

Investigation of VLF/LF electric field variations related to magnitude $Mw \ge 5.5$ earthquakes in the Mediterranean region for the year 2023

Hans Eichelberger, Mohammed Boudjada, Konrad Schwingenschuh, Bruno Besser, Daniel Wolbang, Maria Solovieva, Pier Biagi, Patrick H. M. Galopeau, Ghulam Jaffer, Christoph Schirninger, et al.

▶ To cite this version:

Hans Eichelberger, Mohammed Boudjada, Konrad Schwingenschuh, Bruno Besser, Daniel Wolbang, et al.. Investigation of VLF/LF electric field variations related to magnitude Mw \geq 5.5 earthquakes in the Mediterranean region for the year 2023. EGU General Assembly 2024, Apr 2024, Vienna, Austria. pp.EGU24-6001, 10.5194/egusphere-egu24-6001. insu-04507069

HAL Id: insu-04507069 https://insu.hal.science/insu-04507069v1

Submitted on 5 Jun2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MEDITERRANEAN REGION FOR THE YEAR 2023 Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, ⁶ Institute for Physics, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

Strong natural hazards together with their societal impact are usually accompanied by multiple physical phenomena which can be an important information source about the underlying processes. In this study we statistically analyze the lithosphere-atmosphereionosphere couplings of magnitude Mw5.5+ earthquakes (EQs) in the year 2023 with the aid of sub-ionospheric VLF/LF radio links. The electric field amplitude and phase measurements with a temporal resolution of one second are from the seismoelectromagnetic receiver facility in Graz (GRZ), Austria (Galopeau et al., 2023), which is part of the INFREP network. The spatial extend of the study area has the range $[-10^{\circ}E \le \text{longitude} \le 40^{\circ}E]$ and $[30^{\circ}N \le 10^{\circ}E]$ latitude \leq 50°N], in total are 17 EQs according to the United States Geological Survey (USGS) data base, among them the Turkey-Syria EQs (main shocks Mw7.8 and Mw7.5) and the Morocco Mw6.8 EQ. We apply the night-time amplitude method (Hayakawa et al., 2010) for all available paths, of particular importance are the transmitter links TBB (26.70 kHz, Bafa, Turkey), ITS (45.90 kHz, Niscemi, Sicily, Italy), and ICV (20.27 kHz, Tavolara, Italy). Relevant crossings are determined by the size of the Dobrovolsky-Bowman relationship (Dobrovolsky et al., 1979; Bowman et al., 1998). A major finding is the statistically significant electric field variation of the TBB-GRZ link related to the Turkey–Syria EQ sequence. A physical interpretation is based on atmospheric gravity waves (AGWs) which could alter the E-layer in the lower ionosphere during nighttime and modulate the height of the waveguide cavity.

EARTHQUAKES M \geq 5.5, 2023, MEDITERRANEAN AREA, DATA PROCESSING & RESULTS

We investigate VLF/LF electric fields from sub-ionospheric VLF/LF propagation paths in the geo. lat/lon range [$30^{\circ} \leq lat \leq 50^{\circ}$] / [- $10^{\circ} \leq long \leq 40^{\circ}$] in 2023. For this temporal, spatial and magnitude $M_w \ge 5.5$ constraints the USGS EQ database [9] includes 17 EQs, the Dst-index [10] considers external influences. All events (Tab. 1, Fig. 1) are selected, emphasis is according to VLF/LF path crossings and the Dobrovolsky-Bowman relationship [2, 3], i.e., the radius of the effective precursor manifestation zone $\varrho = 10^{(0.43*M)}$ km and log(R) \approx M/2 km. VLF/LF amplitude nighttime values are used (±2 hours around midnight) [7, 8], with 1 Hz resolution. The data are smoothed with a low-pass filter, the residuals are below 1 dB. Positive results (green color in Tab. 1), i.e., the link between measured VLF/LF electric fields and EQs, based on statistics from nighttime electric field amplitude variations with significance level 5%, are achieved for the big Kahramanmaraş EQ sequence and the Lárdos, Greece, event.

