particular telescope. Section 4 shows that

2 CAMEL stands for Cube Analysis: Moment maps of Emission Lines,
see https://gitlab.lam.fr/bepinat/CAMEL
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Fig. 1. Density and velocity maps of NGC 2841. From left to right we show: the observed flux density map, the observed velocity field, the
observed velocity dispersion, the BS model, and the velocity dispersion map corrected from the BS effect.

the WHISP data fully support the trends found with THINGS
data only.

3. Methodology

Observations yield the integrated flux of gas emission lines, the
line-of-sight velocity and velocity dispersion. This observed dis-
persion cannot be modelled directly as it results from the con-
volution of the random motion in the plane of galaxies (σ) with
the Line Spread Function of the instrumental device (σLSF) and
the broadening from thermal processes occurring in the gas (σT).
The observed dispersion is then expressed by:

σlos =
(
σ2 + σ2

LSF + σ2
T

)1/2
. (1)

Additionally, due to the finite angular resolution of obser-
vations, σ is affected by a smearing effect. This comes from
unresolved velocity gradients in the line-of-sight velocity, which
broadens emission lines.

Below we describe how we modelled the BS effect, and
how a corrected velocity dispersion has been inferred. Then, we
describe how Fourier transforms constrain the amplitudes and
phases of asymmetries in the velocity dispersion maps.

3.1. Modelling the effect of BS in a velocity dispersion map

Beam smearing impacts the flux, velocity field, and velocity dis-
persion maps extracted from datacubes in a different way. Its
main effect on velocity fields is to weaken the inner gradient of
the rotation curve by mixing data from adjacent regions in the
disc. de Blok et al. (2008) showed that BS does not have a sig-
nificant impact on THINGS galaxies rotation velocities. They
built mock datacubes, smoothed the cubes to the THINGS res-
olution, and derived the velocity fields and rotation curves from
the mock datacubes. Compared to the input used to make the
datacube, deviations were less than ∼1 km s−1.

For velocity dispersion maps, one expects BS to be
more prominent where large variations of radial velocities are
observed locally, for instance due to rotation curve inner gradi-
ents and to variations of cos(θ), θ being the azimuth angle (see
Eq. (C.1)). We need to model the impact of BS on velocity dis-
persion maps by taking into account the variations of velocities
in the two spatial dimensions. We use the tool MocKinG3 based
on an analytical formula presented in Epinat et al. (2010) who
derived the observed velocity dispersion in a galaxy following:
σ2 = σ2

corr + σ2
bs, (2)

3 MocKinG stands for modelling Kinematics of Galaxies, see https:
//gitlab.lam.fr/bepinat/MocKinG

with

σ2
corr =

!
pix

[
σ2

locM
]
⊗ PSF ds!

pix M ⊗ PSF ds
, (3)

and

σ2
bs =

!
pix

[
V2

losM
]
⊗ PSF ds!

pix M ⊗ PSF ds
−


!

pix [VlosM] ⊗ PSF ds!
pix M ⊗ PSF ds


2

, (4)

whereσloc is the local velocity dispersion map, Vlos is the line-of-
sight velocity field, M is the line flux map, ⊗PSF represents the
two-dimension convolution by the PSF, and

!
pix ds integrates

over the surface of the pixel. Equation (3) shows that σcorr is
impacted by BS on the local velocity dispersion σloc whereas
Eq. (4) shows that unresolved velocity shears in the first moment
map create an artificial line broadening. Our goal is to studyσcorr
by correcting the observed velocity dispersion σ for the term
σbs of Eq. (4). The maps of first two moments (M and Vlos) in
this equation should be at high-resolution and free from BS to
properly account for velocity variations inside the beam and pix-
els. In practice, such high-resolution maps do not exist so the
observed flux is usually used for M, and either a high-resolution
model (see e.g. Epinat et al. 2010) or an observed velocity field
are used for Vlos. We used MocKinG with the observed H i flux
maps and velocity fields to compute the BS correction. It is
thus asymmetric by construction and accounts for both circu-
lar and non-circular motions from the kinematics. This leads
to a fair correction, although not perfect, and is discussed in
Sect. 5.2.3, 5.2.4, 5.3.1, and Appendix B. These BS disper-
sion maps were modelled assuming a bi-dimensional Gaussian
synthesised beam (see Table 1). The effect of the observed
dirty beams, which are not entirely elliptical, is addressed in
Sect. 5.2.2.

An example of BS modelling with the galaxy NGC 2841 is
shown in Fig. 1. This fast-rotating galaxy (second panel) has an
inclination of ∼74◦. The fourth panel shows the corresponding
σbs, which, once subtracted to the observed dispersion (middle
panel), yields the corrected velocity dispersion map (right panel)
from which asymmetries are measured. The general behaviour
of the smearing effect is thus that σbs is larger at low radius and
exhibits a typical X-shape pattern. On average, σbs decreases
with radius, but non-negligible values are also observed near
non-axisymmetric density and velocity features (see Sect. 5.2.1),
underlining the benefits of modelling the smearing from 2D data.
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Fig. 2. Distribution of the fraction of missing values for the radial bins
in the THINGS galaxies.

3.2. Fourier series modelling of velocity dispersion maps

In order to quantify asymmetries, we performed FFTs of the
maps of H i random motions. Discrete FFTs of the corrected σ2

los
maps were performed using the FFTPACK package of the SciPy
libraries in Python (see Appendix A). In cylindrical coordinates,
the discrete FFT of the velocity dispersion is:

σ2
asym =

N−1∑
k=0

σ2
k cos(k(θ − φk)), (5)

where σk and φk are the amplitude and phase angle of an asym-
metry of order k, N is the number of orders in the decomposi-
tion, equivalent to the number of elements along the considered
ring, and θ is the azimuthal angle in the galaxy plane measured
from the semi-major axis of the receding disc half. With this FFT
formalism, we make the choice of studying the azimuthal asym-
metry, that is we cannot study the asymmetry with respect to
the disc plane in the vertical direction. Nevertheless, the present
study includes radial, azimuthal and vertical components pro-
jected on the sky plane, assuming either that contributions along
the direction orthogonal to the disc plane are averaged across
the line of sight, which is in practice more valid for face-on
than for edge-on galaxies, or that discs are infinitely thin. We
use the squared velocity dispersion because σ2

los is a simple
sum of quadratic terms (Eqs. (1) and (2), see also Appendix C,
Eq. (C.12)). Consistent results are obtained when FFTs of the
linear dispersion are calculated.

In practice, we decomposed a galactic disc into a series
of concentric rings whose geometry was defined by the tilted-
ring models (Sect. 2). Given the different angular sizes of the
galaxies, the adopted ring width of one full width at half beam
power leads to differing numbers of rings per galaxy, from 7
for NGC 3627 to more than 140 for NGC 2403. Such a non-
uniformity in the number of radial bins among galaxies has no
visible consequence on the results (see Sect. 4).

For each dispersion map, we first subtracted σ2
LSF and σ2

T
from the squared observed dispersion, as well as the corre-
sponding 2D map of σ2

bs described in Sect. 3.1. All pixels with
resulting negative quadratic velocity dispersion after these sub-
tractions were discarded from the maps at this stage of the process,

because such values are unphysical. The instrumental dispersion
is σLSF = ∆V/2.35 and σLSF = 1.2∆V/2.35 for the THINGS
and WHISP galaxies, respectively, where ∆V is the velocity chan-
nel width listed in Table 1. H i is a mixture of cool (∼100 K) and
warm (∼5000−8000 K) gas. In M 33, the H i velocity dispersion
was sometimes narrower than σT if the warm gas was assumed
to dominate (Chemin et al. 2020). Hence, we do not consider σT
here. We note that this has no consequence hereafter, because con-
sidering gas as a warm neutral medium is equivalent to subtract-
ing quadratically σT ∼ 6 km s−1 from the axisymmetric term σ0.
This latter term, measured as the mean dispersion of a given ring,
is then subtracted quadratically from all pixel values inside the
considered ring. Therefore, the observed σ2

asym − σ
2
0 are centred

on 0, and can be negative (see Eq. (5)). We also point out that σT
could be asymmetric and vary over the disc. In such a case, fluctu-
ations of σT as a function of the position have been accounted in
the measurements of σasym, though it is not possible to disentan-
gle these effects from those arising from other local motions of,
for example, gravitational origins, without being able to measure
locally the gas temperature.

We then sorted the squared velocity dispersions with increas-
ing values of azimuth and apply the FFT, leading to a harmonic
decomposition with N/2 terms, where N is the number of pixels
in the considered radial bin. Incomplete coverage of azimuths
as caused by missing pixels (not-a-number values) could seen
by the FFT as artificial perturbations. In the THINGS sample,
about 77% of the 883 available tilted rings show less than 1%
of missing values of all available pixels, and 95% less than 4%
of missing azimuthal angles (Fig. 2). The missing factor is thus
low, and we verified that it has no impact in the analysis. Within
WHISP data, we rejected 30% of the initial 203 rings because
they had more than 40% of missing values. Within the 144
remaining rings, 15% of the pixels have missing values. Even
though no impact was detected, we replaced the missing values
by the azimuthally averaged dispersion before the modelling.

3.3. Generating toy models to study the impact of unresolved
ordered velocity variations

As discussed in Sect. 3.1, BS is present in our data and is cor-
rected in this study using observed line flux maps and velocity
fields, which limits the accuracy of the correction. In order to
study the impact of residual BS effects, we perform toy mod-
els for cases with barely resolved motions due to large-scale
axisymmetric rotation of various strengths, with and without
additional asymmetric velocity perturbations on local scales,
under both isotropic and anisotropic hypotheses. We build toy
models to produce data cubes, velocity, and σlos fields, and cal-
culate the FFT of σlos. This enables us to generate different
configurations and identify the conditions for which systematic
values in the distributions of σk and/or φk could occur. Our toy
models have no dynamical basis, yet they are very useful to
assess the effects of BS, anisotropy, and streamings in σlos. The
full description of the toy models is presented in Appendix B.

We produced mock datacubes of 400 × 400 pixels (scale of
1′′, or ∼50 pc at a typical distance of 10 Mpc), with 200 spectral
elements with a 3 km s−1 velocity sampling using 5 × 106 uni-
formly distributed points. To first order, the galaxy is assumed
to be an axisymmetric rotating disc to which velocity perturba-
tions can be added. Two rotation curves, one with a weak veloc-
ity gradient and a moderate velocity plateau, the other with a
steep inner gradient quickly reaching a high velocity plateau,
were used. Sharp planar velocity perturbations are produced by
a bisymmetric spiral pattern, with five possible inner angles. No
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Fig. 3. Maps and histograms of toy models with a steep rotation curve (v0 = 250 km s−1, rs = 20′′ and γ = 2) with a spiral perturbation. We show
(top), from left to right, the density map, the velocity field, and the BS corrected dispersion maps in the isotropic and anisotropic cases, obtained
with an inclination of 60◦ and with φsp = 135◦. The bottom panels show amplitude and phase histograms of orders k = 2 and k = 4. Blue and
green histograms correspond to the cases with local uniform isotropy with large-scale asymmetries, and local uniform anisotropy with large-scale
asymmetries, respectively.

lopsidedness (k = 1 mode) is introduced for simplicity. There-
fore, the perturbed models have intrinsically anisotropic veloc-
ities on large scales, as illustrated by the ellipsoid elongated in
the radial dimension in Appendix B. We also synthesise veloc-
ity anisotropy in the toy models by modifying the shape of the
velocity ellipsoid locally, that is by choosing a uniform radial
bias σθ = 0.7σR with null covariance, with σR = 8 km s−1

and σz = 5 km s−1, in opposition to isotropic velocity distri-
butions (σR = σθ = σz = 8 km s−1). The choice of σθ =
0.7σR comes from the radial bias seen of young stellar popula-
tions in the disc of the Milky Way (Gaia Collaboration 2023).
This is an additional effect to the streaming-driven velocity
anisotropy, and switching it off and on in the toy models enables
to assess other specific sources of anisotropy not accounted
for by the streaming perturbations in the planar velocity
components.

