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Abstract

Quantifying subsurface fluid flows and related heat and gas fluxes can provide
essential clues for interpreting the evolution of volcanic unrest in volcanoes with
active hydrothermal systems. To better constrain the distribution of current
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hydrothermal activity, we mapped diffuse soil CO2 degassing, ground tempera-
ture and self-potential covering the summit of La Soufrière de Guadeloupe during
2022-23. We identify areas of fluid recharge and the zones and extent of major
ascending hydrothermal flows. This paper provides a first estimate for summit
ground CO2 flux of 4.20± 0.86 t d−1, representing about half the CO2 emissions
from the summit fumaroles. We find an extensive area of ground heating of at least
22 250±6900m2 in size and calculate a total ground heat flux of 2.93±0.78MW,
dominated by a convective flux of 2.25± 0.46MW. The prominent summit frac-
tures exert significant control over hydrothermal fluid circulation and delimit a
main active zone in the NE sector. The observed shift in subsurface fluid circu-
lation towards this sector may be attributed to a changing ground permeability
and may also be related to observed fault widening and the gravitational sliding
of the dome’s SW flank. Our results indicate that the state of sealing of the dome
may be inferred from the mapping of hydrothermal fluid fluxes, which may help
evaluate potential hazards associated with fluid pressurisation.

Keywords: hydrothermal unrest, monitoring, diffuse degassing structures, heat and
CO2 flux, subsurface permeability, fluid circulation
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1 Introduction

A common definition of a volcanic hydrothermal system is an underground aquifer
in a volcanic environment where hot and acid magmatic fluids discharged at depth
interact with groundwater. These interactions typically manifest at the surface
as fumaroles, thermal springs, hot acid lakes or boiling pools (Hochstein and
Browne, 2000; Fischer and Chiodini, 2015). Hydrothermal fluid motion within a
volcanic edifice is maintained by a quasi-constant supply of heat and gas from
the magma reservoir into water circulating at shallower depths in the brittle,
fractured and permeable host rock (Hedenquist and Lowenstern, 1994).

Convection of hydrothermal fluids can create a multitude of non-magmatic
unrest signals, e.g. soil and fumarolic degassing, ground heating and deformation,
volcano-tectonic seismicity (Rouwet et al, 2014; Pritchard et al, 2019). Addi-
tionally, hydrothermal systems modulate geochemical and geophysical signals of
magmatic origin, making the interpretation of anomalies in monitoring data and
consequently, eruption forecasting difficult (Barberi et al, 1992; Rouwet et al,
2014).

Hydrothermal fluids are enriched in the most water-soluble and acidic com-
ponents of magmatic gases, e.g. SO2, H2S, HCl and HF (Hochstein and Browne,
2000; Fischer and Chiodini, 2015) promoting intense leaching and alteration
(argillisation) of the host-rock. Host rock porosity/permeability is modified by
alteration, either increasing or decreasing according to the type of alteration.
Porosity-increasing alteration is thought to reduce rock strength and thus edifice
stability (López and Williams, 1993; Watters et al, 2000; Farquharson et al, 2019;
Heap et al, 2021b), whereas porosity-decreasing alteration (sealing) increases rock
strength whilst simultaneously decreasing outgassing, impeding fluid circulation
and heat transfer to the surface and enhances pore fluid pressurisation (Heap
et al, 2019).

Alteration promotes edifice instability and increases the likelihood of (par-
tial) flank collapses (López and Williams, 1993; Reid et al, 2001; Reid, 2004),
potentially causing sudden decompression of the hydrothermal system and
laterally-directed blasts (cf. c. 3100 years B.P. event at La Soufrière de Guade-
loupe, Boudon et al, 1984; Soufrière Hills, Montserrat, 1997 Sparks et al, 2002).
Pore pressurisation can furthermore increase volcano spreading (Heap et al,
2021a) known to promote flank collapses (van Wyk de Vries and Francis, 1997;
Karstens et al, 2019) and lead to highly explosive phreatic/phreato-magmatic
activity and associated pyroclastic density currents (Heap et al, 2019, 2021a).

Circulating hot fluids with excess electrical charge within the volcanic edifice
are evidenced by ground thermal anomalies, increased soil gas emanation, and
changes in electric potential at the surface. A widely used method to quantify
subsurface fluid flow in volcano-hydrothermal zones and to outline the extent
and state of hydrothermal systems is self-potential (SP) mapping (e.g. Massenet
and Pham, 1985; Zlotnicki et al, 1994; Finizola et al, 2002; Barde-Cabusson
et al, 2012; Brothelande et al, 2014). SP is a passive technique that measures
the naturally occurring difference in electrical potential between two electrodes
placed at the ground surface. SP signals can have a variety of origins, including
electrochemically-generated potentials (redox potentials in ore bodies and con-
taminant plumes, ion diffusion due to concentration gradients; Jouniaux et al,
2009), potentials produced by thermoelectric effects (Nourbehecht, 1963; Corwin
and Hoover, 1979) and electrokinetic (streaming) potentials generated by the
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flow of water through a porous material. Whilst different mechanisms can coex-
ist, theoretical considerations by Corwin and Hoover (1979) imply that streaming
potentials are larger by about an order of magnitude than thermoelectric and elec-
trochemical potentials and there is general agreement that streaming is the main
cause of SP anomalies on active volcanoes (Massenet and Pham, 1985; Zlotnicki
et al, 1994; Finizola et al, 2002, 2004; Aizawa, 2008; Aizawa et al, 2009; Barde-
Cabusson et al, 2012). For a detailed explanation of how streaming potentials are
generated, the reader may refer to the papers of Revil et al (1999), Revil (2002),
and Jouniaux and Ishido (2012). In general, for typical pH conditions at active
volcanoes, the presence of an electrical double layer at the interface between the
host rock and the pore water will lead to a net transport of positive ions, and
thus the generation of a positive electric potential in the flow direction of the pore
water (Revil, 2002). Therefore, on many active volcanoes, positive SP anomalies
on the order of a few hundred mV are observed in the summit (crater) area of the
edifices or above flank fissures and vents due to the upwelling of hydrothermal
fluids, while on the flanks the percolation of meteoric water produces negative
anomalies (Finizola et al, 2004; Jouniaux and Ishido, 2012).

The convection of fluids from depth transports heat to the surface, particu-
larly in a hydrothermal setting. Rising hydrothermal fluids are either emitted by
fumaroles where the permeability of the subsurface is high and/or fracture net-
works form natural conduits to the surface (Stevenson, 1993) or by diffuse soil
degassing in low-permeability zones. Given that H2O is by far the most abundant
chemical species at 90–95 wt.%, and that it has some of the largest values of heat
capacity and latent heat of any fluid, transport by water is the dominant mode of
heat transfer at hydrothermal systems (Harris, 2013; Fischer and Chiodini, 2015).
In low-permeability zones, the condensation of steam at the near subsurface lib-
erates significant amounts of heat that is then transported to the surface, leading
to ground heating (Aubert, 1999; Harris et al, 2009; Gaudin et al, 2015) and the
emission of gas species, mainly CO2, which do not condense at near-atmospheric
conditions given their very low solubility. Thus, if measurements of either i) the
surface temperature (e.g. with a thermal camera) or ii) the soil temperature pro-
file are performed, the heat flux can be estimated using the thermal properties
of the soil. Both techniques have been used in various hydrothermal volcanic set-
tings (e.g. Aubert, 1999; Lewis et al, 2015; Gaudin et al, 2016; Jessop et al, 2021).
In contrast, soil CO2 together with the CO2/H2O ratio (often derived from anal-
yses of fumarole gas samples) can be used to estimate total heat flux in diffuse
degassing zones (Chiodini et al, 2001, 2005). Hence, in many volcanic environ-
ments, diffuse CO2 degassing correlates with soil temperature anomalies and SP
maxima (Lewicki et al, 2003; Finizola et al, 2010; Byrdina et al, 2014). Combin-
ing measurements of CO2 degassing and soil temperature with SP can provide
information on subsurface permeability (controlled by inherent host rock prop-
erties, the presence of fault/fracture networks and alteration processes, Grobbe
and Barde-Cabusson, 2019) and help to outline the geometry of the hydrother-
mal system and constrain fluid circulation (e.g. Matsushima et al, 1990; Finizola
et al, 2002; Lewicki et al, 2003; Finizola et al, 2004; Brothelande et al, 2014).

