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A B S T R A C T 

We set up two open-science machine learning (ML) challenges focusing on building models to automatically analyse mass 
spectrometry (MS) data for Mars exploration. ML challenges provide an excellent way to engage a diverse set of experts with 

benchmark training data, explore a wide range of ML and data science approaches, and identify promising models based on 

empirical results, as well as to get independent external analyses to compare with those of the internal team. These two challenges 
were proof-of-concept projects to analyse the feasibility of combining data collected from different instruments in a single ML 

application. We selected MS data from (1) commercial instruments and (2) the Sample Analysis at Mars (an instrument suite 
that includes a mass spectrometer subsystem onboard the Curiosity ro v er) testbed. These challenges, organized with DrivenData, 
gathered more than 1150 unique participants from all o v er the world, and obtained more than 600 solutions contributing 

powerful models to the analysis of rock and soil samples relevant to planetary science using various MS data sets. These two 

challenges demonstrated the suitability and value of multiple ML approaches to classifying planetary analogue data sets from 

both commercial and flight-like instruments. We present the processes from the problem identification, challenge set-ups, and 

challenge results that gathered creative and diverse solutions from worldwide participants, in some cases with no backgrounds 
in MS. We also present the potential and limitations of these solutions for ML application in future planetary missions. Our 
longer term goal is to deploy these powerful methods onboard the spacecraft to autonomously guide space operations and reduce 
ground-in-the-loop reliance. 

Key words: Machine Learning – Open Science Challenge – Planetary Mission Instruments – Transfer Learning – Data Science –
Mars Exploration. 
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.  I N T RO D U C T I O N  

.1 Challenges of planetary science data 

any planetary exploration missions aim at e v aluating the hab-
tability and the existence of potential life on the target bodies.

issions exploring further away in our Solar system (e.g. Titan,
uropa, Enceladus, Ceres, etc.) or shorter duration missions due

o extreme environmental conditions (e.g. Venus and Mercury) will
ace communication constraints due to limited transfer rates and short
ommunication windows. 
 E-mail: victoria.dapoian@nasa.gov 
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Published by Oxford University Press on behalf of the Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
Current space missions operations processes are centred around
round-in-the-loop activities: data are sent back to scientists’ teams
n Earth for analysis and decision-making for future operations and
esired analyses to run. The analysis time during which scientists
ollect the scientific data, analyse it, infer the information contained
n it, and decide which next operations should be run on the spacecraft
s often extremely limited (e.g. a few hours for the SAM instrument on
uriosity, 24–48 h for the mass spectrometer instrument onboard the
xoMars mission). Further, ground-in-the-loop operations require
ignificant planning and coordination, restraining the missions’
exibility (Thompson et al. 2012 ). Our open-science challenge

everages machine learning (ML) and data science techniques to
mpro v e methods for analysing mass spectrometry (MS) data to sup-
ort scientists’ decision-making process during missions operations
© 2024 The Author(s) 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Some of the main benefits of organizing open science challenges 
for enhancing science and research topics. 
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Da Poian et al. 2022 ). The goal is to make science operations faster
nd more efficient, and ultimately maximize missions’ scientific 
eturns, especially for missions to the outer Solar system (Theiling 
t al. 2021 ) that will face more severe communication and resource
imitations than missions to Mars. 

One of the main challenges of applying ML techniques to planetary 
ission instruments is the limitation of the available training data 

ets. It is essential to understand that planetary mission instruments 
re unique due to their development and design in-house. Indeed, 
lanetary instruments are often built for a specific mission, each 
ith their own set of unique requirements and scientific goals. 
herefore, each instrument onboard a planetary mission is precisely 

ailored to the specific mission’s target and scientific objectives, while 
eing constrained by mission requirements. During the development 
f space instruments, scientists and engineers use commercial 
nstruments and develop testbed instruments (e.g. flight analogue 
nstrument) to optimize and understand flight models (FMs). Testbed 
nstruments are essential to (1) simulate space conditions, (2) test the 
nstrument functionality (for engineering, science, and operations 
urposes), (3) calibrate the instrument, and to (4) start collecting 
ata similar to the ones that will be collected during the mission.
ecause the development and the use of testbeds is time-consuming 
nd resource-intensive, scientists often use commercial instruments 
n the early stage of the development. Commercial instruments off 
he shelf have lower fidelity but offer a higher accessibility and more
xperimental freedom (i.e. less restrictions about possible samples 
o analyse and methods), while FMs represent the ground truth but 
re used less frequently and with highly mission rele v ant samples
o limit potential contamination and o v er use of hard to replace
ight-like components. Our research investigates the combination 
f commercial instruments and flight-like instrument data sets in 
he development of a ML model to help analyse MS data for Mars
xploration via open science challenges. 