For each particle, velocities are drawn randomly with a
mean velocity and a velocity dispersion for each component.
The mean in radial, azimuthal and vertical velocities are com-
puted from the rotation curve and the perturbation. The velocities
are then projected along the line-of-sight for three inclinations
(45◦, 60◦, and 75◦). For each inclination, cubes were created for
12 orientations of the spiral perturbation. Gaussian smoothing
was then applied to mimic BS (8 pixels FWHM, corresponding
to ∼400 pc), before extracting moment maps. Beam-smearing
corrections were applied as for observed data. Because of pro-
jection effects, a perturbation along the radial (azimuthal) direc-
tion is mainly seen along the minor (major) axis in the line-of-
sight velocity fields and velocity dispersion maps (see Fig. B.2).
FFTs of σ2

los were calculated for 35 independent rings, yield-
ing profiles and distributions of σk and φk, as in Sect. 4 using
the 36 models (3 inclinations, 12 orientations of the pertur-
bation). Figure 3 shows a velocity perturbation (case where
the velocity perturbation vector is orientated towards the clos-
est position of the spiral) for the steep rotation curve. From
the maps, we can see residual BS effects due to both large-
scale rotation and to the unresolved perturbation. The veloc-
ity perturbation is more orientated azimuthally in the centre
than in the outer parts. The effect of the radial bias is also
clearly seen along the minor axis in both the velocity dispersion

map and in the histograms of the second order phases. Other
cases are shown in Appendix B. An analysis of BS residuals
induced by large-scale rotation is provided in Sect. 5.2.4 and the
analysis of projection effects from asymmetric perturbations in
Sect. 5.3.1.

4. Asymmetries in velocity dispersion maps

Coefficients of the FFTs were calculated for the 883 and 144
radial rings of THINGS and WHISP sources, respectively. Of
the first 20 orders, the dominant asymmetries are those up to the
fourth harmonic, in agreement with Chemin et al. (2020), so we
limit the analysis to k ≤ 4 hereafter.

4.1. A case study: NGC 2841

The results of the Fourier analysis for all galaxies from the
THINGS sample are presented in Appendix D. To illustrate
examples of results, Fig. 4 shows the process and results for
NGC 2841, from σ2

corr to the FFT and the individual FFT compo-
nents. The normalised phase angles φk/Tk, where Tk = 2π/k, are
shown, with values of 0.5 and 1 corresponding to half and a full
period. The normalised phases φ1/T1 = 0, 0.5, 1 and φk/Tk = 0
for other orders are aligned along the major axis of the galaxy,
and φ2/T2 = 0.5 along the minor axis. In NGC 2841,σ2

corr is high
along a cross shaped pattern, with strong k = 2 and k = 4 pertur-
bations and the k = 2 perturbation grows stronger with radius.
The residual σ2

res is weak, showing that the first 4 orders repro-
duce the structure in σ2

corr. The galaxy is lopsided at small radii
(e.g. Baldwin et al. 1980) and this is detected by the k = 1 mode
of the FFT. The phase angle of the bisymmetry does not vary
much beyond R ∼ 170′′, at a value of ∼0.7 times the period of
the k = 2 asymmetry.

4.2. Census of asymmetries in H i random motions

4.2.1. General trends

Figure 5 presents the distributions of the amplitudes and nor-
malised phase angles of the Fourier modes for our reference
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Fig. 4. Examples of FFT results with the galaxy NGC 2841. Top: observed squared velocity dispersion and its modelling through FFT up to the
order 4, and their residuals. Middle panel: individual orders of the FFT projected in the plane of the galaxy. Bottom: amplitudes (left) and phase
angles (right) of FFT coefficients as a function of the radius.

THINGS sample (blue histograms), and the WHISP sample
appended to the THINGS sources (green histograms). Table 2
lists the mean, median and standard deviation of the amplitudes
for the 883 rings of the THINGS sample. Globally, the distribu-
tions of amplitudes have comparable shapes. With an average of
11 km s−1, the strongest Fourier mode is of second order, and the
weakest is of third order (8 km s−1). Most k = 2 amplitudes are
between 2.5 and 7.5 km s−1 with a few rings below 2.5 km s−1,
possibly due to noise.

For k = 1, we see in Fig. 5 (bottom) that the phase angle
peaks at φ1/T1 = 0.45 and 0.95 with dips at 0.15 and 0.75. The
bisymmetric mode is maximal around φ2/T2 = 0.65, and is min-
imum at 0. The k = 3 distribution is relatively flat with a maxi-
mum located at φ3/T3 = 0.15. The k = 4 histogram is strongly
peaked at φ4/T4 = 0.5. The uncertainties are approximately the
bin size of the distributions (0.1 Tk).

Table 2. Properties of Fourier amplitudes for the THINGS galaxies, as
measured from 883 tilted rings.

Order Mean Median Standard deviation
amplitude (km s−1) (km s−1) (km s−1)

σ1 9.3 7.1 7.1
σ2 10.9 8.0 7.7
σ3 7.9 6.6 5.1
σ4 8.8 7.0 6.1

The distributions of Fig. 5 may be biased by a few galaxies
with more radial rings than others. To assess the impact of dif-
ferent numbers of rings, we measured new profiles of amplitudes
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Fig. 5. Results of the FFT measurements of the H i velocity dispersion maps. The histograms show the number of rings as a function of amplitude
(top row) and normalised phase angle (bottom row) of the FFT harmonics of the THINGS sample (883 rings, in blue), the interpolated distribution
with 20 rings per galaxy for THINGS (280 rings, in red, normalised to the maximum values of the blue histograms), and the WHISP sample
(144 rings, in green). Phase angles are normalised to the period Tk of each order.

and phase angles using 20 equally spaced rings per galaxy as all
galaxies but NGC 3627 have at least 20 independent rings. The
initial profiles were interpolated at the 20 new radii. This yields
new distributions built on 280 radii for 14 galaxies (NGC 3627
was excluded for this assessment). These histograms are shown
as red lines in Fig. 5. The agreement between the blue and red
histograms shows that the unequal number of radial bins has lit-
tle impact on the results.

We can estimate the significance of the dips and peaks of the
phase distributions. Assuming that the gas velocity ellipsoids are
isotropic, the velocity dispersion maps should exhibit asymme-
tries randomly distributed over the plane of the sky. The 883
rings observed for the THINGS sample should thus yield, on
average, N = 88 counts in each of the 10 bins of the histograms.
If we quantify a confidence level as ζ =

√
N, then the uncertainty

is ζ ∼ 9. Keeping only the bins showing an excess of at least 3ζ,
the peaks observed at 0.45 and 0.95 for k = 1 are detected at a
level of 6.3ζ and 3.3ζ (147 and 119 counts, respectively), 5.5ζ at
0.65 for k = 2 (140 counts), 4.8ζ at 0.15 for k = 3 (133 counts),
and up to 11ζ for the bin at 0.45 of k = 4 (194 counts). Now
keeping only the bins showing a deficit of at least 3ζ, the minima
observed at 0.15 and 0.75 for k = 1 correspond to a confidence
level of 4.2ζ (49 counts), 3.7ζ at 0.95 for k = 2 (53 counts),
and 4.5 to 5.3ζ at 0.05, 0.15, 0.25 and 0.95 for k = 4 (45, 42,
46 and 38 counts, respectively). Therefore, the systematic phase
angles are not consistent with a random fluctuation of the orien-
tations of asymmetries in the galaxies. We note that in the case
of k = 3 no trend is seen around the unique bin exceeding 3ζ.
It may be that this peak is caused by chance due to the limited
statistics, and not by a systematic effect, unlike the peaks or dips
seen in the other asymmetries. With the interpolated profiles at
20 bins for each galaxy (red histograms of Fig. 5), we find less
significant peaks and dips than with the 883 rings due to lower
statistics, but the trends are preserved.

4.2.2. Correlations between the Fourier modes

The upper row of Fig. 6 compares the Fourier amplitudes as
a function of the phase angle φ2/T2 for the strongest orders

(k = 1, 2, 4) for THINGS galaxies. The colour code is the num-
ber of tilted rings within bin widths of 0.05 for φ2/T2, and 1.75
for the amplitude difference. The density of tilted rings is highest
around a difference of 0 km s−1 (in agreement with values given
in Table 2), irrespective of the value of φ2/T2, which implies cor-
related amplitudes. We measure a Pearson correlation coefficient
of 0.8 ± 0.1 between the amplitudes of orders 2 and 4.

The bottom row of Fig. 6 compares the phase angle differ-
ences between orders ∆φm,n = φm−φn, and shows the differences
within one period of the highest order, that is within ±Tm/2, with
m > n. The distributions of ∆φ2,1 and ∆φ4,2 are peaked and sym-
metric around zero, implying a correlation between the k = 1
and k = 2 modes and between k = 2 and k = 4. These cor-
relations suggest that k = 4 is a harmonic of the second order
perturbation.

4.3. Correlations with the H i flux density

Several processes may induce correlations or anti-correlations
between gas velocity dispersion and gas density. A large veloc-
ity dispersion can arise from unresolved motions, such as insuf-
ficient spatial resolution or the presence of unresolved multiple
peak profiles. These unresolved velocity gradients may result
from various physical processes, including steep density gra-
dients, gas compression in density waves, instabilities associ-
ated with spiral-like features, or starburst outflows. The faintest
regions may also display a high velocity dispersion because
the S/N affects the profile widths, noisier profiles appearing
broader. Leaving aside the aforementioned observational caveats
(low resolution, low S/N) and focussing on the resolved regions,
correlations between dispersion and density can have differ-
ent origins. Large-scale star formation is clearly linked to H i
content but this is not true for small scales (e.g. Zhou et al.
2018). As long as the H i density is below the density nec-
essary to gravitationally collapse and form molecular hydro-
gen, the H i gas clouds have no reason to cool and the velocity
dispersion to decrease. In some galaxies (e.g. NGC 4214,
Wilcots & Thurow 2001), the largest Hα velocity dispersion is
observed in the diffuse ionised gas regions which often has a
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Fig. 6. Comparisons of amplitudes and phase angles between the Fourier k = 1, 2 and 4 orders, shown as differences of amplitudes versus φ2/T2
(upper row) and histograms of phase angles difference normalised to π (bottom row). The comparisons between the orders k = 1 and k = 2, k = 1
and k = 4, and k = 2 and k = 4 are shown in the left, middle, and right columns, respectively. In the upper row, the amplitude difference is colour
coded with the logarithmic number of the tilted rings.

low H i column density. Around massive star forming regions,
the large velocity gradients might be explained by outflows.
In low H i column density regions far from massive stars (e.g.
NGC 2366, Hunter et al. 2001), in the absence of a local source,
the velocity width might be induced by long-range turbulent
pressure.

Using NGC 2841 as an example, Fig. 1 shows that the gas
density (Σlos) is principally distributed in bright rings and outer
spiral arms, whereas larger velocity dispersion (σlos) is along a
centred cross-shaped structure. In other words, the gas density
is either anti-correlated or correlated with velocity dispersion,
sometimes fainter in large velocity dispersion regions (e.g. in
the galaxy centre), brighter at low velocity dispersion (e.g. in the
NE and SW quadrants), but also brighter at larger velocity dis-
persion (e.g. NW and SE quadrants). Across the sample, similar
features are observed, and velocity dispersion seems correlated
to spiral arms. Therefore, due to the wide diversity of processes,
a galaxy-by-galaxy or a pixel-by-pixel comparison between the
flux density and the velocity dispersion is beyond the scope of
this paper. We rather aim at identifying global trends with respect
to our analysis of the velocity dispersion.

The correlation between gas density and velocity dispersion
has therefore been investigated for the whole sample using FFTs
of the density maps, in the same way as for the velocity disper-
sion. The phase angle differences ∆φk ≡ φk(Σ)−φk(σ) are shown
in Fig. 7. As in NGC 2841, we observe that all orders except k =
4 exhibit correlated (peaks) and uncorrelated (troughs) phases.
An anti-correlation is observed for k = 1 (dip at ∆φk ∼ 0), and
a correlation for k = 2 (peak at ∆φk ∼ 0). These findings sug-
gest that the asymmetries observed in the velocity dispersion are

related to those of the gas distribution that are mainly induced
by spiral arms, bars, warps and lopsidedness.