As recently demonstrated by the deadly events at Mount Ruapehu (New
Zealand, 2007 Kilgour et al, 2010), Ontake volcano (Japan, 2014, Maeno et al,
2016) and Whakaari (White Island, New Zealand, 2019, Dempsey et al, 2020),
even purely steam-driven/hydrothermal eruptions can be very hazardous given
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their sudden onset. Therefore, monitoring the spatial distribution and tempo-
ral evolution of hydrothermal signals at volcanoes with long-lived hydrothermal
activity is critical to detect and interpret precursory signals of explosive activity.

This study focuses on La Soufrière de Guadeloupe (Lesser Antilles), an
active andesitic volcano with a well-developed hydrothermal system, that has
been showing signs of growing unrest (HCl-rich summit degassing, formation of
new summit fumaroles, deformation, fracture opening, seismicity and increased
ground heat flux on the summit) (Komorowski et al, 2005; Allard et al, 2014;
Villemant et al, 2014; Tamburello et al, 2019; Moretti et al, 2020a; Jessop et al,
2021) since 1992.

Here we present for the first time combined mapping of self-potential (SP),
subsurface ground temperature and soil diffuse CO2 flux on the summit of La
Soufrière dome. Interpolated maps of these data show the main zones of rain
infiltration into the hydrothermal system and zones of ascending flows. From our
data we estimate the heat loss at the summit and, further, the condensation depth
of the ascending hydrothermal vapour, which indicates the ground permeability
distribution. Our results allow us to infer spatial changes in shallow hydrothermal
fluid flow and ground permeability.
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2 Geological setting and background

Fig. 1 (a) Schematic map showing the location of Guadeloupe in the Lesser Antilles arc and La
Soufrière de Guadeloupe volcano in the southern part of Basse Terre island. Guadeloupe is situ-
ated in the central Lesser Antilles arc, where the Atlantic plate subducts under the Caribbean plate.
Guadeloupe comprises two main islands: Grand-Terre, associated with the inactive outer arc and
Basse-Terre, associated with the active inner arc (Adapted from Allard et al (2014); Pichavant et al
(2018)). (b) Aerial photo (A. Anglade, OVSG-IPGP, 2016) of the summit area showing vegetation
die-off due to acid degassing. Labelled are the main active fumaroles with the date of reactivation/ap-
pearance in brackets. NAPE and NAPN denote the Napoléon Est and Napoléon Nord fumaroles,
respectively. The blue shading highlights the zone that has undergone recent changes in ground heat-
ing, degassing, and spreading (ZFNN: Zone Fumerollienne Napoléon Nord, since it spreads in the area
around NAPN). (c) Map of the summit of La Soufrière de Guadeloupe showing the main geological
features mentioned in the text. Main fumaroles indicated by the yellow triangles: Cratère Sud-Sud
(CSS), Cratère Sud-Centre (CSC), Cratère Sud-Nord (CSN), Gouffre ’56, Napoléon Est (NAPE),
Napoléon Nord (NAPN), Tarissan (TAR). ZFNN (Zone Fumerollienne Napoléon Nord) denotes the
recent spreading ground heating and diffuse degassing area. Isocontours (grey lines) are plotted every
20m. The base map is the 2017 IGN aerial orthophoto (IGN, BD ORTHO 2017)
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La Soufrière de Guadeloupe (16.0446◦ N, 61.6642◦ W, 1467m a.s.l., hereafter
referred to as La Soufrière) is an andesitic volcano situated in the central part of
the Lesser Antilles island arc, where the North American plate subducts under
the Caribbean plate (Feuillet et al, 2002). It is the youngest edifice of the Grande
Découverte volcanic complex (445 kyr) on the southern Basse-Terre island of
Guadeloupe and was emplaced during the last major magmatic eruption in 1530
AD (Boudon et al, 2008). Since this last magmatic event, extensive hydrothermal
activity has persisted on and around the current lava dome and La Soufrière has
experienced six phreatic eruptions, two of which were major events in 1797/98 and
1976/77 (Komorowski et al, 2005). Historic phreatic eruptions opened numerous
(mostly radial) fractures and vents (Komorowski et al, 2005) on the dome whose
evolution and degassing are routinely monitored and sampled by the Observa-
toire Volcanologique et Sismologique de Guadeloupe (OVSG-IPGP) along with
seismic activity, surface displacements and weather conditions on the summit.

After the most recent and largest eruptive crisis in 1976/77, which led to the
evacuation of more than 70 000 people and severe socio-economic problems for
Basse-Terre (Komorowski et al, 2005; Hincks et al, 2014), the volcano became
quiescent with only low-level fumarolic degassing along the Ty fault at the SW
base of the dome (Zlotnicki et al, 1994) until 1992 when it entered a new unrest
phase. Since 1992, degassing of summit fumaroles has been progressively increas-
ing (year of fumarole reactivation indicated in Fig. 1b), concurrently with shallow
seismicity, ground deformation, emission of chlorine-enriched acid gases, reactiva-
tion of thermal springs at the base of the dome, fumarole and ground temperature
and the formation of boiling acid ponds at Cratère Sud (CS) (consisting of 3
vents aligned along a fracture: Cratère Sud Sud/Centre/Nord, CSS/CSC/CSN,
1997-2003, see Fig. 1) and Cratère Tarissan (TAR, since 2001, Fig. 1 and see
also Zlotnicki et al (1992); Komorowski et al (2005); Villemant et al (2014);
Rosas-Carbajal et al (2016); Moretti et al (2020a)).

Until 2014 soil degassing and ground thermal anomalies on the summit were
limited to the areas directly surrounding the major fumaroles (i.e. CS, TAR,
Cratère Napoléon, see Fig. 1 and Allard et al, 2014; Gaudin et al, 2016; Tam-
burello et al, 2019). However, the area affected by degassing and ground heating
has been expanding in recent years and new high-flux fumaroles have appeared:
Napoléon Nord, NAPN, in 2014 and Napoléon Est, NAPE, in 2016 (see Fig. 1
OVSG-IPGP 2014–20231 and Moretti et al, 2020a). Observed changes are partic-
ularly strong in an area around NAPN named the Zone Fumerolienne Napoléon
Nord (ZFNN) delimited to the west by Cratère Dupuy and TAR (Fig. 1). In that
zone, vegetation die-off has been extending concomitant with increased ground
heat output (OVSG-IPGP 2014–2023 and Jessop et al, 2021).

The first mapping and estimation of La Soufrière heat and mass fluxes was
carried out in 2010 (Gaudin et al, 2016). Jessop et al (2021) performed a recent
analysis of the total heat flux discharged by the volcano (integrating data span-
ning 2000–2019) and compared estimated heat and mass fluxes for 2010 and 2019.
The main change observed over this period is the emergence of the ground thermal
anomaly at the summit, the ZFNN, which has led to an increase in ground heat
flux by an order of magnitude (2010: 0.2±0.1MW, 2019: 5.7±0.9MW). Together
with the appearance of new fumaroles (NAPN, NAPE) as well as extensive veg-
etation die-off on the summit, the total volcanic heat output was estimated to

1http://www.ipgp.fr/fr/ovsg/bulletins-mensuels-de-lovsg
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have increased from 29.8 ± 8.3MW in 2010 to 36.5 ± 7.9MW in 2020 (Jessop
et al, 2021).