.2 Opportunity grant for open science challenges 

n 2020, the NASA’s Science Mission Directorate (SMD) Strategic 
ata Management Working Group launched a call for challenge 
roposals entitled ‘Using NASA Science Data and Computing for 
ross-Disciplinary Science’. This call was looking for challenge 
roposals that could be turned into topics for significant prize-based 
hallenges focusing on utilizing NASA’s free and open science 
ata from multiple science disciplines. The call was also looking 
or proposals encouraging collaboration across the various NASA 

cience divisions. This call for proposals had up to $1M to put
o wards de v eloping and e x ecuting these challenge proposals. 

Bull, Slavitt & Lipstein ( 2016 ) describe the power of crowdsourc-
ng to increase capacity for data science with open challenges where 
 xperts (and non-e xperts) from around the world can contribute 
nd organizations can receive high-performing algorithms with 
mpirically demonstrated results among different models explored 
uring a competition. The intention of NASA SMD to organize 
pen science ML challenges is to leverage the great benefits of this
pproach listed below and illustrated in Fig. 1 : 

(1) Engagement of a large and global community : Open science 
hallenges make research more accessible and inclusive, attracting a 
roader range of researchers. 
(2) Fast pr ogr ess : Multiple researchers from different fields can 

e velop dif ferent approaches and test hundreds/thousands of models 
uickly. 
(3) Enhanced creativity : The diversity of participants leads to 
i versity of perspecti ves and approaches to solve research problems.
o v el approaches and breakthroughs can be developed and pro v en

o be a good solution for this topic of research. 
(4) Cost-effecti v e : Le veraging the collecti ve resources and exper-

ise from various participants with various backgrounds enables to 
chieve significant research progress while reducing costs. 

(5) Transparency : Open science challenges increase research 
ransparency by the open access to data sets, methods, and results. 

(6) Open benchmarking : Open science challenges offer a stan- 
ardized e v aluation process so that participants can benchmark their
lgorithms and models against others, creating emulation and leading 
o continuous impro v ement in the models development. 

This research benefited from sharing of resources and data, 
nd the cost-ef fecti veness of open science challenges to develop
o v el collaboration practices, and ultimately accelerated research 
rogress on the use of commercial data sets for flight-like instrument
mplementation while fostering an open scientific community. While 
pen science challenges have been used in the field of astrophysics
Dieleman, Willett, Damber 2015 ; Hlo ̌zek 2020 ), this is quite a
ew approach in the field of planetary science. Via the two open
cience ML challenges described in this paper, we investigated 
he potential of ML techniques on MS data for planetary science
nalyses. The first challenge that used Evolved Gas Analysis-Mass 
pectrometry (EGA-MS) data mainly investigated the potential for 

ransfer learning between commercial and flight-like instruments and 
howed that transferability between these instruments data sets exist 
nd could be leveraged to train ML algorithms for planetary science
issions. These initial results on MS data could also be applied to

ther planetary science instruments that generate spectral data, such 
s Raman spectroscopy and infrared spectroscopy. 

.  C H A L L E N G E  O R G A N I Z AT I O N  

.1 Proposal for planetary science data 

ass spectrometers have been deployed onboard space missions 
ince the 1970s (Nier & McElroy 1977 ; Niemann et al. 1996 ). A
ass spectrometer is an analytical instrument measuring the mass- 

o-charge ( m / z ) ratio of ionized particles in a sample. The three
ain components of any mass spectrometer are the ion source, 
ass analyzer, and detector (Fig. 2 ). The ion source generates

ons from the neutral analytes. The ionization process can be done
ia various methods (e.g. electron impact, electrospray ionization, 
hemical ionization, etc.). These ions are then accelerated and 
ocused into a beam by an electric field or a magnetic field. The
RASTAI 3, 156–165 (2024) 
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Figure 2. Representation of the three main components of mass spectrometer 
instruments (ionization source, mass analyzer, and mass detector) (adapted 
from Are v alo et al. 2020 ). The modularity of each subsystem allo ws v arious 
mass spectrometer designs for targeted applications. 

Figure 3. SAM mass spectrometer instrument onboard the Curiosity ro v er, 
operating on Mars since 2012 (credit: NASA). 
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ass analyzer separates the ions based on their mass-to-charge ratio
 m / z ). The most common tools for this separation are quadrupole,
ime-of-flight, magnetic sectors, linear ion trap, and Orbitrap TM , etc.
he detector counts the separated ions or measures the charges
lectrically, sometimes amplifying the signal to measure the ion’s
elative abundance. 