4.4. FFT results versus galaxy properties

Our sample is somewhat biased by the fact that the smallest
galaxies, which are usually the latest type and faintest ones, are
also the closest4. To look for an effect, we divided the sample
into two sub-samples of seven galaxies each around the median
value of each parameters: morphological type, optical radius,
absolute magnitude, and metallicity. Class I (II) is the sub-
sample with the more distant (nearest), or the brightest (faintest),
or the earliest (latest) type, or the largest (smallest) galaxies.

In Fig. 8, we show histograms of σ2, φ2, and φ4 for classes I
(red) and II (blue) of absolute magnitude, which is the parame-
ter providing the largest difference between classes I and II. As
expected, σ2 is lower for small galaxies. For k = 2, the incidence
of φ2/T2 ∼ 0.5 is low (high, respectively) for class I galaxies
(class II). φ2/T2 in class II galaxies agrees with the observa-
tions of M 33 (Chemin et al. 2020), which is a class II galaxy.
For orders k = 1 and 3, the phase does not depend significantly
on the class. φ4/T4 has a bigger peak for class I than for class II
but the difference is smaller for other parameters than the abso-
lute magnitudes. The φ4/T4 distribution is almost flat for faint
galaxies and peaked for bright ones. This could be due to resid-
ual BS (see Sect. 5.2.4) or because higher gas density contrasts

4 It is a well-known observational merit factor bias which consists in
‘filling the field of view’ of the instrument as much as possible.
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Fig. 7. Histograms of phase angles (normalised by π) difference between gas density and velocity dispersion φk(Σ) − φk(σ) for k = 1, 2 and 4 (left,
middle, and right panels, respectively).
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k = 4

Fig. 8. Histograms of the velocity dispersion amplitudes σk (k = 2, left panel) and of the normalised phase angles φk/Tk (k = 2, middle panel
and 4, right panel) for the 7 galaxies brighter and fainter than M = −20.7 mag (red and blue colours, respectively) for the THINGS sample. The
sub-samples are the same as when splitting between high (red) and low (blue) projected maximum velocity (see Sect. 5.2.4). The grey histograms
are the total distributions from Fig. 5.

are expected in earlier type spirals, inducing larger perturbations
(see Sect. 5.3.1).

5. Discussion

Our FFT analysis of the velocity dispersion of the H i gas shows
that common values for φk/Tk are (1) φ1/T1 ≈ 0.45 or 0.95,
(2) φ2/T2 ≈ 0.35 and 0.65 and (3) φ4/T4 ≈ 0.45, with no
major structure in the k = 3 mode. These peaks correspond to
major axis of the 1st order asymmetry and half period of the
4th order asymmetry. Interestingly, finding k = 2 asymmetries
projected preferentially near the major axis is significantly less
likely.

In the absence of instrumental effects such as BS at any scale,
and assuming gas is isotropic, we expect the principal axes of
the galaxies to be randomly orientated with respect to the spiral
pattern or bar, so the distributions of φk/Tk should be uniform.
In this section, we discuss the origin of the alignment of phases
around particular angles.

5.1. Systematic effects in the FFT measurements and the
tilted-ring models

5.1.1. Significance of FFT coefficients

In Appendix A, we describe the method used to infer the accu-
racy d(σ2

k) of a measured amplitude σ2
k (Eq. (A.5)), and its sig-

nificance sk = σ2
k/d(σ2

k). For this exercise, we assume a rea-
sonable uncertainty dσ = 1 km s−1 on the standard deviation of
the line spread function. By keeping only the rings for which

the significance is greater than 3, we find that amongst the 883
rings of the THINGS sample, 482 exceed this threshold for the
order k = 1, 587 for k = 2, 431 for k = 3, and 536 for
k = 4.

We further divided the rings into high and low significance
samples using the median significance of each order. The median
values of the significance sk are 3.3, 5.2, 2.9, and 3.9 for k =
1, 2, 3 and 4, respectively. The resulting histograms are given
in Fig. 9, with the low(high)-significance samples shown in red
(blue, respectively). A first result is that apart larger tails in the
distributions of high-significance samples, the amplitudes are
not much affected by the division into two sub-samples. Since
some high amplitudes rings are located in the innermost part
of galaxies where the number of pixels is much lower than
in the outskirt, we observed that some high amplitudes rings
(red tail) are less significant than some of the low amplitude
ones (blue distribution at low amplitudes). On the other hand,
the low-significance samples show essentially random phases,
except for order k = 4, while the high-significance show the
trends identified before (φ1/T1 ≈ 0.45, φ2/T2 ≈ 0.65 and
φ4/T4 ≈ 0.45) but more clearly. In other words, the rings of
lower significance are consistent with having asymmetries ran-
domly distributed in the sky plane (except for k = 4), while
those of higher significance seem to be more representative of
the systematically orientated asymmetries in the velocity dis-
persion maps. Moreover, the fact that both sub-samples have
φ4 centrally peaked around the half period is a hint that low
amplitude residuals due to BS still affect the data, despite the
correction applied before deriving the FFTs. We address this in
Sect. 5.2.
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Fig. 9. Histograms of amplitudes (upper row) and normalised phase angles (bottom row) resulting from the FFT analysis for the THINGS sample
when splitting the sample in two, using the median significance of each order (see Sect. 5.1.1). The blue and red distributions are for the rings with
a significance respectively greater and smaller than the median value.

5.1.2. Deviations in the tilted-ring model projection
parameters

We now test the robustness of our results with respect to varia-
tions of kinematic centre, inclination and position angle. On the
one hand, we changed the position of the kinematic centre of the
rings by adding a random value selected from a Gaussian distri-
bution of standard deviation of 1′′ and 3′′, respectively for the
right ascension and declination, as expected from their average
uncertainties (Trachternach et al. 2008). On the other hand, we
ignored warps by using the mean inclination and position angle
for each galaxy, as given in de Blok et al. (2008).

The new distributions of phases are then compared to those
of Fig. 5, by averaging the positive differences of histogram
heights of all bins. Overall, the trends described in Sect. 4 are
still present. Varying the kinematic centre leads to differences
of 10%, 7.2%, 5.7% and 7.7%, for k = 1, 2, 3 and 4, respec-
tively. Not taking into account the disc warps has little impact as
well, although the variations are more important, of 8%, 15.6%,
10% and 22.8% for k = 1, 2, 3 and 4, respectively. We can thus
exclude the possibility that the systematic phase angles of the
asymmetries in the H i velocity dispersion are caused by incor-
rect kinematic parameters.

5.2. Systematic signatures associated to BS

Beam smearing might provide residuals in the velocity disper-
sion beyond our correction process if locally the velocity gradi-
ent is not resolved as shown from Eq. (4), or if the radio beam
is not well represented by the 2D Gaussian model described in
Sect. 3.1. An incomplete BS correction could contribute to or
create velocity dispersion asymmetries.

5.2.1. Properties of the BS pattern

To numerically explore the effect of BS, we first created a mock
galaxy having both exponential flux and rotation curve mod-
els. In order to work with the same amplitude of the projected
velocity field and thus with a similar BS induced velocity dis-
persion at zeroth order, we use a maximum projected velocity

of 100 km s−1 independent from the inclination. The Gaussian
beam width is set to 10′′ × 15′′, and in order to sample correctly
the exponential disc, we adopt a pixel size of 1′′ and a scale-
length of 50′′. Figure 10 shows (left) the BS induced velocity
dispersion maps at 30◦ (top) and 70◦ (bottom) inclinations. The
central and right panels show the amplitudes and phase angles
of the FFT decompositions. In our mock galaxy and PSF mod-
els, the BS pattern can be described using only orders k = 2 and
k = 4. The ratio between the amplitude of these two orders vary
with the inclination, with the k = 4 strength being predominant
at large inclination. This latter is maximum around the radius
where the maximum rotation curve is reached. The phases φ2 and
φ4 are rather constant with radius, with their value depending on
inclination. At fixed inclination, this constant value is related to
the position angle of the galactic disc relative to that of the beam.
In case both position angles match, or if the beam is circular, we
have exactly φ2 = 0.5 T2 and φ4 = 0.5 T4. For an inclination
of 70◦, φ2 and φ4 are always in the range of 0.4 T2−0.6 T2 and
0.4 T4−0.6 T4 respectively, with φ4 being close to its half period
for most position angles.

Figure 11 shows that asymmetries inσbs are centrally peaked
and lower than the observed asymmetries. The phase angles
of σbs are similar to those seen in the galaxies. Subtle differ-
ences are observed, like the peak of probability at φ2/T2 ∼ 0.5
not observed in galaxies, or the stronger and narrower peak at
φ4/T4 = 0.5. Finally, we also compared the results of the FFTs
obtained with and without BS correction, and found negligi-
ble differences. These findings indicate either that our data are
sparsely affected by BS, or that the BS correction is underesti-
mated. In Sects. 5.2.3 and 5.2.4, we further investigate the impact
of using higher resolution data to infer BS correction and the
amplitude of BS residuals respectively.

5.2.2. Uncertainty on the beam shape

The observed dirty beam of interferometric observations is com-
plex. In this section, we measure σbs using the observed dirty
beam for 12 of the galaxies from THINGS. Maps of the dirty
beam are mainly composed by a combination of two Gaussian
functions, a narrow one to describe the PSF core, similar to the
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Fig. 11. Histograms of amplitudes (upper row) and normalised phase angles (bottom row) resulting from the FFT analysis for the THINGS sample
(in blue) and for the BS dispersion maps σbs (in red).

one of our model, and a second one with larger full width at
half maximum to describe the PSF wings. The extent of dirty
beam maps is often larger than those of the galaxies but the beam
power at large angular distance from its centre is very low. We
apply a circular mask to the dirty beam map to deal mostly with

positive PSF values, and get rid of small variations at large radius
from the beam centre that could induce spurious effects in our
analysis. We vary the radius of the masks from 5 to 50 pixels,
in order to be consistent with our 2D Gaussian model which has
an extent of 5 to 10 pixels within the THINGS sample. Using a
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Fig. 12. Comparison of the BS models using optical and cm data for the galaxy NGC 3521. Left panel: Hα data based BS model. Middle panel:
H i data based BS model, trimmed at the same extent as the optical model. Right panel: ratio of the BS models, defined as BS(Hα)/BS(H i).

dirty beam map truncated at the same size and scale as our 2D
Gaussian model, the resulting σbs maps are very comparable to
those obtained with the Gaussian beam. For example, within a
cut of five pixels around the beam centroid, the amplitude of σbs
is ∼10% lower on average than for the Gaussian shape through-
out the THINGS sample. However, when the spatial extent of the
dirty beam is larger, the patterns inσbs are more prominent, lead-
ing to larger amplitudes. For instance, with a mask cut at a radius
of 20 pixels, the amplitudes are twice larger than our model, on
average. As for the phase angles, the minor difference between
the two beam shapes is that the peaks are narrower and slightly
larger for k = 2 and 4 in the case dirty beam.