A peak in unrest in 2018 (ML 4.1 earthquake) was interpreted as being the
result of an increased supply of magma-derived fluids to the hydrothermal sys-
tem, whose pressure build-up could be released since the dome was sufficiently
permeable/fractured (Moretti et al, 2020a). Extensive hydrothermal activity at
La Soufrière is sustained by heat and gas fluxes from a 6–7 km deep (i.e. below
the summit) andesitic magma reservoir (Feuillard et al, 1983; Hirn and Michel,
1979; Allard et al, 2014; Pichavant et al, 2018; Metcalfe et al, 2022) to the deep
aquifer (i.e. ≈ 1 km b.s.l. or 2.5 km below the summit) (Moretti et al, 2020a,
and references therein). Deep, boiling hydrothermal fluids and magma-derived
gases then rise through fractures, interact with groundwater at shallower depths
(average rainfall summit: 5–6myr−1, (OVSG-IPGP, 2012–2023) and feed sum-
mit fumaroles (Villemant et al, 2014; Moretti et al, 2020a; Moune et al, 2022).
Shallow hydrothermal activity (i.e. ≤ 1.5 km below the summit) is considered
responsible for the observed shallow deformation and seismicity (Moretti et al,
2020a) and increasing fluxes of rising acid fluids have caused extensive alteration
(progressive sealing) and mechanical weakening of the dome (Komorowski et al,
2005; Salaün et al, 2011; Rosas-Carbajal et al, 2016; Heap et al, 2021b). These
observations cause concern regarding the collapse of the SW flank, already show-
ing surface displacements of up to 9mmyr−1 towards the SW (Moretti et al,
2020a, OVSG-IPGP 1996–2023), which would not only directly affect the increas-
ingly populated southern slopes, where more than 50 000 people reside, but could
also decompress the hydrothermal system leading to explosive phreatic activity
(Komorowski et al, 2005; Moretti et al, 2020a).

3 Methods

To better constrain the distribution of presently active hydrothermal zones on
the dome, we have, for the first time, conducted self-potential, temperature and
diffuse CO2 flux surveys over a relatively short ≈ 1 year duration. SP and temper-
ature measurements were carried out at the summit area of La Soufrière (Fig. 1)
during a field campaign in May/June 2022 under overall constant, humid weather
conditions but without any major rainfall. Due to instrument issues in 2022, soil
CO2 flux (ϕCO2) data were acquired during another campaign in May 2023 under
mostly dry weather conditions. All the data were located using a handheld GPS
receiver (Garmin eTrex® 20 and Garmin GPSMAP® 60) as well as internal GPS
in the CO2 flux meter. To facilitate data analysis, all data sets were interpolated
using the sequential Gaussian simulation (sGs) algorithm within the open-source
Stanford Geostatistical Modeling Software (SGeMS) (Remy et al, 2009) and fol-
lowing the methods of Cardellini et al (2003). 250 simulations were performed
for each data set using simulation grids with 5m node spacing. The variograms
of the normal score transformed data and fitted variogram models can be found
in Fig. 10. The produced realisations were post-processed to obtain E-type (E:
expected value) maps. The E-type map, i.e. the map of the mean at all grid nodes,
is obtained through pointwise linear averaging of all the realisations. The maps
of E-type (mean) are reported in Fig. 2, 4, 6, 9; they were used to calculate the
reported heat and CO2 fluxes and to define the extent of the heated and diffuse
degassing area.
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3.1 Temperature profiles, gradient and heated area
calculations

Temperature data were acquired at a mean spacing of 11m (maximum of 48m),
with a generally higher density of data points east of Cratère Dupuy and
TAR. Ground temperatures were measured along vertical profiles at the sur-
face, at 20 and 60 cm depth using three PT100 platinum resistance thermometers
(measurement accuracy ±1 ◦C) embedded in a thermal paste in stainless-steel,
ground-penetrating spikes. The thermal probes, built at the OVSG-IPGP, were
connected to a portable data logger that took readings in real-time at 1Hz.
Before each temperature measurement, we hammered a steel bar (approx. 2 cm
diameter) into the ground to the respective depths. We then inserted the ther-
mal probes into the holes created and took readings when the temperature had
stabilised. Error on the depth of probe insertion was less than 5 cm.

We obtained estimations of temperature variation with depth x using a linear
model

T (x) = ax+ b, (1)

where dT/dx = a is the prediction of the temperature gradient and T (0) = b is
the predicted surface temperature. For each measurement site, we estimated the
coefficients a and b using a weighted linear least-squares method, with weights
derived from the uncertainty of depth measurements (typically ±0.5 cm).

We calculated the heated area from the interpolated map shown in Fig. 4 using
the threshold of the background temperature, Tbackground = 22 ◦C (cf. Fig. 3).
This procedure yielded a binary image where the non-zero pixels represented the
heated area. The heated area is thus the number of non-zero pixels multiplied by
the resolution of the sGs map, 25m2. To obtain an error bound on the calculated
heated area, we considered that the natural isotherm is discretised by the perime-
ter of the heated area and will cut through the pixels of the boundary. Thus
we calculated the discrete heated area perimeter using a Laplace edge-detection
algorithm with a 3-pixel kernel. The number of perimeter pixels again multiplied
by the image resolution plus the standard deviation of the ground temperature
from the 250 realisations gives our error bound.

3.2 CO2 measurements

We performed soil diffuse CO2 degassing measurements following the accumu-
lation chamber method as described in detail by Chiodini et al (1998). This is
an established method for measuring soil CO2 flux in volcanic areas, whose reli-
ability has been tested both under laboratory conditions and in the field (e.g.
Chiodini et al, 1996, 1998; Cardellini et al, 2017). Specifically, we used a West
Systems® flux meter attached to a type B accumulation chamber consisting of
a cylindrical chamber (20 cm inlet diameter, 19.8 cm internal chamber height),
an IR spectrometer (LI-COR CO2 detector LI-830 with accuracy within 3% of
reading, and measurement range 0–20 000 ppmCO2), and an AD converter. A
Bluetooth-connected smartphone managed the flux meter. Chiodini et al (1998)
report a reproducibility error of the accumulation chamber method of less than
±10%, consistent with the manufacturer’s (West Systems) stated measurement
accuracy of ±10% in high flux zones (> 60 gm−2 d−1) and ±25% in low flux
zones (< 60 gm−2 d−1). Our measurements were taken at a mean spacing of 15m

10
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(minimum of 3m, maximum of 35m). We were not able to perform measure-
ments on a regular grid (cf. Cardellini et al, 2003) owing to the rugosity of the
terrain, though we achieved a higher density of measurements within the ZFNN.
The soil CO2 flux is proportional to the concentration increase in the accumula-
tion chamber over time (120–200 s per measurement). Flux values were derived
from the slope of a linear fit of concentration as a function of time.

The diffuse CO2 degassing area was calculated from the interpolated map
shown in Fig. 6 using the median of our CO2 data (17.6 gm−2 d−1) as the thresh-
old for relevant CO2 degassing. The CO2 degassing area is thus the number of
pixels with a CO2 flux above 17.6 gm−2 d−1 multiplied by the resolution of the
sGs map, 25m2. The error bound of the degassing area was obtained following
the same process as for the heated area. The estimated total uncertainty of the
reported area accounts for the uncertainty of the perimeter of degassing pixels,
uncertainty in the CO2 measurement and the standard deviation of CO2 flux
from the 250 realisations.