Table 1: Results for all $M \ge 5.5$ earthquakes (see Figure 1, st

Selected Earthquakes Magnitude M \geq 5.5, USUS database, time span UT.UT.2025 - 51.12.2025, long/lat range: $[-10 - +40]/[+50 - +50]$									
No.	Date, Time	Lat (°) / Lon (°) / Depth (km)	Mag / ρ (km)	Location	Main path	Control paths	Result, Annotation		
1	2023-01-25 12:37:05	+35.709 / +28.497 / 29.6	5.9 / 344	Lárdos, Greece	TBB-GRZ	11 {ISR,NAA,JJI,ITS,ICV,GWU,GBZ,GBS,DHO,DCF,NRK}-GRZ	OK: Post EQ > Pre EQ values with sig		
2	2023-02-06 01:17:34	+37.226 / +37.014 / 10.0	7.8 / 2260	Kahramanmaras EQs sequ.	TBB-GRZ	08 {NAA,ITS,ICV,HWU,GWU,GBZ,GBS,DHO}–GRZ	OK: Post EQ > Pre EQ values with sig		
3	2023-02-06 01:26:51	+37.225 / +37.000 / 10.0	6.7 / 760	Nurdağı, Turkey	TBB-GRZ		magnetic storm starts late in the pe		
4	2023-02-06 01:28:16	+37.189 / +36.893 / 9.80	5.6 / 255	Nurdağı, Turkey	TBB-GRZ				
5	2023-02-06 01:36:27	+36.992 / +36.683 / 10.0	5.4 / 210	Turkey-Syria border	TBB-GRZ				
6	2023-02-06 10:24:49	+38.0101/ +37.196 / 7.43	7.5 / 1679	Kahramanmaras EQs sequ.	TBB-GRZ	08 {NAA,ITS,ICV,HWU,GWU,GBZ,GBS,DHO}–GRZ			
7	2023-02-06 10:26:46	+38.032 / +38.099 / 10.0	6.0 / 380	Çelikhan, Turkey	TBB-GRZ				
8	2023-02-06 10:35:58	+38.025 / +37.802 / 10.0	5.8 / 312	Doğanşehir, Turkey	TBB-GRZ				
9	2023-02-06 10:51:31	+38.248 / +38.185 / 10.0	5.7 / 283	Yeşilyurt, Turkey	TBB-GRZ				
10	2023-02-06 12:02:11	+38.058 / +36.511 / 8.52	6.0 / 380	Göksun, Turkey	TBB-GRZ				
11	2023-02-07 03:13:13	+37.764 / +37.731 / 10.0	5.5 / 232	Gölbaşı, Turkey	TBB-GRZ				
12	2023-02-14 13:16:51	+45.100 / +23.201 / 10.0	5.6 / 255	Lelești, Romania	TBB-GRZ	14 {ISR,VTX,NWC,NAA,JJI,ITS,ICV,HWU,GWU,GBZ,GBS,DHO,DCF,NRK}-GRZ	Not OK: not significant, all paths our		
13	2023-02-20 17:04:30	+36.162 / +36.025 / 16.0	6.3 / 512	Uzunbağ, Turkey	TBB-GRZ	14 {ISR,VTX,NWC,NAA,JJI,ITS,ICV,HWU,GWU,GBZ,GBS,DHO,DCF,NRK}-GRZ	OK/NOK: Mixed results; significant		
14	2023-02-20 17:07:36	+36.159 / +35.935 / 10.0	5.5 / 232	Uzunbağ, Turkey	TBB-GRZ		Major magnetic storm at 2023-02-2		
15	2023-04-21 22:19:49	+35.026 / +15.219 / 13.8	5.5 / 232	Birżebbuġa, Malta	ITS-GRZ	08 {TBB,NAA,ICV,GBZ,GBS,DHO,DCF,NRK}-GRZ	OK/NOK: Mixed results; major mag.		
16	2023-07-25 05:44:51	+37.579 / +35.948 / 13.1	5.5 / 232	Kozan, Turkey	TBB-GRZ	09 {NAA,ITS,ICV,HWU,GBZ,GBS,DHO,DCF,NRK}-GRZ	NOK: Several magnetic storms: min(
17	2023-09-08 22:11:01	+31.058 / -08.385 / 19.0	6.8 / 839	Al Haouz, Morocco	{ITS,ICV}-GRZ	06 {JJI,HWU,GBZ,GBS,DHO,NRK}–GRZ	NOK: Receiver systematics and out of 1958 km, ITS-Morocco EQ = 2204 k		