5.2.3. Kinematics at higher angular resolution

Daigle et al. (2006) and Dicaire et al. (2008) published Hα data
cubes for respectively 28 and 37 galaxies from the SINGS
sample (Kennicutt et al. 2003). Those observations were led
with a Fabry-Perot interferometer at the 1.6 m telescope of the
Observatoire du Mont Megantic (OMM, Canada), and the 3.6 m
telescopes at the Canada-France-Hawaii Telescope and the
European Southern Observatory (ESO, La Silla, Chile). In our
sample, all galaxies were observed at OMM except NGC 3621
and NGC 7793, observed at ESO. In this section, we benefit
from the higher angular resolution of the Hα velocity fields
to estimate, and correct from, the BS effects on H i THINGS
velocity fields. The angular resolution of the Hα data is see-
ing limited, ∼1′′ at ESO and .3′′ at OMM, which repre-
sents a gain of ∼2 to 13 with respect to THINGS data. The
underlying hypothesis is that the Hα kinematics have a sim-
ilar behaviour as the H i one. Nevertheless, the flux distribu-
tion of the ionised gas is more peaked due to the star forming
regions. To model the Hα BS map, we used the Hα velocity
field weighted by the flux distribution of the neutral gas. Since
the kinematical maps available from Daigle et al. (2006) and
Dicaire et al. (2008) were obtained using adaptative smoothing,
we compute new maps from the sky-removed data cubes. We
first apply a 2-pixels Gaussian smoothing to increase the Hα
S/N and then extract kinematical maps using the same barycen-
tre method used in the two original papers. We also reproject
the THINGS flux density maps on the same grid as Hα maps
in order to match the positions and pixel size of both datasets.
To compute the BS maps, we apply the same methodology
as defined in Sect. 3.1, using the reprojected H i flux distri-
butions, the 2-pixels Gaussian smoothed Hα velocity field and
the single 2D Gaussian PSF to describe the new H i angular
resolution.
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Fig. 13. Pixel-by-pixel comparison of the BS contribution using
Hα SINGS and H i THINGS data. The y-axis shows the ratio of the
BS amplitudes Hα/H i and in the x-axis is the amplitude of the H imodel.

In Fig. 12, we show the resulting Hα σbs map (left panel),
compared to the H i σbs map (middle panel), as well as the ratio
of the two maps, for an example galaxy (NGC 3521). The BS
pattern is similar in both cases, with the typical cross-shape in
the centre. While the BS correction inferred from H i data is less
peaked in the centre than for Hα, the latter also decreases more
slowly with radius. This explains the large values in the nor-
malised ratio found far from the centre. Beam-smearing ampli-
tudes are higher when modelling with the ionised gas. As the
amplitude may be an important concern in our modelling, we
study galaxy by galaxy the amplitude ratio for the two different
cases.

In Fig. 13, a comparison of the BS contributions is made for
the THINGS sample. For each galaxy, a 2D histogram with the
amplitude of the H i BS correction on the x-axis and the ratio of
the BS corrections in Hα to H i on the y-axis, is made. Then, the
histograms were normalised by the number of pixels in the maps,
to avoid being biased by objects with a larger number of pixels.
Figure 13 is then obtained by summing all the 2D histograms. It
shows that the ratio is >1, which is not surprising given that the
HαBS benefits from a higher angular resolution. On average, the
H i BS is 2.3 times smaller than the Hα BS. We also observe a
trend at low H i BS with high ratio induced either by noise or by
discontinuities between regions in the Hα data. Indeed, a contin-
uously increasing ratio with decreasing H i BS can be modelled
by assuming that the Hα BS is equal to the quadratic sum of
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the H i BS and a constant term of ∼3 to 10 km s−1. This constant
term can be related to pixel-to-pixel variations either induced by
noise in the Hα data, or by true local velocity variations or dis-
continuities unseen in H i. Amplitudes vary within the sample,
due to various intrinsic velocity gradients in each galaxy, as well
as its distance and geometry.

Despite these findings, we decided to continue working with
the H i σbs for several reasons. First, the spatial extent of H i gas
is larger, making it possible to evaluate the local BS contribu-
tion of spiral arms or other features that are not located in the
inner disc regions. A second reason is that the Hα gas does not
trace the same interstellar component, therefore the geometry of
the discs might differ, and the flux distribution are noticeably
different. Furthermore, it has been shown that the imprint of the
systematic phase along the minor axis of the galaxy M 33 did not
depend on the angular resolution (Chemin et al. 2020), while a
range of 7 in the size of the synthesised beam was probed. Using
H imaps to derive σbs should thus not be an issue in the analysis
(see also Sect. 5.2.4).

To assess the impact of BS under more conservative condi-
tions, we then subtracted respectively twice and thrice the H i BS
from the THINGS velocity dispersions. The result of this process
is that a large number of rings are removed in this case. Indeed,
in order to avoid sampling issues in the FFT, we removed rings
having more than 5% of pixels with undefined value after the BS
correction, due to this quadratic correction being larger than the
actual measured dispersion. The median fraction of such pixels
per ring is 0.7%, 4.0% and 16.6% when subtracting once, twice
and thrice the BS contribution, respectively. Only 621 and 258
tilted rings remain in the two latter cases, respectively, with less
than 5% of pixels with an undefined value, decreasing drastically
the statistics. With these particularly conservative BS subtrac-
tions, some galaxies totally disappear from the remaining rings,
which indicates that the velocity dispersion would be totally
dominated by BS, which should not be the case owing to the
(high) H i resolution.

In Fig. 14, we show the phase angles for k = 2 and k = 4
resulting from the subtraction of once or twice the contribution
σbs (red and blue histograms, respectively). We note that the
amplitude distributions are not strongly affected. As mentioned
before, more than 200 rings were removed, which explains why
the average number is lower for the red histograms. For k = 2,
the peak seen in the blue distribution is no more present in the
red one. This behaviour is also observed for k = 1 (not shown
here). For k = 4, in both cases we observe the strong peak at
φ4/T4 ∼ 0.5. The interpretation is not straightforward, as the
observed phase angle can be explained either by a residual BS
signature or by the correlation of the asymmetry with the BS.
Nevertheless, the fact that a strong peak remains in φ4 tends to
indicate that BS alone cannot explain the observed trends.

We also smoothed the Hα data at the average resolution of
the H i, 11′′ for all the sample with the goal to verify that the
same level of smoothing of the gradients implies a similar BS
effect. The results are as expected, being that the normalised
residuals for each galaxy show a distribution peaked on 0, indi-
cating that both modelling are consistent with each other.

Similarly, to verify the consistency of the findings described
above, we also performed the Fourier analysis of an example
galaxy (NGC 2841) using the 6′′ angular resolution THINGS
velocity and density maps, as obtained from robust weightings.
The amplitude of the BS is larger than for natural weightings,
which is due to the combined effects from the higher angular
resolution with the noisier velocity field for robust weightings
than for natural weightings. This finding matches perfectly the
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Fig. 14. Comparison of the normalised phase angles histograms of
orders k = 2 and k = 4 (left and right panels, respectively) in the veloc-
ity dispersion by subtracting once and twice the contribution from the
BS effect (blue and red colours, respectively).

result found with the Hα kinematics. Nevertheless, no signifi-
cant difference in the strength and phase angles of the Fourier
modes is observed with respect to the natural weighting for this
galaxy.

5.2.4. Amplitude of BS residuals

The correlation between BS and observed signatures found in
Sect. 5.2.1 may indicate that BS residuals remain after BS cor-
rection, due to the use of observed flux maps and velocity
fields rather than high resolution data to infer the correction (see
Sect. 3.1). To quantify residuals, we use the toy models described
in Sect. 3.3 and Appendix B. We focus on the isotropic case with
no perturbation and a steep inner gradient of the rotation curve,
for which the impact of BS is the largest, and added realistic
noise to dispersion maps (cf. Appendix A). Correcting for BS
as described in Sect. 3.1 reduces the strengths of orders k = 2
and k = 4 by a factor between 2 and 4 and is more efficient for
less inclined galaxies and for order k = 2. We also show that the
maximum strength of orders k = 2 and k = 4 of BS residuals
is reached at a lower radius than without BS correction, and that
it decreases for decreasing inclinations. For inclinations below
60◦, residual BS cannot account for the k = 2 signature at radii
greater than a few beam FWHM and at radii >10 beam FWHM
for k = 4. At 75◦; however, the BS signature remains well above
the uncertainties because (i) the projected velocity gets higher
than at lower inclination, and (ii) the spatial resolution along the
minor axis gets poor, inducing more hidden velocity gradients
within the beam and pixel size. We also performed an FFT anal-
ysis separately for the 50% largest and smallest radii and found,
as expected, that the amplitude of orders k = 2 and k = 4 is
reduced (by a factor larger than two) and that the significance of
the peak in phase histograms of the fourth order is much lower
(by a factor around 4) at large radii. For the model with a weaker
velocity gradient, when noise is added, all the systematic phase
angles disappear and the distributions become flat. The impact of
BS induced by large-scale rotation depends on the physical reso-
lution, the rotation curve shape, the projected maximum velocity,
galaxy inclination and high resolution flux distribution. A com-
plete study of BS on velocity dispersion maps depending on all
these parameters is beyond the scope of the present study.

About half galaxies in our sample have projected maximum
rotation velocities above 150 km s−1, as inferred from the profile
width at 20% of the peak intensity given in Walter et al. (2008),
and about 60% have an inclination larger than 60◦, which may
therefore present BS residuals signatures in the fourth order.
We first split the sample between inner and outer rings. The
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Fig. 15. Histograms of normalised phase angles resulting from the FFT
analysis for the THINGS sample splitting the rings as a function of
radius (inner part in blue, outer part in red).

FFT amplitudes of the innermost rings are 27% to 43% larger
than for the outermost rings, depending on the order. The phase
angle distributions are shown in Fig. 15, with the innermost and
outermost rings shown in blue and red, respectively. These dis-
tributions are different. For k = 2, the distribution for the out-
ermost rings is similar to that of the global distribution whereas
the distribution does not peak on 0.5 φ2/T2 for the inner rings, as
would be expect if the dispersion maps were dominated by BS
residuals. The inner and outer regions both show a prominent
peak k = 4 close to the half period, the peak being slightly offset
towards lower phase angles in the outer parts. We also split the
sample in low versus high projected maximum velocities, lead-
ing to the same sub-samples as for the absolute magnitude (see
Sect. 4.4 and Fig. 8). As already discussed, the peak observed
in the phase angle histograms of the fourth order is much more
pronounced when projected velocities are high. This may be a
proof that BS residuals are affecting our results at least for the
fourth order. Nevertheless, given the large values of order four
strengths σ4 compared to what is expected from residuals in toy
models, it may also be that such a signature is intrinsic to mas-
sive galaxies with high gas density contrasts. On the other hand,
the peak in the second order around half period of galaxies with
low projected velocities cannot be attributed to BS.

5.2.5. A possible link between velocity gradients and
elevated velocity dispersion

We have shown that BS may explain the signatures we observe if
not properly taken into account, as there are strong correlations
between the modelled BS pattern and the observed velocity dis-
persion. Nevertheless, we have also shown that the amplitude of
BS induced by large-scale motions is expected to be too low to
have a significant impact on the data. The fact that BS seems to
be coupled to observed signatures in the phase angles of asym-
metries may indicate that the regions with the strongest veloc-
ity gradients or discontinuities, especially in the outer parts of
galaxies, are also regions with an intrinsic large velocity dis-
persion at a higher level than what would be induced by BS
from the observed gradients. These regions with large veloc-
ity gradients are often related to perturbations like bars, spiral
arms, inter-arms and warps, especially at large radius, which
means that there might be locally induced turbulence responsi-
ble for perturbations in both the velocity field and the velocity
dispersion. This may also be that BS occurs on much smaller
scale than that reached within our observations and that what
we observe is not related to large-scale motions. A complemen-
tary way to investigate the effects of unresolved gradients of
asymmetric velocities on the velocity dispersion is addressed in
Sect. 5.3.1.

5.3. Projection effects in random motions

Finding systematic phase angles of asymmetries in velocity dis-
persion maps is a surprising result. The projection of asymmetric
patterns along the line-of-sight should be randomly distributed.
Flat distributions of phase angles were then expected in Fig. 5
from a theoretical perspective (see discussion in Appendix C).
Privileged phases thus imply a dependency of the patterns on the
orientation of the disc principal axes with respect to the observer,
because the major axis of discs has been chosen at the origin
of the azimuthal angles (θ = 0 along the major axis). In other
words, this suggests the presence of projection effects in the
velocity dispersion maps. In this section, we thus want to study
the possible origin(s) of projection effects in the velocity dis-
persion. This is achieved by investigating the effect of asymme-
tries in the ordered motions on the random motions (Sect. 5.3.1).
We also address the effect of correlated velocity components
(Sect. 5.3.2).