3.3 Self-potential

SP values were taken at a mean spacing of 6m (typical range 5–15m, maximum
spacing 29m) over the summit area. The measuring equipment consisted of a
digital voltmeter (10GΩ input impedance, 1mV sensitivity), two non-polarising
Cu/CuSO4 electrodes and a 500m long insulated cable. Before starting the mea-
surements, the electrodes were placed tip to tip to check for a voltage ∆U ≤ 1mV
and several SP measurements were performed in a small area around the ref-
erence location to ensure the correctness of the SP values. The electrodes were
placed at a depth of 5–10 cm, which usually was enough to get good contact with
the ground. All SP data were closure corrected following Barde-Cabusson et al
(2021), distributing the drift (a few mV over the duration of 2–5 hours) linearly
over the loops. Elevation changes are known to induce variations in SP readings
due to vertical distance between the surface and the water table (’topographic
effect’), typically leading to a negative linear relationship between SP and eleva-
tion in the hydrogeological zones (flanks) of active volcanoes (Lénat, 2007). Since
we only measured on the summit and given the small elevation changes of < 40m
over our study area, this effect was minimal and we did not correct our data for
topography-induced variations.
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4 Results

4.1 Self-potential map of the summit

Fig. 2 Interpolated (sGs) map of self-potential (SP) superimposed on an orthophoto of the summit
area of La Soufrière de Guadeloupe (background image is IGN, BD ORTHO 2017). The map shows
the average SP of the 250 realisations in individual model cells (5× 5m). Black dots display the SP
measurement points, the white triangle shows the location of the reference electrode. Stars indicate
the main summit fumaroles: Cratère Sud (CS), Gouffre ’56, Napoléon Nord (NAPN), Napoléon Est
(NAPE) and Tarissan (TAR). The area east of Cratère Dupuy/TAR and north of Cratère Napoleon
is denoted ZFNN (cf. Fig. 1b and c)

We performed SP measurements covering the entire summit area of La Soufrière
to constrain zones of hydrothermal upwelling and rain infiltration, respectively.
The resulting SP map (Fig. 2) shows an overall negative signal except for a
localised area delimited by Fracture Napoléon to the south and Cratère Dupuy/-
Tarissan to the west (ZFNN). This overall negative signal is expected on such a
highly fractured and humid volcano, where meteoric infiltration is large (average
annual rainfall 2016–2021: 4.5m. OVSG-IPGP, 2016–2021; Vaerewyck, 2022).

The highest negative anomaly is located north of Cratère Dupuy where rocks
at the surface are mostly unaltered and the vegetation is intact suggesting no
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recent or past hydrothermal activity at the surface. Contrastingly, the southern
areas of the summit contain surface rocks that are strongly argillised, imply-
ing lower ground permeability that could explain less negative SP than in the
northern zone due to less effective rain infiltration. Moreover, we observe more
negative values (range: -352 to -44mV) west of Cratère Dupuy/TAR as opposed
to the eastern part of the summit area, where values range between -270 and
84mV. This is in agreement with the absence of fumaroles/ diffuse degassing
west of Cratère Dupuy, whereas there are several sites of strong degassing in
the eastern part of the summit (CS, NAPN, TAR, Gouffre ’56), as well as dif-
fuse degassing (ZFNN). Positive SP values are all located in the ZFNN. They
suggest local ascent of hydrothermal fluids and relatively high ground permeabil-
ity/fracturing. The positive anomaly extends to the edge of the vegetation in the
east of the survey area. Given visible degassing and locally heated ground within
the vegetation east of the surveyed area, it most probably also spreads into the
vegetation, which is consistent with the observed progressing vegetation die off
(OVSG-IPGP, 2014–2022).
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4.2 Ground heating and temperature gradients at the
summit

Fig. 3 (a) Histogram and (b) probability plot of the temperature data at 20 cm depth, as presented
in Fig. 4a. From the distribution of these data, we identify three populations with cutoff temperatures
of 89 and 22 ◦C, indicated by dashed black lines. The mean temperature at 20 cm depth is indicated
by the red line
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Fig. 4 Interpolated (sGs) maps of (a) ground temperature at 20 cm depth and (b) the ground tem-
perature gradient calculated from (Eq. 1) and temperature measurements at 0, 20 and 60 cm depth.
Shown are the mean values of the 250 realisations in individual model cells (5 × 5m) superimposed
on an orthophoto of the summit area of La Soufrière. Black dots display the locations of temperature
measurements; stars indicate the main summit fumaroles: Cratère Sud (CS), Gouffre ’56, Napoléon
Nord (NAPN), Napoléon Est (NAPE) and Tarissan (TAR). The area east of Cratère Dupuy/TAR
and north of Cratère Napoleon is denoted ZFNN (cf. Fig. 1b and c)
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Measured ground temperatures (Fig. 4a) are highest in the ZFNN, reaching
94.5 ◦C at 20 cm depth. Away from craters and fractures, the ground tempera-
ture is close to ambient temperature (only minor effects of solar heating at 20 cm
depth expected) varying between approx. 17 and 19 ◦C. The only exceptions are
close to TAR/southern part of Cratère Dupuy (26.4–33.5 ◦C), around CS (ambi-
ent temperature to locally 35.4 ◦C) and in the ZFNN (20–94.5 ◦C). The highest
temperatures are just below the boiling point of water at this altitude (95.2 ◦C),
suggesting condensation of boiling hydrothermal fluids close to the surface.

We show the temperature gradient calculated from Eq. (1) in Fig. 4b. Spa-
tially, we observe a similar distribution as per ground temperature. Away from
fractures and the hydrothermally active areas, temperature gradients are essen-
tially zero. There appears to be some structural control to the temperature
gradients and we observe higher values (> 50 ◦Cm−1) aligning with the major
faults (CS/Fente du Nord and Fracture 1956). The highest gradients, i.e. beyond
90 ◦Cm−1 are found next to Cratère Dupuy, around CS and in the ZFNN with
a maximum value of 161.50 ± 55.12 ◦Cm−1 situated on the border between the
ZFNN and Cratère Dupuy.

4.3 Soil CO2 flux at the summit

In diffuse degassing areas, soil CO2 flux often originates from biogenic or volcanic
sources, resulting in a bimodal distribution of CO2 flux values. In a logarith-
mic probability plot, this is represented as a curve with an inflection point from
which background and volcanic populations can be partitioned following Sin-
clair’s method (Sinclair, 1974; Chiodini et al, 1998). The absence of obvious
inflexion points in the logarithmic probability plot (cf. Fig. 5b) implies a sin-
gle lognormally-distributed population (Sinclair, 1974; Chiodini et al, 1998; Eĺıo
et al, 2016). This indicates that the measured CO2 flux has a unique volcanic-
hydrothermal source and that our data do not include any significant biogenic
contribution.
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Fig. 5 (a) Histogram and (b) Log probability plot of the soil CO2 flux data on the summit of La
Soufrière. The absence of obvious inflexion points and linear alignment of data points implies a single
lognormally-distributed (i.e. unimodal) population (Sinclair, 1974; Chiodini et al, 1998; Eĺıo et al,
2016), indicating that measured CO2 flux has a unique volcanic-hydrothermal source and that our
data do not include any significant background CO2 flux
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Fig. 6 Interpolated (sGs) map of soil CO2 flux measurements in May 2023. The map shows the
mean values of the 250 realisations in individual model cells (5×5m) superimposed on an orthophoto
of La Soufrière. Black dots indicate the locations of CO2 flux measurements; stars indicate the main
summit fumaroles: Cratère Sud (CS), Gouffre ’56, Napoléon Nord (NAPN), Napoléon Est (NAPE)
and Tarissan (TAR). The area east of Cratère Dupuy/TAR and north of Cratère Napoleon is denoted
ZFNN (cf. Fig. 1b and c)

The distribution of soil CO2 flux on the summit area of La Soufrière
(Fig. 6) shows variations spanning four orders of magnitude (0.6 ≤ ϕCO2 ≤
5390 gm−2 d−1). Like SP and temperature (gradient), CO2 flux is highest in the
ZFNN and in the vicinity of CS (ϕCO2 > 200 gm−2 d−1. CO2 flux is also punctu-
ally increased (ϕCO2 > 100 gm−2 d−1 close to the large faults Fente du Nord and
Fracture Nord-Ouest, although interpolation is based on very few points in the
north of the survey area. CO2 fluxes are low (ϕCO2 ≤ 20 gm−2 d−1) everywhere
else. As for SP and temperature, we find relatively sharp boundaries between
areas of high and low ϕCO2, implying that the ascent of hydrothermal fluids is
controlled by the main fractures. More specifically, Cratère Dupuy/TAR (on the
Fente du Nord - Faille de la Ty line) and Cratère Napoleon on the 1956 Fracture
which delimit the ZFNN anomaly, and Fracture Cratère Sud and the Fractures
Lacroix that control fluid ascent around CS.