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE

TRANSMITTER LIST & VLF/LF SYSTEM PARAMETERS

Receiver: Graz, IWF, Elettronika [E] and UltraMSK [U] system, geographic l								
No.	Acronym	Frequency (kHz)	GCP (km)	Transmitter, Systems				
1	JXN	16.40	2160	Aldra, Norway [U 1s]				
2	GWU	18.30	980	Le Blanc, Rosnay, St. A				
3	VTX	19.20 (17.00)	7240	Vijayanarayanam, Ind				
4	GBS	19.58	1570	Anthorn, UK [U 1s] [U				
5	NWC	19.80	12390	Exmouth, Western Au				
6	ICV	20.27	820	Tavolara, Sardinia, Ita				
7	HWU	20.90 / 21.75	1080	Le Blanc, St. Assise, F				
8	NPM	21.40	12380	Lualualei, Hawaii, USA				
9	GBZ	22.10	1540	Skelton, UK [U 1s] [U 2				
10	JJI	22.20	9140	Ebino, Kyushu, Japan				
11	DHO	23.40	875	Rhauderfehn, German				
12	NAA	24.00	6110	Cutler, Maine, USA [U				
13	NLM	25.20	7820	LaMoure, North Dakot				
14	TBB	26.70	1445	Bafa, Turkey [U 1s] [U				
15	ISR	29.70	2450	Dimona, Israel [U 1s]				
16	NRK	37.50	2975	Keflavik, Iceland [U 1				
17	JJY	40.00	9195	Mount Otakadoya, Ho				
18	NAU	40.80	7985	Aguada, Puerto Rico,				
19	ITS	45.90	1105	Niscemi, Sicily, Italy [
20	DCF	77.50	580	Mainflingen, Germany				
21	RRO	153	790	Brasov, Romania [E 60				
22	TDF (EU1)	162 (183)	1010 (700)	Allouis, France (Felsbe				
23	CH1	198	1900	Berkaoui/Ouargia, Alg				
24	RTL (MCO)	234 (216)	740 (820)	Beidweiler, Luxembou				
25	CZE	270	275	Topolna, Czech Repu				

Table 2: Transmitters received at the VLF/LF Graz facility, settings in blue/green/red color [1, 5, 6], major EQs event paths with yellow background. Figure 1: Great circle paths (orange & yellow lines) between VLF/LF transmitters and the Graz receiver (orange circle, UltraMSK systems [1, 5]), for INFREP (diamonds in blue color) see [6]. Magnitude M5.5+ EQs (17 yellow stars) and the relevant paths related to the Dobrovolsky-Bowman relationship are indicated (yellow lines good S/N, yellow-dotted lines are {VTX, NWC, ISR}-GRZ long distance paths). Credit map: GMT

tars in yellow color), time period 2023	3, Mediterranean area (2 OK, 2 mixed, 3 NOK)
---	--