5.3.1. Effects from the asymmetric ordered motions

It is usual to assume that the velocity ellipsoid of gas is isotropic
in galactic discs. Under this assumption, no deprojection of data
is required, so that the observed velocity dispersion is a direct
proxy of the gaseous random motions. However, this assump-
tion is very idealised, and can only apply to axisymmetric kine-
matics, which rarely occurs in reality. Indeed, the velocity fields
(Vlos) always exhibit disturbances, as caused by the projection
of asymmetric ordered motions (VR, Vθ, Vz) due to, for exam-
ple, bars, rings, spiral arms, or warps. The effect of any of such
disturbances in Vlos should also propagate to σlos because of the
implied gradients in one or several directions in the plane. We
test this hypothesis by studying the toy models with asymmetric
kinematics perturbations described in Sect. 3.3 and Appendix B
in both isotropic and anisotropic cases. We mainly focus here-
after on cases with the weakest velocity gradient (shown in
Fig. B.2) to reduce possible residual BS signatures related to
unresolved rotation (see Sect. 5.2.4) and emphasise on local
perturbations.

In the axisymmetric and isotropic model (used as reference),
the strength of the Fourier coefficients of the various orders are
comparable (∼0.5 km s−1 on average). In all other models, σ1
and σ3 barely vary from this value, while the k = 2 and k = 4
components are significantly larger, being mostly >2 km s−1,
except in the axisymmetric case with uniform local anisotropy,
where σ4 is very comparable to the odd amplitudes. The distri-
butions of the phase angles for the negligible modes k = 1 and
k = 3 do not show systematic peaks. The even orders thus always
dominate the dispersion asymmetries, and the bisymmetry is the
strongest perturbation, on average.

Any model with a velocity ellipsoid showing a radial bias
σθ < σR creates a bisymmetry theoretically aligned with the
minor axis. The strength of k = 2 asymmetries in σlos within
mock data obtained from models combining effects from the uni-
form radial bias and VR and/or Vθ streamings is between 20 and
40% larger than those without the radial bias, on average, while
the amplitude of the mode k = 4 is not affected. The distribu-
tion of φ2 is sharply peaked at π/2 for the axisymmetric case of
anisotropy with the radial bias, and the peak is slightly enlarged
when there are asymmetries in VR and/or Vθ, regardless of their
strength. Moreover, in this latter case with the velocity pertur-
bation exclusively set along the azimuthal direction (∆VR = 0,
∆Vθ , 0), the incidence of φ2 = 0 or 1 remains extremely
low. These findings can be explained with the help of Eq. (3)
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from Chemin et al. (2020), where having k = 2 asymmetries
in σlos aligned with the minor axis is a genuine imprint of a
radially biased velocity ellipsoid (see also Eq. (C.11), but with
null cross terms). Thus, a local and uniform anisotropy of the
velocity ellipsoid with a radial bias drives the phases of asym-
metries in σlos more strongly than the effect of the velocity anis-
totropy induced at larger scale by the projection of VR and Vθ

gradients. This is because the radial bias is applied to all veloc-
ities in the mock data, while the VR and Vθ streamings are only
restricted to the locations of the perturbations. If a tangential
bias σθ > σR had been assumed, the bisymmetry would have
been exclusively aligned along the disc major axis, to the detri-
ment of the minor axis. Because THINGS and WHISP galaxies
do not show a φ2 distribution strongly concentrated around π/2,
anisotropic gaseous velocity ellipsoids consistent with a radial
bias uniformly distributed everywhere in discs, like the one pre-
sented here, seem very unlikely. A solution to avoid the φ2/T2
concentration at 0.5 is to have either an axis ratio σθ/σR which
varies with radius, or tilted velocity ellipsoids. Section 5.3.2 pro-
vides a hint of how this goal could be achieved.

The impact of velocity anisotropy arising from asymme-
tries in VR (or Vθ, respectively) is to greatly decrease the like-
lihoods of finding φ2 close to zero (π/2), in the case the velocity
perturbation is along the radial axis, that is ∆Vθ = 0 and
∆VR , 0 (azimuthal axis, ∆VR = 0, ∆Vθ , 0). This is because
there is little projection of Vθ (VR, respectively) onto the minor
(major) axis. These results remain valid regardless of the uni-
form isotropy/radial bias assumptions. If there were an equal
number of tilted rings dominated by radial and azimuthal veloc-
ity streamings, this would lead to distributions of φ2 with minima
around 0 and π/2, and conversely with maxima φ2 = 0.25π and
0.75π, which values are not far from those observed in the sam-
ple within the quoted uncertainties.

Then, still for models with asymmetries in VR and/or Vθ,
the distributions of σ4 and φ4 are very similar in both cases
of uniform isotropy or radial bias. Thus, the uniform velocity
anisotropy has negligible effect on the fourth order perturbation
of σlos, and this latter is an harmonics of the second order pertur-
bation in our toy models. The information about the orientation
of the bisymmetry (i.e. along the major or minor axis) is nev-
ertheless lost modulo π/2 in the fourth order5. Moreover, it is
obvious that asymmetries have destroyed the systematic peak at
φ4 = 0.5 T4 seen in the reference axisymmetric models. This is
because this peak could be caused by small residuals from BS
correction, as mentioned previously. Unless our velocity asym-
metries in the toy models are significantly overestimated with
respect to the reality, the occurrence of a systematic peak at
φ4 = 0.5 T4 in the observations indicates that the fourth order
asymmetry is very likely an harmonic of a second order which
would have preferential phase angles φ2 close to either 0.25π and
0.75π, which values remains close to the observed φ2 ∼ 0.35π
and 0.65π within the quoted uncertainty of 0.1 T2.

We note that combining a steep velocity gradient top the per-
turbations (see Fig. B.3) does not change qualitatively the previ-
ous results for the order k = 2 though the contrast between high
and low probability is a bit reduced, especially in the isotropic
case with the velocity perturbation along VR, due to residual BS
inducing a larger probability for null phase angles whatever the
direction of the perturbation. Anisotropy always dominates order
k = 2 when present. For order k = 4, a peak related to residual

5 A 4th-order mode could be generated as an harmonic of a second
order mode with a phase of either φ2 = φ4 or φ2 = φ4 + π/2.

BS clearly remains around φ4/T4 = 0.5, which increases the
trend already observed with weak rotation-induced BS.

Finally, although not shown here, we observe that when the
BS correction is made with flux density and velocity maps at
the highest angular resolution of the mock data (native resolu-
tion of ∼50 pc, before spatial smoothing), no significant residu-
als due to BS remain in the distribution of phase angles. We note
here that this value of 50 pc is only applicable to our toy mod-
els, and not to real observations, because we do not know pre-
cisely the angular scale of velocity streamings in galaxies. This
indicates that the velocity anisotropy from the streamings can
only affect the phase angles when the streamings are not prop-
erly resolved. Therefore, our method consisting in searching for
systematic effects in the phase angles of σlos from observations
of ‘limited’ resolutions like THINGS is a powerful tool to predict
the directions in the plane towards which the perturbations and
anisotropy are more significant. In particular, it implies that the
lopsidedness perturbation of H i kinematics in THINGS is more
likely to be stronger along the tangential dimension than along
the radial direction, hence a preferentially large-scale tangential
bias in the velocity anisotropy, in order to explain the higher inci-
dence of φ1 along the major axis of the galaxies. Similarly, it is
less probable to find a bisymmetry perturbation stronger in the
tangential direction, to explain the lower incidence of φ2 towards
the major axis of the galaxies. The observations of φ2 aligned
near the disc minor axis in lower mass galaxies (Sect. 4.4), simi-
larly to the outer part of M 33, would thus likely be explained by
dominant radial streamings, hence a stronger large-scale radial
bias in the velocity anisotropy (Chemin et al. 2020). Another
consequence of the analysis is that velocity asymmetries in
the first moment maps of galaxies must be observed on a
scale of about the PSF width, though of reduced amplitude.
We thus expect that systematic effects are present in the phase
angles of Vlos asymmetries, by analogy with those evidenced
in σlos, tracing the direction of dominant bias of the velocity
anisotropy from the perturbations. Comparing the properties of
asymmetries of Vlos and σlos is beyond the scope of this article,
however.

5.3.2. Effects from anisotropic velocity ellipsoids with tilted
axes

Until now, the tests on the shape of the velocity ellipsoid has only
considered components of the velocity tensor which are inde-
pendent from each other. However, the asymmetries in VR, Vθ

and Vz all result from the same perturbed gravitational potential.
By consequence, the components must show a certain degree of
correlation, at least at the vicinity of perturbations. Correlated
velocities are evidenced in the kinematics of stellar populations
of the Milky Way, through tilted axes of the stellar velocity ellip-
soid. The observed tilt angle of the axes of the radial and ver-
tical velocity distribution of Galactic halo stars can inform on
the 3D shape of the mass distribution and the dark matter halo
(Siebert et al. 2008; Smith et al. 2009; Wegg et al. 2019), while
that of the radial and tangential velocity distribution (the vertex
deviation) is caused by a bisymmetric perturbation in the disc,
such as a bar, a spiral structure, a warp, or more simply an ellip-
tical disc (Kuijken & Tremaine 1991; Debattista et al. 2019).

We can test the effect of correlations between H i velocities
by means of the uniform velocity anisotropy presented above,
by considering the possibility of tilted ellipsoids, as we do for
stars. This has a consequence on the projection of the ellipsoid
on the line-of-sight, and following the complete mathematical
description from Appendix C, the squared velocity dispersion is
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given by:

σ2
los =

σ2
θ − σ

2
R

2
cos 2θ + σ2

Rθ sin 2θ
 sin2 i

+
(
σ2

Rz cos θ + σ2
θz sin θ

)
sin 2i

+ σ2
z cos2 i +

σ2
θ + σ2

R

2
sin2 i,

(6)

where σ2
Rθ, σ

2
θz and σ2

Rz are the covariance terms marking the
correlation between the components of the velocity tensor in the
cylindrical frame of a disc. This equation can then be expressed
as a sum of three terms of orders 0, 1 and 2, with an analogue
formalism as the one we used to study asymmetries:

σ2
los = k0 + k1 cos (θ − α1) + k2 cos (2(θ − α2)), (7)

where ki are the amplitudes of these terms and αi are their phases,
that all depend on the various velocity dispersion terms. More
specifically, we have

tan 2α2 = 2σ2
Rθ/(σ

2
θ − σ

2
R). (8)

Assuming no tilted axes for the uniform velocity anisotropy
in the previous section left no choice than having a dispersion
bisymmetry systematically aligned with the minor or major axis
(α2 = π/2 or 0, respectively), depending on the sign of σ2

θ − σ
2
R.

This is at odds with the observation that the second order phase
angles φ2 = 0.35T2 and φ2 = 0.65T2 are particularly more
likely. Equations (7) and (8) thus imply that it is possible to
get various φ2 orientations if the velocity anisotropy is not as
uniform through the disc, and more importantly if the covari-
ance varies. In the Milky Way disc, the measurement of the axis
ratio of the tangential-to-radial velocity dispersions of young
stars as measured with Gaia spectro-astrometric kinematics, is
σθ/σR = 0.66 (Gaia Collaboration 2023). Since young stars
kinematics are expected to be comparable to that of the gas, we
further assume for this exercise that the velocity anisotropy of
the planar components of the interstellar gas for any galaxies in
our sample is comparable to the value found for young stars in
the MW disc. Reminding now that σ2

Rθ = ρRθσRσθ, with ρRθ
the correlation coefficient, an appropriate choice of covariance
and correlation coefficient which explain the higher incidence of
φ2 ≡ α2 = 0.35π and 0.65π for gas is ρRθ = ±0.6. Furthermore,
Eq. (7) implies that correlations between the vertical and the two
planar components should also be considered to get systematic
phases of first order phases. In order to explain those seen in
Fig. 5, we would thus need to have α1 ∼ 0 or π to match the
observations, that is, tanα1 = σ2

θz/σ
2
Rz ∼ 0, following Eq. (C.13).