Besides this structural control of fluid ascent along major summit faults and
fractures, we note that also lithological interfaces and topography factors can
exert control on the ascent pathways of fluids at volcanoes as described for La
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Fossa cone, Vulcano (Schöpa et al, 2011). For example, preferential fluid migra-
tion might occur at the interface between rock units of different alteration states
(and permeabilities) within La Soufrière dome (Rosas2016). However, the reso-
lution of ERT data at La Soufrière (Rosas-Carbajal et al, 2016) is too low to
infer any concrete ascent pathway based on alteration states within our survey
area. Numerical modelling by Schöpa et al (2011) suggested that the gravitational
stress field directs hydrothermal fluids to topographic highs, leading to the pref-
erential occurrence of fumaroles at crater rims, a factor that might be at play in
our survey area. The SP, temperature and CO2 anomalies we observe may thus
be associated with a combination of these factors.

5 Discussion

5.1 Spatial shift in hydrothermal fluxes evidenced by SP,
ground temperature and soil CO2

Comparison with previous SP studies at La Soufrière (Pham et al, 1990; Zlotnicki
et al, 1994; Brothelande et al, 2014) suggests relative stability of the negative
anomalies and thus the main infiltration zones over time. Nevertheless, there
is an evolution of the positive anomalies on the summit. Pham et al (1990)
found a negative anomaly covering the entire dome with the highest negative
anomaly associated with the Faujas and NW fractures, in the northern part of
the summit. This finding is consistent with the results of Zlotnicki et al (1994);
Brothelande et al (2014) and this work. Concurrent with the reactivation of
summit fumaroles beginning in 1992, Zlotnicki et al (1994) observed a positive
anomaly from data acquired in 1993 in the southern sector of the summit, between
Dolomieu Fracture and the 1956 Fracture, with a maximum just north of CS.
This pattern was confirmed in 2011 by Brothelande et al (2014), who found a
strong positive SP signal in the SE sector of the summit, a maximum near CS,
and positive values stretching to the north until Cratère Dupuy (just south of
Faujas and NW fracture; cf. Fig. 4B in Brothelande et al (2014)).

Qualitatively, we see a clear spatial shift in hydrothermal activity. While
the area around CS and the entire SE summit sector still show higher values
than the western part, we find a maximum anomaly in the ZFNN (just NE of
Cratère Napoléon and stretching eastwards into the vegetation). Before 2014,
ascending flows indicated by the SP maxima were only constrained to CS and its
surroundings, as opposed to major activity in the ZFNN now.
We further note that even though positive and negative SP anomalies are gener-
ally interpreted as indicators for upward and downward fluid flow, respectively,
this interpretation is not necessarily valid. The polarity of the SP anomalies
essentially depends on the so-called zeta potential which describes the electric
potential at the mineral-fluid interface in the porous rock and is a key parameter
for electrokinetic coupling. The zeta potential is usually assumed to be negative
in most Earth Science applications. In our case, the surface charge is compensated
by a net positive, mobile charge in the pore fluid, which leads to the positive SP
signal in the fluid flow direction. However, certain clay minerals and very acidic
pore fluids (Revil, 2002; Hase et al, 2003; Aizawa, 2008; Jouniaux et al, 2009) can
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result in positive or near zero zeta potentials. As a result, the sign of SP anoma-
lies above ascending hydrothermal fluids may be reversed, or no significant SP
anomaly may be observed.

As positive and negative potentials are always with respect to the reference
point, a quantitative comparison between the various studies is not possible due
to the reference electrode being in a different location in each one. Even though we
placed our reference in an area with no hydrothermal activity, we do not consider
it reasonable to recalculate our mapping to the reference at the base of the dome
used by Brothelande et al (2014), given that more than a decade has elapsed
between the two campaigns, during which the system has changed considerably.
Given that our reference is located on the summit (c.f. Fig. 2) as opposed to the
previous campaigns, the boundaries between positive and negative might not be
comparable.

Since the pH of hydrothermal fluids sampled at the hot springs surrounding
La Soufrière dome and on the summit (monthly sampling by OVSG-IPGP, 2020-
2023) is mainly comprised between 2 and 6.5, we assume that the zeta potential is
negative, and the sign of SP anomalies is not reversed. That the observed positive
SP anomalies coincide with high CO2 and heat fluxes supports this assumption.
Gases at some of the summit fumaroles and the acid point in TAR are however
characterised by very acidic fluids (< 1) (OVSG-IPGP, 1992–2023; Inostroza
et al, 2022). Therefore, in some zones on the summit and around the dome,
ascending hydrothermal fluids may not be associated with a distinct positive SP
signal as observed at Faille de la Ty at the southern dome base (Brothelande
et al, 2014). SP should therefore be interpreted with caution and in combination
with complementary methods.

From the interpolated temperature data (Fig. 4) and taking the cutoff tem-
perature of 22 ◦C (cf. Fig. 3), we find a heated area of 22 250 ± 6900m2 on the
summit compared to 14 070m2 determined from 2019 aerial thermal imagery
(Jessop et al, 2021). This suggests that the heated area outside the vegetated
zone has expanded since 2019. In making this comparison, we are aware of the
limitations of the two different techniques: aerial thermal images may capture
additional hot spots in areas that cannot be reached on foot, and vegetation may
obscure the thermal signal which is not a factor for the direct measurements as
reported here. We also find that the heated area depends essentially on the choice
of background temperature and interpolation method, so by defining 21 ◦C and
23 ◦C as ambient temperature instead of the chosen 22 ◦C, we get a heated area of
25 750±7200m2 and 19 425±6200m2, respectively. Kriging yielded an area esti-
mate (12 400±3900m2) much closer to the value reported by Jessop et al (2021).
We further note that our temperature survey does not cover the ZFNN tempera-
ture anomaly entirely as we were unable to venture into densely-vegetated areas.
Based on Fig. 4a) it is likely that the heated area in 2022 extended further to the
E and NE into the vegetation and thus our estimate is a minimum value. This
is supported by the fact that the SP anomaly reflecting the ascent of hydrother-
mal fluids in the ZFNN is likewise cut off at the eastern edge of the surveyed
area (vegetation limit, Fig. 2) and by ”hot mud” observed at several spots in the
vegetation a few tens of meters east of the survey area.

Allard et al (2014) performed soil CO2 degassing measurements using a
portable Dräger IR spectrometer coupled to a West System accumulation cham-
ber at the base of the dome and along a N–S profile on the summit in March
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2006. They did not detect any ϕCO2 anomalies on the summit that went beyond
the biogenic background flux (60–160 gm−2 d−1 in their study) except for a few
spots around CS. However, we note that their study was conducted before the
formation of the NAPN/NAPE fumaroles and the ZFNN.