REFERENCES

- Method. Data Syst., 12, 231–237, 2023. <u>https://doi.org/10.5194/gi-12-231-2023</u>
- PAGEOPH 117, 1025–1044, 1979. https://doi.org/10.1007/BF00876083
- Bowman, D.D., Ouillon, G., Sammis, C.G., Sornette, A., and Sornette, D., An observational test of the critical earthquake concept, JGR Solid Earth, 103, B10, 24359-24372, 1998. https://doi.org/10.1029/98JB00792
- https://doi.org/10.1029/2009JA015143
- https://doi.org/10.5194/nhess-11-1121-2011
- https://doi.org/10.4236/ojer.2019.82007 Website https://infrep.iwf.oeaw.ac.at/
- 9, 1727–1732, 2009. <u>https://doi.org/10.5194/nhess-9-1727-2009</u>
- https://earthquake.usgs.gov/ as of April 2024.
- 10. World Data Center for Geomagnetism, Kyoto, database <u>https://wdc.kugi.kyoto-u.ac.jp/</u> as of April 2024.

SUMMARY

VLF/LF electric field variations (nighttime amplitude method; assumed significance level 5%) can be related to the 2023 Turkey-Syria earthquakes (M7.8, M7.5) and the Lárdos, Greece (M5.9) event.

Galopeau, P.H.M, et al., A VLF/LF facility network for preseismic electromagnetic investigations, Geosci. Instrum.

Dobrovolsky, I.P., Zubkov, S.I., and Miachkin, V.I., Estimation of the size of earthquake preparation zones,

Hayakawa, M., et al., A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes, JGR Space Physics, 115(A9), 09305, 2010.

Schwingenschuh, K., et al., The Graz seismo-electromagnetic VLF facility, NHESS, 11, 1121–1127, 2011.

6. Biagi, P.F., et al., The INFREP Network: Present Situation and Recent Results, OJER, 8, 101-115, 2019.

7. Rozhnoi, A., et al., Middle latitude LF (40 kHz) phase variations associated with earthquakes for quiet and disturbed *geomagnetic conditions,* Ph. Chem. Earth, A/B/C, 29, 4-9, 589-598, 2004. <u>https://doi.org/10.1016/j.pce.2003.08.061</u> 8. Rozhnoi, A., et al., Anomalies in VLF radio signals prior the Abruzzo earthquake (M=6.3) on 6 April 2009, NHESS,

9. United States Geological Survey (USGS) earthquake catalog, database and website

VLF/LF AMPLITUDE MEAS., EARTHQUAKES 2023-02-06, M7.8 10 KM / M7.5 7.4 KM, KAHRAMANMARAŞ EARTHQUAKE SEQUENCE, TURKEY

VLF/LF amplitudes 21 days, TBB-GRZ 26.70 kHz, EQ 2023-02-06, M7.7, 10km, M7.5, 7.4km, Kahramanmaras, Turkey

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, ⁶ Institute for Physics, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-01-27 to 2023-02-16) for the 26.70 kHz TBB-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 9 paths

• Top Right: Nighttime amplitude values for the affected TBB-GRZ event path (crossing the Dobrovolsky-Bowman area/radius)

VLF/LF AMPLITUDE MEASUREMENTS, EARTHQUAKE 2023-04-21, M5.5 13.8 KM, BIRŻEBBUĠA, MALTA

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, ⁶ Institute for Physics, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-04-11 to 2023-05-01) for the 45.90 kHz ITS-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 9 paths

• Top Right: Nighttime amplitude values for the affected ITS-GRZ event path (crossing the Dobrovolsky-Bowman area/radius) Bottom Right: Statistics (box plots) for the offset corrected 9 paths (7 continuous), for a sig. level of 5% the event paths ITS-GRZ, GBZ-GRZ, GBS-GRZ show higher amplitude values after the EQ

VLF/LF AMPLITUDE MEASUREMENTS, EARTHQUAKE 2023-07-25, M5.5 13.12 KM, KOZAN, TURKEY

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, ⁶ Institute for Physics, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-07-15 to 2023-08-04) for the 26.70 kHz TBB-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 10 paths