This is possible if ρθzσθ � ρRzσR. Here again, studies of the
kinematics of young stars in the Galaxy should help to test these
predictions, which is relevant only if the shape of gaseous veloc-
ity ellipsoids are comparable to those of young stars in nearby
discs. It would then be interesting to investigate how these pre-
dictions on ρRθ compare with the observed planar correlations
of young stars of the Galactic disc, and how ρθzσθ compare
with ρRzσR for the same stellar populations. To our knowledge,
none of such distributions have ever been measured yet for the
Milky Way.

6. Summary and concluding remarks

For this work, we have performed the first systematic search and
characterisation of asymmetries in velocity dispersion maps of
H i gas in nearby galaxies. We used the best H i data available

in the archives, namely 32 galaxies from THINGS and WHISP
samples with a spatial resolution better than 1.5 kpc and a neutral
gas distribution extended by at least seven times the resolution,
to carry out this pioneering work. We performed a Fourier anal-
ysis of the observed second moment maps previously corrected
from both the line spread function and the two-dimensional BS
contribution tracing the velocity gradients occurring at a large
angular scale. This allowed us to measure the strength and phase
angle for each of the first four Fourier harmonics, which are the
most important perturbations in the random motions of H i gas.

We find a wide range of strength of asymmetries, up to
∼35 km s−1. The shape of the likelihood distributions of the
amplitude of the Fourier modes are similar, with a peak around
5−10 km s−1, and an extended tail towards larger values. Over-
all, the strongest Fourier mode is the bisymmetry (k = 2), with
a mean amplitude of ∼11 km s−1, followed by the lopsidedness
k = 1 asymmetry. On the other hand, the shape of the likelihood
distributions of phase angles strongly depends on the Fourier
mode, and the distributions present significant variations. For the
k = 1 asymmetry, the probability to find a phase angle near the
major axis of the discs is larger, while finding an asymmetry ori-
entated near 0.15 and 0.75 × 2π is less probable. For k = 2, the
likelihood is larger at phase angles of ∼0.35 and 0.65 × π, and
lower near the disc major axis, whereas that of the k = 4 mode
is concentrated at a value of 0.5 × π/2, implying an orientation
mainly lying at an equivalent separation from the disc major and
minor axes. These systematic phase angles are robust against the
number of titled rings and against the significance of the detected
signal. Using a uniform number of rings for all galaxies lowers
the significance of the result, but the trends for the shape of the
probability distributions are preserved. More uniform likelihood
distributions were expected for randomly distributed perturba-
tions in the galaxies and with isotropic velocity ellipsoids for the
H i gas. This is evidence that strong projection effects imprint on
the velocity dispersion maps of H i gas in nearby galaxies.

Finding the origin(s) of the asymmetries and its systematics
is a difficult task because of the nature of the velocity disper-
sion itself, which stems from instrumental effects and various
processes inherent to the galactic random motions (dynamical,
hydrodynamical, and thermal). In that aspect, we have shown
that large-scale-induced BS might produce non-negligible resid-
uals, especially in the fourth order for highly inclined galaxies
with high projected rotation velocities. Typical signatures of BS
on phase angles are orientated near the major axis (k = 1),
the minor axis (k = 2), and at 0.5 × π/2 (k = 4). Neverthe-
less, these orientations are not fully consistent with the observa-
tions, especially for the second order, and the strength of Fourier
modes in the BS contribution is much smaller than the observed
asymmetries. This suggests that unresolved velocity streamings
could be responsible for some variations in the likelihood dis-
tributions of the phase angles. The correlations found between
Fourier decomposition of H i gas density and velocity dispersion
maps suggest that the observed bisymmetry, and thus streaming
motions, are induced by spiral arms, bars, or warps.

We thus further addressed the impact on the random motions
from such velocity streamings present in the ordered motions
VR and Vθ. To do so, toy models mocking discs with a barely
resolved spiral perturbation in both the density and kinematics
were made, from which mock moment maps of discs seen under
various projection angles, strengths, and orientations, of the per-
turbations were derived, and Fourier analyses were performed,
by analogy to the observations. When streamings in the ordered
motions are stronger in the radial dimension, hence in the pres-
ence of a radially biased velocity anisotropy on large scales, they
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propagate to the random motions through the BS effect, but on
small scales, and it is more likely to find phase angles of the
k = 2 mode orientated along the minor axis. The same effect
applies to the major axis in the presence of a tangential large-
scale anisotropy as caused by stronger streamings in the tan-
gential dimension. When both VR and Vθ streaming motions are
present, the phase angles of the bisymmetry of velocity disper-
sion reflect the competition between the two directions. There-
fore, producing distributions of k = 2 phase angles similar to the
observations would probably require specific mixing between
the radial and tangential perturbations in discs, such as having
different regions of dominance of streamings in one direction
over the other. Also, no k = 4 phase angles centred around π/4,
as in the observations, could be produced within the toy models.
Our results suggest that the fourth order asymmetry is likely a
combination between BS residuals and harmonics of the second
order asymmetry in the velocity dispersion.

This analysis thus shows that it is possible to constrain
which asymmetry between VR or Vφ dominates the streamings
by studying the systematic orientations of the k = 1 and k = 2
phase angles of σlos. In particular, to explain the systematic ori-
entation of k = 1 phase angles along the major axis observed in
the samples, this work suggests that lopsidedness in Vlos must be
dominated by tangential perturbations, while the systematic ori-
entations of k = 2 phase angles outside the major axis require
elliptical streamings in Vlos affected by a stronger contribu-
tion from radial perturbations. By consequence, the observa-
tion of velocity asymmetries more significant in one direction
in the plane than the other implies that H i velocities are highly
anisotropic, at least at the angular scales probed by the Fourier
analysis and the resolution of the observations. Yet it is possi-
ble that the velocity ellipsoid of gas remains isotropic at angular
scales much smaller than those probed by the data, thus very
locally, perhaps at the scale of individual clouds. Moreover, we
predict that the signature of velocity anisotropy on large scales
is also present in velocity fields of galaxies, again in the shape
of systematic orientations of asymmetries near the principal axes
of the discs. This prediction should greatly benefit from analyses
of residual velocity fields of galaxies.

We further show that an anisotropic velocity ellipsoid with
correlations between velocity components can generate asym-
metries in the velocity dispersion with any orientation. Within
this formalism, we predict that the probability to find coeffi-
cients of a correlation between VR and Vθ must be larger towards
|ρRθ| ∼ 0.6, in order to explain the larger occurrence of gaseous
φ2 at ∼0.35π and ∼0.65π, assuming σθ/σR ∼ 0.7 as for the
youngest populations of stars in the Milky Way. It would mean
that the correlations between velocities in nearby gaseous discs
are not random values, and thus that perturbations of the gravi-
tational potential share common properties among the galaxies.
This prediction could be compared with the velocity correlations
measured for the youngest stellar populations of the Milky Way,
to which the kinematics of interstellar gas should be comparable
in many aspects.

This pioneering work has highlighted the importance of
velocity anisotropy in shaping the asymmetries of H i velocity
dispersions, through velocity streamings in the H i gas which are
dominant in particular directions in the plane and/or tilted veloc-
ity ellipsoids. The present study is intended to serve as a stepping
stone towards the design and the analysis of future large-scale
surveys of galaxies, observed at higher sensitivity and resolution

than those samples studied here, such as those upcoming with
the Square Kilometre Array and its precursors for the H i gas, or
those already observed in the molecular interstellar medium of
galaxies by ALMA, as well as in ionised gas and stellar velocity
fields. In that aspect, comparisons of the shapes of asymmetries
in σlos from both the stellar and gaseous components will be cru-
cial to support the proposal that gas velocities are anisotropic.
Harmonic decompositions of Vlos will also be helpful. This will
be the subject of future papers following this work.
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Appendix A: Significance of FFT results with noisy
data

In inner regions of galaxies, rings are smaller and contain less
pixels than in the outermost parts. Moreover, the average veloc-
ity dispersion tends to decrease with radius, and can thus vary
significantly from one ring to another, so that the properties of
rings are not necessarily uniform as a function of radius. The
results of a FFT, and in particular the precision that can be
obtained on Fourier amplitudes, is impacted these parameters.
It is essential to understand how the noise in the data affects the
results of the FFT and to estimate to which limits we can recover
the real signal, or in other words the reliability of the recovered
signal.In our study, we apply the FFT implemented in the Python
package FFTPACK from the Scipy library on the squared veloc-
ity dispersion σ2. To have a realistic estimate of the noise σ2,
we express the uncertainties on σ2 using the differential of the
squared velocity dispersion as:

d(σ2) = 2σ0dσ, (A.1)

where σ2
0 = 〈σ2〉 is the value of the zeroth order of the FFT,

because all higher orders cancel out on average over a ring,
and where dσ is the uncertainty on the observed velocity dis-
persion and that roughly corresponds to the uncertainty on the
instrumental resolution at a given signal-to-noise ratio. Since we
do not have uncertainty maps due to the processing techniques
(moments method) on THINGS data, dσ is not known precisely.
Since the spectral resolution of both THINGS and WHISP data
corresponds to about σLSF ∼ 2−5 km s−1, and because the actual
uncertainty on the line width depends on the S/N, we assume
that the uncertainty on the velocity dispersion is of the order
dσ ∼ 1 km s−1.

The way the uncertainties propagate from the data to the FFT
coefficients depends on how the FFT is implemented. A dis-
crete Fourier transform is used in FFTPACK to compute Fourier
coefficients:

Ck =

N−1∑
m=0

cm cos
(
−

2πkm
N

)
+ j

N−1∑
m=0

cm sin
(
−

2πkm
N

)
, (A.2)

where j is the unit imaginary number, Ck is the Fourier coeffi-
cient of order k as computed by FFTPACK, and cm are the N
elements in the discrete array. In our study, cm are the squared
velocity dispersion values along rings, σ2(m), and we deduce the
amplitude of each order k , 0 as σ2

k = 2|Ck |/N, and σ2
0 = |C0|/N

as the average of the squared velocity dispersion values along
the ring. From this formalism, it can be shown that for k , 0:

Var[σ2
k] =

4
N2

N−1∑
m=0

Var[σ(m)2]

+
8

N2

N−1∑
∆m=1

N−1−∆m∑
m=0

Cov[σ(m)2, σ(m + ∆m)2] cos
(

2πk∆m
N

)
,

(A.3)

with Var and Cov being respectively the variance and covari-
ance. Assuming that the variance is constant across the ring
(Var[σ(m)2] = Var[σ2]) and that covariance is null between dif-
ferent pixels, we can get at first approximation that:

Var[σ2
k] =

4
N

Var[σ2], (A.4)
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Fig. A.1. Square root of the noise on the squared velocity dispersion
amplitude for orders k = 1 to 4 of the FFT as a function of σ0 for two
distinct values of dσ and various number of points N in the FFT. The
curves correspond to Eq. A.5 with dσ = 1 km s−1 (dashed) and dσ =
4 km s−1 (dotted), each corresponding to a different value of N (from top
to bottom: 1000, 2000, 4000 and 8000). Coloured symbols correspond
to different orders measured on toy models. The similar behaviour of
orders leads to superposed points.

leading to the uncertainty on coefficients:

d(σ2
k) =

4σ0dσ
√

N
· (A.5)

Interestingly, this equation shows that the uncertainty is the same
for all orders, that it is proportional to the zeroth order, and that
it decreases with radius since the number of pixels increases lin-
early with radius and because σ0 rarely tends to decrease with
radius.