In contrast to Allard et al (2014), we detected volcanic CO2-flux not only
in the vicinity of CS but also along TAR as well as in the ZFNN (Fig. 5b,
Fig. 6), which is consistent with the formation of the fumarolic field on the dome
summit since at least 2014. Using the median of our CO2 data (17.6 gm−2 d−1)
as the threshold for relevant CO2 degassing, we obtain a CO2 degassing area
of 26 220 ± 12 550m2. This value is consistent with the heated area estimate
(22 250± 6900m2) and indicates the hydrothermally active area on the summit.

Overall, the high ground temperatures combined with maximum diffuse CO2

flux and maximum SP values suggest strong hydrothermal fluid circulation below
the ZFNN. The maximum SP, ground temperature, and CO2 values are all located
near 643 035m E, 1 774 255m N (UTM 20N - WGS84), about 25–40m to the
north-east of NAPN. We note that maximum values (T, soil CO2 and SP) are
delimited by prominent summit fractures: Fente du Nord, Dupuy and TAR to the
west and Fracture 1956 /Cratère Napoléon to the south. Future efforts should be
directed towards delimiting the eastern edge of subsurface fluid circulation. We
interpret the concentration of activity in the NE sector of the summit as a result
of increasing ground permeability, allowing hydrothermal fluids to rise through
new fracture/pore networks. Increased ground fluxes/permeability in the NE sec-
tor may result from a combination of sealing processes affecting the location of
increased heat and gas fluxes (proposed by e.g. Harris and Maciejewski (2000),
Fossa fumarole field, Vulcano) and the observed opening of Cratère Napoléon
(about 5mmyr−1 until 2023) (Moretti et al, 2020a, OVSG-IPGP 2018–2023) as
well as radial surface displacements of 2.4–16.5mmyr−1 (OVSG-IPGP, 2023) on
the summit. Extensometry data showed an accelerated opening of W–E frac-
tures cutting the summit (Fracture Napoléon, Faille du 8 Juillet 1976, Breislack)
between the end of 2015 and 2021, which is concurrent with the apparition of a
new high-flux fumarole (NAPE, 2016) and several low-flux fumaroles scattered
over the sector north of Fracture 1956 and east of Cratère Dupuy/TAR (OVSG-
IPGP, 1992–2023). These observations could also be related to the sliding of the
SW flank as indicated by GNSS velocities in Fig.7 in Moretti et al (2020a) associ-
ated with the alteration-induced detachment plane identified by Rosas-Carbajal
et al (2016). Overall, these observations suggest a strong control of hydrother-
mal fluid circulation by the major summit faults /craters, which has also been
shown to play an important role at La Fossa cone, Vulcano (Barde-Cabusson
et al, 2009) and Aluto volcano, Main Ethiopian Rift (Hutchison et al, 2015). How-
ever, variations in lithology/alteration and the topography may influence surface
permeability and the final distribution of hydrothermal anomalies at the surface
(compare Schöpa et al (2011), La Fossa, Vulcano; Hutchison et al (2015), Aluto
volcano, Main Ethiopian Rift).

5.2 Total soil CO2 and heat fluxes

Integrating our ϕCO2 data over the exhaling area, we find a total soil CO2 flux of
4.20± 0.86 t d−1. Moune et al (2022) found an average CO2 flux for CS+Gouffre
’56+TAR fumaroles in the 2018–2020 period of 0.094 kg s−1 (8.13 t d−1), meaning
that diffuse degassing is equivalent to about half the CO2 emissions from summit
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fumaroles. Thus, diffuse degassing represents an important contribution to the
CO2 budget for La Soufrière de Guadeloupe.

We attempt to estimate the heat flux as

Q =

∫
A

(Qcond +Qconv) dA, (2)

where A is the survey area. The conductive heat flux, Qcond is given by Fourier’s
law

Qcond = k
dT

dx
, (3)

where k is the thermal conductivity. Heap et al (2022) determined thermal con-
ductivities for La Soufrière andesite according to their state of alteration and
found 0.6Wm−1 K−1 ≤ k ≤ 1.6Wm−1 K−1 for highly-altered and low alter-
ation rock. Thermal conductivity for partially-saturated unlithified samples from
La Soufrière was found to be around 1Wm−1 K−1 (Heap et al, 2023), and
such material was encountered at the majority of measurement sites. We use
k = 0.6Wm−1 K−1 and k = 1.6Wm−1 K−1 in eq. (3) to calculate a typical value
for Qcond using the data shown in Fig. 4b) and find Qcond = 0.69 ± 0.30MW,
using the area covered by our ground temperature measurements.

However, as illustrated in Fig. 7, using a linear model to fit temperature
gradients will systematically underestimate the surface gradient and thus the
derived heat flux in areas with high hydrothermal fluxes. By way of example,
using the data in Fig. 7 on the right, a linear fit to the ground temperature at all
measured depths predicts dT/dx ≈ 45 ◦Cm−1. In contrast, a two-point gradient
using the temperature at 0 and 10 cm depths, so only in the conductive zone, as
indicated in Fig.6, gives dT/dx ≈ 450 ◦Cm−1. The actual conductive heat flux
(cf. eq. (1)) would thus be significantly higher than our estimation with a linear
fit over the entire depth, perhaps by as much as an order of magnitude.
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Fig. 7 Illustration of temperature profiles determined from the thermal probe measurements in low-
and high-flux diffuse degassing areas. When the condensation zone is relatively deep, as in the left
profile, heat is transported to the surface primarily by conduction (cf. eq. (3), and the estimated linear
temperature gradient closely approximates the data. In high flux areas where the condensation zone
is very shallow (right temperature profile), a linear gradient poorly approximates the data. Hence,
our modelled linear temperature gradients lead to systematic underestimation of the derived surface
heat flux using eq. (3) in high flux areas. The temperature profiles shown were measured (left) above
Gouffre ’56 (Easting: 643 084m, Northing: 1 774 201m; WGS84, UTM zone 20N) and (right) close to
the NAPN fumarole (Easting: 643 013m, Northing: 1 774 252m) within the ZFNN. Figure adapted
from Gaudin et al (2017)
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The ground heat flux is due to fluids rising from depth. As discussed above,
H2O typically condenses beneath the surface and so cannot be readily mea-
sured whereas CO2 is non-condensable at near-atmospheric P-T conditions. We
estimate the steam flux, ϕH2O, from the CO2 flux by assuming that the hydrother-
mal H2O/CO2 mass ratio in diffuse degassing zones is the same as in fumarole
vapours, since these result from the boiling of the deep hydrothermal aquifer
(Moretti et al, 2020a). Given the small heat capacity of CO2 compared to water
and an average H2O/CO2 = 17.8wt% (OVSG-IPGP, 2018–2023), heat transport
by CO2 is negligible compared to that transported by H2O. Thus the convective
heat flux is given by (Hochstein and Bromley, 2005; Fridriksson et al, 2006):

Qconv =

∫
A

H2O

CO2
ϕCO2 (hv,95 − hl,19) dA. (4)

Here, hv,95 = 2668 kJ kg−1 is the specific enthalpy of steam at 95 ◦C (condensa-
tion temperature at summit level) and hl,19 = 83 kJ kg−1 the specific enthalpy
of liquid water at ambient air temperature (19.1 ◦C) (Koretsky, 2012). Using Eq.
(4) with the data presented in Fig. 6, we estimate Qconv = 2.25± 0.46MW.