• Top Right: Nighttime amplitude values for the affected TBB-GRZ event path (crossing the Dobrovolsky-Bowman area/radius) Bottom Right: Statistics (box plots) for the offset corrected 10 paths (9 continuous), for a significance level of 5% the control path DHO-GRZ show higher amplitude values after the EQ

VLF/LF AMPLITUDE MEASUREMENTS, EARTHQUAKE 2023-09-08, M6.8 19 KM, AL HAOUZ, MOROCCO

- Top Right: Nighttime amplitude values for the possibly affected ICV-GRZ event path

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-08-29 to 2023-09-18) for the 20.27 kHz ICV-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 8 paths

Statistics, median values, 25th/75th percentiles, 8 paths, EQ 2023-09-08, M6.8, 19.0km, Al Haouz, Morocco

VLF/LF AMPLITUDE MEASUREMENTS, EARTHQUAKE 2023-01-25, M5.9 29.6 KM, LÁRDOS, GREECE

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-01-15 to 2023-02-04) for the 26.70 kHz TBB-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 12 paths • Top Right: Nighttime amplitude values for the affected TBB-GRZ event path (crossing the Dobrovolsky-Bowman area/radius) Bottom Right: Statistics (box plots) for the offset corrected 12 paths (11 continuous), for sig. level of 5% only the event path TBB-GRZ shows higher amp. values after the EQ (nighttime method)

VLF/LF AMPLITUDE MEASUREMENTS, EARTHQUAKE 2023-02-14, M5.6 10 KM, LELEȘTI, ROMANIA

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-02-04 to 2023-02-24) for the 26.70 kHz TBB-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 15 paths • Top Right: Nighttime amplitude values for the affected TBB-GRZ event path (crossing the Dobrovolsky-Bowman area/radius)

Bottom Right: Statistics (box plots) for the offset corrected 15 paths, no significant variations (5% level) according to the nighttime method

VLF/LF AMPLITUDE MEASUREMENTS, EARTHQUAKES 2023-02-20, M6.3 16 KM & M5.5 10 KM, UZUNBAĞ, TURKEY

INVESTIGATION OF VLF/LF ELECTRIC FIELD VARIATIONS RELATED TO MAGNITUDE MW≥5.5 EARTHQUAKES IN THE **MEDITERRANEAN REGION FOR THE YEAR 2023**

Hans Eichelberger¹, Mohammed Y. Boudjada¹, Konrad Schwingenschuh¹, Bruno P. Besser¹, Daniel Wolbang¹, Maria Solovieva², Pier F. Biagi³, Patrick H. M. Galopeau⁴, Ghulam Jaffer⁵, Christoph Schirninger⁶, Aleksandra Nina⁷, Gordana Jovanovic⁸, Giovanni Nico⁹, Manfred Stachel¹, Özer Aydogar¹, Cosima Muck¹, Josef Wilfinger¹, Irmgard Jernej¹, and Werner Magnes¹ ¹ Space Research Institute, Austrian Academy of Sciences, Graz, Austria, ² Schmidt Institute of Physics, University of Bari, Bari, Italy, ⁴ LATMOS-CNRS, UVSQ Université Paris-Saclay, Guyancourt, France, ⁵ SpaSys, SnT - Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, ⁶ Institute for Physics, University of Graz, Graz, Austria, ⁷ Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia, ⁸ Faculty of Science and Mathematics, University of Montenegro, ⁹ Institute of Applied Mathematics, Italian National Research Council, Bari, Italy

• Top Left: VLF/LF amplitudes (2023-02-10 to 2023-03-02) for the 26.70 kHz TBB-GRZ path, spikes and transmitter switch off periods are omitted Bottom Left: Offset corrected nighttime (± 2h around midnight) amplitude values for the 15 paths

• Top Right: Nighttime amplitude values for the affected TBB-GRZ event path (crossing the Dobrovolsky-Bowman area/radius)