We have checked numerically the consistency between this
expression and the actual results from FFT using a toy model.
We define the noise δ on σ2

obs as a Gaussian distribution centred
on 0 and with a standard deviation of σGauss = d(σ2). We create
a toy model of the observed velocity dispersion with a constant
velocity dispersion to which we added noise:

σ2
obs = σ2

0 + δ, (A.6)

with δ a random value in the noise distribution. Doing so, the
distribution of each observed point is taken independently. We
used several values for dσ, σ0, and N the number of points in
the FFT, since N varies from one ring to another and from one
galaxy to another. We do 1000 iterations of the FFT and analyse
the amplitudes for orders 1 to 4, which are null in our model, as
shown in Eq. A.6. Fig. A.1 shows the measured uncertainties of
the toy models and confirms that Eq. A.5 is a good description of
the uncertainties. Equation A.5 can therefore be used to infer at
first order the significance of Fourier coefficients, sk = σ2

k/d(σ2
k),

depending on the number of rings and on the mean velocity dis-
persion value.
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Appendix B: Toy model description to study
projection and resolution effects on random
motions

Here, we describe the detailed generation of the toy models pre-
sented in Sect. 3.3 and used in Sections 5.2.1 and 5.3.1 to inves-
tigate the impact of projection effects on the study of random
motions in both axisymmetric and asymmetric cases as well as
with and without local anisotropy. We first built disc-like kine-
matics with 5 × 106 points representing individual particles or
gas clouds uniformly distributed over a disc of 200′′ radius.
The adopted axisymmetric contribution of azimuthal velocities
Vθ follows Vθ(R) = v0/(1 + (rs/R)γ)1/γ for two different sets of
parameters to describe either (i) a rotation curve slowly rising to
a moderate maximum rotation velocity with v0 = 200 km s−1,
rs = 100′′ and γ = 1, or (ii) a rotation curve with a steep
inner gradient and a sharp transition to a high velocity plateau
reached at small radius with v0 = 250 km s−1, rs = 20′′ and
γ = 2. We considered those two rotation curves to have either
a low or a high impact of large-scale rotation on BS. The disc
was not assumed contracting or expanding, that is, VR(R) = 0,
and a negligible average vertical component, Vz(R) = 0. A few
solutions exist to describe the departure of Vθ and VR from
axisymmetry at a given R, θ position in the plane. For exam-
ple, planar asymmetries can follow Fourier harmonics of second
order to mimic elliptical orbits in a bar or spiral potential (e.g.
Spekkens & Sellwood 2007; Gaia Collaboration 2023). This is
useful to describe large-scale perturbations of Vθ and VR, but
not necessarily appropriate to mock sharp velocity gradients
across and along spiral arms (Chemin et al. 2016). Therefore,
we adopted a different prescription than the simple cylindrical
harmonics, and defined a spiral pattern by:

θ = φsp + 2πR/r0, (B.1)

where R and θ are radial and azimuthal coordinates in the plane
of the galaxy, φsp is the phase of the pattern at the centre, and
r0 is the radius interval necessary for the spiral to complete 2π.
We used r0/2π = 50′′ in all models, and since the interesting
parameter to probe here is the difference between the orientation
of the velocity perturbation and a reference axis in the disc, we
vary the initial angle of the spiral perturbation with a sampling of
15◦, from 0◦ to 165◦ with respect to the major axis of the galaxy,
leading to 12 possible orientations for the pattern. For each R, θ
position, the closest point along the spiral in the galaxy frame
was found to infer the distance Dsp to the spiral and the unitary
vector u between those points. A density perturbation following
the spiral pattern was introduced as a constant over-density for
all points having their distance Dsp lower than a maximum dis-
tance ∆D where the spiral has an impact on the axisymmetric
model. We note that the distribution of points is not important
in this exercise, as it does not affect the kinematics. It can only
impact the derivation of the BS model, though with negligible
overall effect. We did not model the case of asymmetric verti-
cal motions, and defined the amplitude of the velocity perturba-
tion by ∆V = ∆V0 × (1 − Dsp/∆D) for Dsp ≤ ∆D, ∆V0 being
the maximum amplitude of the velocity perturbation. We used
∆V0 = 25 km s−1 and ∆D = 25′′. The value of 25 km s−1 was
chosen to match the maximum variation of velocity through the
spiral arms of the grand-design spiral Messier 99 with respect
to the axisymmetric circular velocity (Fig. 8 of Chemin et al.
2016), or the maximum strength of the elliptical motions of RGB
stars in the Galactic bar (Fig. 19 of Gaia Collaboration 2023).
We assumed the six following configurations:
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Fig. B.1. Velocity ellipsoid of the mock disc with local velocity isotropy
for the cases without large-scale anisotropy (upper panel), and with
a large-scale anisotropy induced by the spiral VR streamings (bottom
panel), assuming radial motions are null on average. The white contours
represent densities of 100, 1000, 5000, and 10000 toy-model particles.

– (1) Axisymmetric models with no perturbation (∆V = ∆VR =
∆Vθ = 0). These models are used as references from which
comparisons can be made, with respect to previous asym-
metric models.

– Asymmetric velocity models with a spiral velocity perturba-
tion along either (2) the azimuthal direction (∆Vθ = ∆V ×
u.uθ/|u.uθ|, ∆VR = 0), uθ being the unitary azimuthal vec-
tor, or (3) the radial direction (∆VR = ∆V × u.uR/|u.uR|,
∆Vθ = 0), uR being the unitary radial vector. These cases are
necessary to identify the impact of velocity gradients along
one planar direction, independently from the other direction.
This thus represents a departure from Vθ(R) of at least ∼13%,
and significantly more from VR(R).

– Asymmetric velocity models with a spiral velocity pertur-
bation along both azimuthal and radial directions for the
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Fig. B.2. Kinematics maps and velocity dispersion Fourier analysis histograms for the toy models with a weak velocity gradient rotation curve
(v0 = 200 km s−1, rs = 100′′ and γ = 1) without any perturbation (top), and with a spiral velocity perturbation towards either radial (middle)
or azimuthal (bottom) components. We show, from left to right the density map, the velocity field and the BS corrected dispersion maps in the
isotropic and anisotropic cases, obtained with an inclination of 60◦ and with φsp = 135◦. We show from left to right amplitude histograms of orders
k = 2 and k = 4 and normalised phase angle histograms of these orders, obtained from the FFT analysis of toy models dispersion maps. Blue and
green histograms correspond to isotropic and anisotropic cases respectively.

A5, page 21 of 38



Adamczyk, P., et al.: A&A 678, A5 (2023)

50”
−2.5

0.0

2.5

C
ou

nt
s

+2×102

50” −150

0

150

km
s−

1

6

8

10

12

km
s−

1

6

8

10

12

km
s−

1

0 1 2 3 4 5 6 7 8
f2(km s−1)

0
50

100
150
200
250
300
350
400
450

N
um

be
r

0 1 2 3 4 5 6 7 8
f4(km s−1)

0
50

100
150
200
250
300
350
400

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0
q2/)2

0

200

400

600

800

1000

1200

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0
q4/)4

0
100
200
300
400
500
600
700
800

N
um

be
r

50”

180

200

220

C
ou

nt
s

50” −150

0

150
km

s−
1

6

8

10

12

km
s−

1

6

8

10

12

km
s−

1

0 1 2 3 4 5 6 7 8
f2(km s−1)

0

50

100

150

200

250

N
um

be
r

0 1 2 3 4 5 6 7 8
f4(km s−1)

0

50

100

150

200

250

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0
q2/)2

0

100

200

300

400

500

600

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0
q4/)4

0

50

100

150

200

250

300

N
um

be
r

50”

180

200

220

C
ou

nt
s

50” −150

0

150

km
s−

1

6

8

10

12

km
s−

1

6

8

10

12

km
s−

1

0 1 2 3 4 5 6 7 8
f2(km s−1)

0

50

100

150

200

250

300

N
um

be
r

0 1 2 3 4 5 6 7 8
f4(km s−1)

0

50

100

150

200

250

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0
q2/)2

0
50

100
150
200
250
300
350

N
um

be
r

0.0 0.2 0.4 0.6 0.8 1.0
q4/)4

0

50

100

150

200

250

300

N
um

be
r

Fig. B.3. Same as Fig. B.2, but for the toy models with a steep velocity gradient rotation curve (v0 = 250 km s−1, rs = 20′′ and γ = 2).

cases (4) ∆Vθ = 2∆VR = 2∆V × u.uθ/|u.uθ|, (5) ∆VR =
2∆Vθ = 2∆V × u.uR/|u.uR|, and (6) with the spiral veloc-
ity perturbation ∆V along u, that is ∆VR = ∆V × u.uR and
∆Vθ = ∆V × u.uθ. In the latter case, the orientation of

the velocity perturbation changes with radius, being more
azimuthal in the inner parts and more radial in the outer
parts. These three models are useful to identified the com-
bined effect of planar asymmetries with different strengths.
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The azimuthal velocity at the coordinate R, θ was thus obtained
by Vθ(R, θ) = Vθ(R) ± |∆Vθ(R, θ)|, and similarly for the radial
component. This creates a sharp kinematic discontinuity through
the spiral feature, and the asymmetries in Vθ or VR make the
velocity ellipsoid intrinsically anisotropic on scales larger than
that of single gas clouds. To illustrate this, Fig. B.1 shows the
velocity ellipsoid in the case of local velocity isotropy with-
out large-scale anisotropy due to a spiral streaming (top panel),
and in the case of local velocity isotropy but with anisotropy
induced at large scale by the VR streaming described above (bot-
tom panel). The signature of the radial bias of the anisotropy is
clearly seen as contours of density elongated in the radial dimen-
sion of the velocity tensor.

Each particle was then assigned Vθ,VR and Vz components,
which were drawn randomly following a Gaussian probabil-
ity distribution centred on the local values described above,
Vθ(R, θ),VR(R, θ) and Vz(R), and with standard deviation σθ, σR
and σz, respectively. The two following cases have been
explored: σθ = σR = σz = 8 km s−1, corresponding to traditional
isotropic velocity ellipsoids in the absence of asymmetries, and
σR = 8 km s−1, σθ = 0.7σR = 5.6 km s−1, and σz = 5 km s−1,
which is a direct way to also generate a velocity anisotropy, uni-
formly, and in addition to the velocity streamings. To keep the
modelling simple, we thus did not allow direct variations of σθ
and σR within the disc. Combined to the six previously enumer-
ated configurations, this leads to a total of 12 cases for each rota-
tion curve. We did not explore the possibilityσθ > σR, as this sit-
uation only occasionally occurs in the stellar populations of the
Milky Way or the Large Magellanic Cloud (Gaia Collaboration
2021b, 2023).

Then, the mock cubes of data were built, giving each particle
a Vlos following Eq. C.1. Each data cube contains 200 spectral
channels of 3 km s−1 width, and 400× 400 squared pixels, with a
pixel scale of 1′′. The assigned channel map of a particle corre-
sponds to the one closest to Vlos, and the line profile in a spatial
pixel was obtained by summing the counts of all individual par-
ticles from this pixel. Constant position angle of the disc major
axis and disc inclination were assumed as a function radius. The
position angle was fixed at 45◦ in all models, and inclinations of
45◦, 60◦, and 75◦ were used. For each inclination, 12 mock data
cubes were generated, corresponding to the 12 orientations of the
spiral perturbation described above. To mimic an observational
BS effect, the data cubes were then smoothed by a Gaussian
function with a FWHM of 8 pixels (corresponding to ≈465 pc,
assuming a distance of 12 Mpc). These are idealised data cubes
to which no further smoothing by synthesised light and point
spread functions were applied, and no further random noise was
added. The first and second moments of the data cubes were then
derived, the BS correction applied, using the low-resolution flux
and velocity maps, to remain consistent with the methodology
applied to the observed data.

In Figures B.2 (weak velocity gradient, moderate maximum
rotation velocity) and B.3 (steep inner gradient, high maximum
rotation velocity reached at small radius), we show both the
effects of models of uniform isotropy and anisotropy for (1) the
axisymmetric configuration, and for the spiral velocity perturba-
tion along either (2) radial or (3) azimuthal directions. An exam-
ple with the velocity perturbation along u is shown in Fig. 3
for the rotation curve with the steep gradient. We show for each
case the maps obtained with an inclination of 60◦ and with
φsp = 135◦. Whereas no obvious BS residuals due to rotation are
visible in Fig. B.2, stronger residuals are observed in Fig. B.3,
especially in the inner parts. This is due to both the shape
and amplitude of the rotation curve. Nevertheless, we checked

that using the moment maps of the high-resolution mock data
cubes, that is those obtained before the spatial smoothing, leads,
as expected, to an accurate correction of the BS effect (see
Sect. 3.1), except at the very centre for the steeper rotation curve.
We also point out that when the spiral perturbation is set along
the radial (azimuthal) direction, the impact is minimum along the
major (minor) axis in both the velocity field and the velocity dis-
persion map. Fig. B.2 also shows the histograms of amplitudes
and phases for orders two and four resulting from the Fourier
analysis of the corresponding models, described and discussed
in Sections 5.2.1 and 5.3.1.