Thus by Eq. (2), we estimate that the total ground heat flux (i.e. Qcond +
Qconv) is 2.93±0.78MW. We note that despite being only roughly half the value
estimated by Jessop et al (2021) (5.7± 0.9MW) from aerial thermal imagery as
the sum of radiant and advective fluxes from the surface, our estimation is of
the same order of magnitude and provides a lower bound for the “true” value.
The study of Jessop et al (2021) covered a slightly larger area on the southern
flank (about 100m further south of CS) and in the densely vegetated zone to
the east of the area investigated in this study (Fig. 4a). As far as the heated
zones are concerned, the two studies cover approximately the same area. However,
as described above, our temperature survey only partly covers the temperature
anomaly in the ZFNN due to dense vegetation east of the surveyed zone. The
aerial imagery of Jessop et al (2021) reached further to the east and thus may
have captured additional heated spots despite the dense vegetation cover.

Our analyses can be put into a global context by considering how the heat
and CO2 budgets at La Soufrière compare to those for other volcanic complexes.
To this end, we use the data set compiled by Harvey et al (2015) based on CO2

degassing and plot them along with our data in Fig. 8. We find that La Soufrière’s
total heat output is larger only than that of the Comalito complex at Masaya but
over a small area compared to the 22 other sites. However, large complexes such
as calderas naturally have far larger total budgets hence the flux density is a fairer
comparison between structures of different sizes (Harvey et al, 2015; Jessop et al,
2021). La Soufrière has mean heat and CO2 flux densities of 132MWkm−2 and
189 t km−2 d−1, respectively. Based on heat flux density, these values are higher
than for some large caldera-type complexes such as Solfatara, Campi Fleigri and
Nisyros but below those of other dome-like structures such as Vulcano and White
Island (Whakaari). The CO2 flux density at La Soufrière is similar to that at
Ischia and far higher again than at Nisyros.

As noted by Jessop et al (2021), the geological and volcano-tectonic set-
ting will play a large role in determining these flux densities, along with the
catchment area for reservoir recharge (Harvey et al, 2015). La Soufrière de Guade-
loupe is indeed a volcanic dome associated with strong gas emissions that are
related to the enhanced boiling activity of the hydrothermal reservoir and an
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Fig. 8 Scatter plot of heat and CO2 flux densities for a sample of hydrothermal volcanic systems.
Here, the data (black dot: La Soufrière, this study; other data including error bars from Harvey
et al, 2015) are classed in terms of the dominant phase in the reservoir (liquid/vapour). The grey bar
indicates a suggested transition for the dominance of liquid to vapour. The slight top left to lower
right trend for high heat flux/low CO2 flux to low heat flux/high CO2 flux is consistent with an
increasing CO2/H2O ratio (see Fig. 1 in Harvey et al, 2015).

important proportion of hot magmatic gas vapour (Allard et al, 2014; Moretti
et al, 2020a,b; Moune et al, 2022). Despite the low temperature of its fumarolic
emissions which are close to the boiling temperature at the local height from
La Soufrière’s summit, Aiuppa et al (2017) include this volcano among high-
temperature (T ≥ 450 ◦C) arc volcanoes because of its high rate of emission and
magmatic signature (C/S ≈ 2.3). Regarding the compilations provided by Harvey
et al (2015) and Aiuppa et al (2017), we note that Fig. 8 includes White Island and
Vulcano, also dome volcanoes, which both fall in the vapour-dominated region
and display high-temperature (T > 700 ◦C) fumaroles. La Soufrière hydrother-
mal system is marked by P–T conditions which often approach the water critical
point (Moretti et al, 2020a), and by the rapid transit of hot, deep magmatic gases
(Allard et al, 2014; Moune et al, 2022; Metcalfe et al, 2023). Although sufficient
to hydrothermally re-equilibrate acid species (e.g. CO2, H2S, SO2, HF and HCl)
these typically do not deplete the S-bearing species as is observed in mature
hydrothermal systems dominated by the liquid. As a result, the high flux, low-
temperature steam discharges do not indicate a large hydrothermal system close
to the maturity condition typically marked by mofete-like emissions at about
100 ◦C, nor a vast and deep liquid reservoir in which acid gases of magmatic ori-
gin are efficiently scrubbed, obliterating the magmatic source signature. Instead,
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as also shown by isotopic measurements (e.g. Villemant et al 2014), the high
flux, low-temperature steam released at La Soufrière reflects the considerable
contribution of meteoric water due to the heavy rainfall of a tropical environ-
ment (OVSG-IPGP, 1992–2023). We thus conjecture that rain saturation at the
La Soufrière volcanic-hydrothermal system is responsible for its closeness to the
inferred liquid-vapour transition. Furthermore, without such a contribution, La
Soufrière would likely fall into the vapour-dominated region, at higher values of
CO2 flux density, due to the relatively lower absorption in circulating ground
waters and water droplets in the soil.

5.3 Spatial variations in the dominant mode of heat
transport and depth of condensation imply spatially
heterogeneous permeability

From the temperature profiles calculated above, we can estimate the depth at
which the vapour begins to condense, xc, from the root of

T (x)− Tc = 0, (5)

where T (x) given by Eq. (1) and Tc ≈ 95 ◦C which we solve using Newton’s
method. We also note that many sites have approximately zero temperature gra-
dient, a, inferring that T ≪ Tc. We interpret this as meaning that condensation
will not occur in the near subsurface (i.e. in the first few metres). Where the
gradients were approximately zero, we dropped these from our data set and inter-
polated the remaining values (59 out of 110 values). From the result, shown in
Fig. 9, we note that xc is on the order of a few tens of cm in the ZFNN and above
the Fractures Lacroix, and increases to many metres elsewhere.

In areas where condensation occurs at depths greater than our measurements,
one would expect heat transport by pure conduction, resulting in a linear tem-
perature profile (constant gradient). Thus, one way to discriminate between the
relative effects of conductive and convective heat transfer is to determine the
linearity of the temperature profile. We do this by calculating Pearson’s R2 coef-
ficient of determination from the linear regression of temperature with depth (cf.
Ricci et al, 2015). The R2 value measures how well a linear (i.e. conduction)
model captures the data. Thus, R2 = 1 where heat transfer is purely conductive
whereas low values of R2 indicate that convection is the dominant mode of heat
transport. Our results are shown in Fig. 9 along with the interpolated map of
condensation depths. From the combination of these data, we determine that the
condensation isotherm in the ZFNN is very close to the surface. To the east of
NAPN (specifically in the quadrant east of 643 010m E and north of 1 774 225m
N in the local UTM), the profiles are typically linear: over 50% of this sub-
population of measurement sites have R2 > 0.925. However, the other half of the
population has 0.6 < R2 < 0.925 (see Fig. 9) indicating that convection is an
important mode of heat transport in this region. This also becomes clear when
comparing Fig. 4a) and Fig. 4b): while the temperature gradient in the above-
mentioned quadrant is relatively small in many parts (<45 ◦Cm−1, especially at
the easternmost boundary of the quadrant), the measured ground temperatures
at 20 cm depth range between 60 and 94.5 ◦C. Temperature gradients there are
small because convection and the associated near-surface condensation (cf. Fig.
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7) result in high ground temperatures up to the surface (reflected in the relatively
low R2 values mentioned). In other areas, either the profiles are close to linear or
the condensation depth is very deep (cf. the western portion of our measurement
sites) which indicates that conduction is dominant.

We are aware that basing the R2 on only 3 data points (versus 4 data points
in Ricci et al 2015) limits the robustness of our analyses. However, since we are
not interested in the exact R2 value, but only in the deviation from linearity,
we still consider this method valid to get an idea of the spatial variations of the
conductive versus convective heat transfer mode. This is supported by the fact
that the distribution of calculated R2 values is consistent with what we see from
our SP, CO2 and temperature data.

Fig. 9 Interpolated (sGs) map of condensation depths estimated from Eq. (5) overlain by the local
value of Pearson’s R2 coefficient of determination. The R2 value is used as an indicator of how well a
linear temperature model describes the data, allowing us to discriminate between the relative effects
of conductive and convective heat transfer(cf. Ricci et al, 2015). R2 = 1 means that heat transfer
is purely conductive, whereas low values of R2 indicate an essential contribution of convection. The
map shows the mean values of the 250 realisations in individual model cells (5× 5m) superimposed
on an orthophoto of La Soufrière. Points at which temperature gradients were approximately zero
were excluded from the estimation of condensation depth. No value indicates that the condensation
depth is beyond 10m. Black stars indicate the main summit fumaroles: Cratère Sud (CS), Gouffre
’56, Napoléon Nord (NAPN), Napoléon Est (NAPE) and Tarissan (TAR). The area east of Cratère
Dupuy/TAR and north of Cratère Napoleon is denoted ZFNN (cf. Fig. 1b and c)
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The combination of these results supports the hypothesis (cf. 5.2) that high
ground temperatures, diffuse CO2 fluxes and SP values in the ZFNN might be due
to increased ground permeability. Increased subsurface permeability promotes
vapour condensation near the surface and, owing to the high heat capacity and
latent heat of water vapour, increased heat transport and more extensive ground
heating (compare Fig. 4). That few temperature anomalies are seen near the
major fumaroles (CS, G56 and Tarrisan) is in keeping with the hypothesis of
impermeable sealing by deposits of sulphur-bearing minerals (Moune et al, 2022).

Heap et al (2021b) sampled rocks from various locations on La Soufrière to
study the degree of alteration and porosity of rocks forming the dome. They did
not sample any rocks directly in the ZFNN; however, from our observations, the
rock and soil in the ZFNN essentially correspond to what is also prevalent at the
summit sampling locations of Heap et al (2021b). Rocks sampled close to summit
fumaroles (Cratère Sud, Fractures Lacroix) showed secondary mineral assem-
blages typical for intense acid fluid-rock interaction promoted by the efficient
circulation of hydrothermal fluids. They further found that sampled andesites
from La Soufrière are more porous than andesites from other stratovolcanoes.
This result is supported by muon (Lesparre et al, 2012) and electrical tomogra-
phy (Rosas-Carbajal et al, 2016), which have indicated that the material forming
the edifice has a low density and most probably comprises high-porosity rocks.

Seismic, geochemical and deformation data do not indicate any major changes
in the magmatic-hydrothermal system (e.g. a rise in thermal input) but sup-
port the hypothesis that observed high ground temperatures, diffuse CO2 fluxes
and SP values in the ZFNN are due to alteration and/or increased ground
permeability.
Seismicity is mainly superficial (typically <1 km below the summit) and can be
interpreted as originating from the shallow hydrothermal system (Moretti et al,
2020a, OVSG-IPGP 2020–2023). GNSS and extensometry stations located on
the summit and flanks of La Soufrière show a mainly radial deformation cen-
tred on Cratère Tarissan and an opening of Cratère Napoléon (about 5mmyr−1

until 2023), related to the sliding of the SW flank of the dome (Moretti et al,
2020a, OVSG-IPGP 2018–2023). Deformation rates are essentially stationary and
indicate no major change (inflation) in the deep system over the last ten years.
The geochemical data also do not indicate a clear development in the magmatic
system, although repeated injections of magmatic gases into the deep hydrother-
mal system (2–3 km below the summit) have been observed since 2018 (Moretti
et al, 2020a; Moune et al, 2022, OVSG-IPGP 2018–2023). Instead, fumarole
degassing rate and temperature are mainly regulated by the amount of water in
the hydrothermal aquifer (Inostroza et al, 2022; Moune et al, 2022). A relatively
low water level in the hydrothermal aquifer could contribute to the observed
larger spatial extent of ground heating and CO2 degassing at the summit due to
reduced damping of reservoir/fluid temperature and CO2 absorption by ground-
water, but would not explain the increased fluid circulation in the ZFNN that our
SP data suggests. However, lower precipitation in recent years (average annual
rainfall 2016–2021: 4.5m, Vaerewyck (2022) vs. 1983–2010: 10 ± 2m, Villemant
et al (2014)) may also affect soil thermal properties and permeability (Heap
et al, 2020, 2023). While both the decreased water saturation of the system and
increased permeability could play a role in the observed changes, it remains to
be clarified which of the two factors is primary.

28



1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

Future studies combining SP mapping with electrical resistivity tomography
and possibly with induced polarisation tomography, as recently described in two
reviews by Revil and Gresse (2021) and Revil et al (2023), could help to elucidate
the structure of soil permeability further. The joint inversion of these data could
provide valuable information about the depth and pattern of subsurface fluid flow
as well as the current alteration state of the dome.

6 Conclusions

This paper presents the first combined mapping of SP, subsurface ground tem-
perature and soil CO2 flux on the summit of La Soufrière de Guadeloupe.
These complementary methods allowed us to identify areas of fluid recharge into
the hydrothermal system as well as the zones and extent of major ascending
hydrothermal flows. A comparison of our data to previous work indicated spatial
changes in shallow underground hydrothermal fluid circulation, which we explain
with changing ground permeability distribution.

Based on our CO2 flux measurements, we provide a first estimate of soil
CO2 degassing over the summit area, which amounts to 4.20± 0.86 t d−1, about
half the CO2 emissions from summit fumaroles. These data further suggest a
convective ground heat flux of 2.25 ± 0.46MW on the summit. Temperature
gradients with depth derived from our soil temperature measurements allow us
to get a lower bound estimate to conductive ground heat flux of 0.69± 0.30MW
comprising minimum and maximum rock thermal conductivity values. We thus
obtain a total summit ground heat flux (fumaroles not taken into account) of
2.93±0.78MW. We further determined the linearity of the temperature gradients
with depth through Pearson’s R2 coefficient of determination, which along with
the estimated condensation depths indicates that convection is an important
mode of heat transport in the ZFNN (specifically in the quadrant east of 643 010m
E and north of 1 774 225m N in the local UTM).

We find a heated (i.e. above ambient ground temperature) area of 22 250 ±
6900m2 on the summit, suggesting that ground heating has expanded since 2019
(Jessop et al, 2021). Both our 2022 temperature and SP surveys seem to cut off
the ZFNN anomaly at the eastern edge of the survey area where deep vegetation
starts. It is thus likely that the heated area in 2022 extended further to the E and
NE and we conclude that the value has to be considered a lower bound estimate
and that future efforts should be directed towards delimiting the eastern edge
of subsurface fluid circulation. In line with the heated area estimate, we find a
ground CO2 degassing area of 26 220± 12 550m2.

Maximum values of all measured parameters (CO2 flux, ground temperature
and SP) are located in the ZFNN indicating strong hydrothermal fluid circulation
in that zone that we interpret as being a result of high sub-surface permeability.
Comparison with previous studies shows that while the main rain infiltration
zones seem to not have changed over time, we see a spatial development of the
ascending flows. Repeated mapping will allow us to track the dynamic evolution
of hydrothermal unrest and provide crucial information on the sealing extent of
the dome.

The locations of flux maxima are delimited by prominent summit fractures:
Fente du Nord, Dupuy and TAR to the west and Fracture 1956/Cratère Napoléon
to the south. This implies a strong structural control of the observed dynamics
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underlined by the gradual opening of the W–E fractures between 2015 and 2021.
We thus speculate that the increase in hydrothermal activity in the ZFNN could
be related to the observed radial surface displacements on the summit (OVSG-
IPGP, 2023) and the sliding of the SW flank (Rosas-Carbajal et al, 2016; Moretti
et al, 2020a).
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Fig. 10 Omnidirectional experimental variograms (γ) of normal score data: (a) soil CO2 flux, (b)
SP, (c) ground temperature at 20 cm depth, (d) ground temperature gradient, and (e) condensation
depth. Lines represent the isotropic variogram models used in sGs interpolations. The outcome of the
simulations is presented in Fig. 2, 4, 6, 9
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