Appendix C: Line-of-sight velocity dispersion for a
disc in cylindrical coordinates

In this Appendix, we introduce and discuss the geometrical
and mathematical framework used to study asymmetries and
anisotropies in the neutral gas spatially resolved velocity disper-
sion fields. Velocity dispersion is a second order moment, and
therefore is a more complex quantity to study than flux and radial
velocity which are respectively the zero and first moment order.

Due to its hydrodynamical properties, the gas likely lies in
a plane. The velocity vector in the frame of the galactic plane
is described by two components both lying in this plane. Thus,
in the cylindrical frame, the observed velocity along the line-of-
sight is expressed as:

Vlos = Vsys + Vθ cos θ sin i + VR sin θ sin i + Vz cos i, (C.1)

where Vθ is the azimuthal velocity, that is the rotation motions;
VR is the radial velocity, that is the inward or outward motions;
and Vz is the vertical velocity, that is motions perpendicular to
the galactic plane.

The observed velocity Vlos (los for line-of-sight) is linked to
the projection of Vθ, VR and Vz along the line-of-sight through
five additional parameters: PA, the position angle of the major
axis of the galaxy (measured anticlockwise from the north to
the direction of receding side of the galaxy); i, the inclination
of the galactic disc with respect to the sky plane; Vsys, the sys-
temic velocity of the galaxy; and xc and yc, the coordinates of
the rotation centre in Cartesian coordinates (sky projection).

Both the radial, azimuthal, and vertical components can vary
with R and θ, which are the polar coordinates in the plane of
the galaxy with respect to the centre, choosing the major axis as
reference θ = 0 (receding side). The azimuth in the plane of the
galaxy, θ, is linked to the position angle PA, the inclination i, the
position x (east-west), y (north-south) and centre xc, yc in the sky
by the set of equations C.2 to C.7:

R cos θ = r cosψ, (C.2)

R sin θ = r
sinψ
cos i

, (C.3)

cosψ =
(y − yc) cos PA − (x − xc) sin PA

r
, (C.4)

sinψ = −
(x − xc) cos PA + (y − yc) sin PA

r
, (C.5)

r =

√
(x − xc)2 + (y − yc)2, (C.6)

R = r

√
cos2 ψ +

sin2 ψ

cos2 i
, (C.7)

with ψ being the anticlockwise angle from the major axis, and r
being the distance to the centre, both in the plane of the sky.
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It is possible to define velocity dispersion components:

σ2
i j = ViV j − Vi V j, (C.8)

where the subscripts i and j denote the different coordinate direc-
tions6: radial (R), azimuthal (θ), and vertical (z), whereas Vi and
V j give the corresponding velocities. When i , j, the term is the
covariance between Vi and V j, whereas in the specific case of
i = j, the term is the variance of Vi and we note σ2

ii = σ2
i . By

definition, the line-of-sight velocity dispersion is thus defined
as

σ2
los = V2

los − Vlos
2
, (C.9)

which leads, by replacing the terms by their corresponding
expression using Eq. C.1, by using Eq. C.8, and because Vsys
is constant, to:

σ2
los = σ2

θ cos2 θ sin2 i + σ2
R sin2 θ sin2 i + σ2

z cos2 i

+ 2(σ2
Rθ cos θ sin θ sin2 i + σ2

θz sin θ cos i sin i

+ σ2
Rz cos θ cos i sin i),

(C.10)

where σ2
Rθ, σ

2
Rz and σ2

θz are the squared cross terms of the veloc-
ity dispersion tensor. Those terms can be expressed as σ2

Rθ =

ρRθσRσθ, σ2
Rz = ρRzσRσz, σ2

θz = ρθzσθσz, owing to the defini-
tion of the correlation coefficients between the components ρRθ,
ρRz and ρθz that are bounded between -1 and 1. The term σ2

Rθ
can thus be negative, depending on the sign of the correlation
coefficient.

Equation C.10 can be recast in a sum of trigonometric poly-
nomials of second degree:

σ2
los =

σ2
θ − σ

2
R

2
cos 2θ + σ2

Rθ sin 2θ
 sin2 i

+
(
σ2

Rz cos θ + σ2
θz sin θ

)
sin 2i

+ σ2
z cos2 i +

σ2
θ + σ2

R

2
sin2 i.

(C.11)

We can formulate differently this equation to match better the
formalism introduced with Fourier Transforms (see Sect. 3.2):

σ2
los = k0 + k1 cos (θ − α1) + k2 cos (2(θ − α2)), (C.12)

with:

k0 = σ2
z cos2 i +

σ2
θ + σ2

R

2
sin2 i, (C.13)

k1 =

√
σ4

Rz + σ4
θz × sin 2i, (C.14)

cosα1 =
σ2

Rz

k1
sin 2i, (C.15)

sinα1 =
σ2
θz

k1
sin 2i, (C.16)

k2 =

√√σ2
θ − σ

2
R

2

2

+ σ4
Rθ × sin2 i, (C.17)

cos 2α2 =
(σ2

θ − σ
2
R)

2k2
sin2 i, (C.18)

sin 2α2 =
σ2

Rθ

k2
sin2 i. (C.19)

6 by construction, σ2
i j is not necessarily positive, this notation was nev-

ertheless used for the sake of homogeneity and because it was used by
other authors (e.g. Smith et al. 2009).

This formalism further motivated our choice of performing
Fourier Transforms on squared velocity dispersion. With these
definitions, we find

tan 2α2 = 2σ2
Rθ/(σ

2
θ − σ

2
R), (C.20)

so that α2 is the tilt angle of the velocity ellipsoid in
(R, θ) (see e.g. Smith et al. 2009), that is, the vertex deviation
(Kuijken & Tremaine 1991, 1994; Binney & Merrifield 1998),
analogue to the tilt angle of the velocity ellipsoid in (R, z) plane
used, for example, in Hagen et al. (2019).

In case there are asymmetries, those are embedded in the
terms ki and αi. For the sake of simplicity, let’s assume that cross
terms are null, which leads to

k1 = 0, k2 =
σ2
θ − σ

2
R

2
× sin2 i, and α2 = 0.

If we only have an asymmetry of order k (sinusoidal) in both
σ2

R and σ2
θ with similar amplitudes σR,k = σθ,k = σk and with

phases φR,k and φθ,k−φR,k = ∆φk, we can therefore express k0 and
k2 as:

k0 = σ2
z cos2 i + σ2

k cos (∆φk/2) cos (kθ − φR,k − ∆φk/2) sin2 i,
(C.21)

k2 = σ2
k sin (∆φk/2) sin (kθ − φR,k − ∆φk/2) sin2 i, (C.22)

and Eq. C.12 becomes:

σ2
los = σ2

z cos2 i + σ2
k cos (∆φk/2) cos (kθ − φR,k − ∆φk/2) sin2 i

+ σ2
k/2 sin (∆φk/2) sin ((k + 2)θ − φR,k − ∆φk/2) sin2 i

+ σ2
k/2 sin (∆φk/2) sin ((k − 2)θ − φR,k − ∆φk/2) sin2 i.

(C.23)

Orders k, k − 2 and k + 2 appear. Nevertheless, even if ∆φk is
constant, the phase φR,k is supposed to remain random, so no
peculiar direction should be favoured.

The general case without the assumption that σR,k = σθ,k
leads to:

k2 = ck cos (kθ − φR,k) + sk sin (kθ − φR,k), (C.24)

with

ck =
σ2
θ,k cos ∆φk − σ

2
R,k

2
, and (C.25)

sk =
σ2
θ,k sin ∆φk

2
, (C.26)

which can also be written as

k2 = xk cos (kθ − φR,k − φk), (C.27)

with

xk =

√
c2

k + s2
k , cos φk = ck/xk, and sin φk = sk/xk.

The general case would therefore also lead to orders k − 2 and
k + 2.

If σR,k = σθ,k = σk, we obtain that ck = −σ2
k sin2 (∆φk/2)

and sk = σ2
k sin (∆φk/2) cos (∆φk/2), and therefore xk =

σ2
k sin (∆φk/2) and φk = ∆φk/2+π/2, which enables us to recover

Eq. C.22.
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Appendix D: Results of the FFTs for individual
galaxies in THINGS

In this section we show the various kinematic product for each
THINGS galaxy as presented in Figure 1 and Figure 4. The
upper row plots represents from left to right the observed flux
density map, the observed velocity field, the observed velocity

dispersion, the BS model, and the velocity dispersion map cor-
rected from the BS effect. The second row shows the observed
squared velocity dispersion and its modelling through FFT up to
k = 4, and their residuals. The third row shows the individual
orders of the FFT in the galaxy. The bottom row presents the
amplitudes (left) and phase angles (right) of the FFT coefficients
as a function of radius.
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Fig. D.1. H i density and velocity maps and FFT results of NGC925. (Top panel, from left to right) Observed flux density map, observed velocity
field, observed velocity dispersion, beam smearing model, and velocity dispersion map corrected from the beam smearing effect. (Second panel,
from left to right) Squared observed velocity dispersion and its corresponding modelling through FFT up to the order 4, and the residuals between
those two maps. (Third panel) Individual squared orders of the FFT modelling projected in the plane of the galaxy. (Bottom panel) Radial variation
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Fig. D.2. Same as Fig. D.1 for NGC2403.
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Fig. D.3. Same as Fig. D.1 for NGC2903.
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Fig. D.4. Same as Fig. D.1 for NGC2976.
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Fig. D.5. Same as Fig. D.1 for NGC3031.
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Fig. D.6. Same as Fig. D.1 for NGC3198.
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Fig. D.7. Same as Fig. D.1 for NGC3521.
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Fig. D.8. Same as Fig. D.1 for NGC3621.
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Fig. D.9. Same as Fig. D.1 for NGC3627.
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Fig. D.10. Same as Fig. D.1 for NGC4736.
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Fig. D.11. Same as Fig. D.1 for NGC5055.

A5, page 35 of 38



Adamczyk, P., et al.: A&A 678, A5 (2023)

Σlos

0.04 0.08 0.12
Jy beam−1 km s−1

Vlos

−50 0 50 100
km s−1

σlos

0 4 8 12 16
km s−1

σbs

0 4 8 12 16
km s−1

σcorr

0 4 8 12 16
km s−1

σ 2
corr

5 kpc

σ 2
asym

0

100

200

300

400

(k
m

s−
1 )

2

σ 2
res

−200

−100

0

100

200

(k
m

s−
1 )

2

k = 1

5 kpc

−100

−50

0

50

100

(k
m
/

s)
2

k = 2

−100

−50

0

50

100

(k
m
/

s)
2

k = 3

−100

−50

0

50

100

(k
m
/

s)
2

k = 4

−100

−50

0

50

100

σ
2 k

co
sk

(θ
−

φ k
)(

km
/s

)2

0 100 200 300 400 500 600 700
Radius (arcsec)

0

5

10

15

20

25

30

σ k
(k

m
/s

)

k=0
k=1
k=2
k=3
k=4

0 5 10 15 20
Radius (kpc)

0 100 200 300 400 500 600 700
Radius (arcsec)

0.0

0.2

0.4

0.6

0.8

1.0

φ k
/T

k

0 5 10 15 20
Radius (kpc)

Fig. D.12. Same as Fig. D.1 for NGC6946.
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Fig. D.13. Same as Fig. D.1 for NGC7331.
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Fig. D.14. Same as Fig. D.1 for NGC7793.
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