MS and associated subsystems are used in various disciplines such
s medical science, chemistry, biology, environmental science, and
lanetary science. For planetary science applications, the main uses
f mass spectrometers and associated devices include: (1) determi-
ation of the composition of planetary surfaces and atmospheres in
rder to understand the origin and evolution of planetary bodies,
he dynamics of atmospheric processes and climate on planetary
odies, as well as past and present habitability; (2) identification
f inorganic molecules from surface samples, to determine the
ineralogy of an environment and its evolution o v er geological

imes; (3) identification of organic molecules from surface samples
hat could be building blocks for life as we know it on Earth; and (4)

easurement of isotopic ratios that can provide information about the
ormation and evolution of planets as well as the history of geological
nd atmospheric processes on a planetary body. MS is a high-heritage
echnique and powerful tool for planetary missions (Chou et al. 2021 )
s it provides valuable insights about the composition, the evolution,
he processes of our Solar system, and the potential for life beyond
arth. 
The Mars Science Laboratory (MSL) mission, launched in 2011

nd landed on Mars in 2012 in Gale Crater, aims at investigating the
otential habitability of Mars by studying Mars’ geology, climate,
nd organic matter distribution at Mars’ surface and subsurface
Grotzinger et al. 2012 ). The MSL mission consists of the Curiosity
o v er equipped with 10 powerful instruments including the Sample
nalysis at Mars (SAM) instrument suite (Mahaffy et al. 2012 ,
ig. 3 ). SAM is designed to analyse the chemical and isotopic
omposition of samples of Martian rocks, soil, and atmosphere on
ars. It is composed of three main subsystems: (1) a gas chro-
atograph (GC), to separate gases prior to their identification in the
S (Gas Chromatography Mass Spectrometry, GCMS), (2) a mass

pectrometer, to detect and identify the key molecules necessary for
ife (i.e. containing carbon, hydrogen, nitrogen, oxygen, phosphorus,
nd sulfur, commonly known as CHNOPS), and (3) a tunable laser
pectrometer, to detect light gases (such as CO 2 or CH 4 that could
ASTAI 3, 156–165 (2024) 
ave been produced by life or geological processes), and investigate
heir isotopic composition. 

Because of the high heritage of mass spectrometers for space
issions, many future missions looking for chemistry or biology

f a given planetary body, orbiting it or landing on it, will be
quipped with mass spectrometers, particularly as part of a suite
n combination with a sample preprocessing component (e.g. the
ample Manipulation System on MSL) and separation system (e.g.
C, etc.). For example, Mars Organic Molecule Analyzer (MOMA)
ill be onboard the ExoMars 2028 mission (Rosalind Franklin ro v er),
 joint mission between the European Space Agency and NASA
Goesmann et al. 2017 ). MOMA will notably be used to search
or traces of past life on Mars by analysing samples collected up
o 2 metres below the surface. In the next decade, the Dragonfly

ass Spectrometer (DraMS) will be onboard the Dragonfly mission,
argeting arri v al at Titan by 2034 (Grubisic et al. 2021 ). DraMS
ill address the question of the complex chemistry and potential
abitability of Titan’s surface. The Mass Spectrometer for Planetary
xploration is developed for the Europa Clipper mission, targeting
uropa for a launch in 2024 (Brockwell et al. 2016 ). It will be used

o analyse the composition of Europa’s icy surface and subsurface in
rder to understand the moon’s potential habitability. For small-body
nvestigations, the Laser Ablation Mass Spectrometer will be onboard
he Psyche mission, set to be launched in October 2023, to analyse the
omposition of the metallic asteroid Psyche to understand its origin
nd evolution (Hart et al. 2018 ). Finally, mission concepts such as
he Enceladus Orbilander propose using a High-Resolution Mass
pectrometer to investigate the origin and habitability of Enceladus
s well as look for signatures of life on this moon (MacKenzie et al.
021 ). 
Planetary missions are highly constrained in communication links

nd data downlinks. As instrument complexity and resolution in-
reases, it will be increasingly challenging to downlink the full output
ata files of scientific instruments, especially when going further in
he outer Solar system (e.g. Titan, Europa). Algorithms and methods
apable of reading and interpreting the output of these scientific
nstruments with high confidence onboard the spacecraft will not
nly enable the missions to collect more data, but will also benefit the
ata prioritization process to send back to Earth the most interesting
nd promising results first. Artificial Intelligence and ML techniques
ould greatly benefit the development of such algorithms. ML
pplications require large data sets that planetary science instruments
o not often have. In particular, NASA-built science instruments
re highly customized and have constraints in the list of samples
hat can be tested, often leading to small data sets and a variety of
nalytical parameters that can prevent ML applications. However,
uring the development of space missions, laboratory equi v alents of
nstrumental subsystems as well as commercial instruments serve a
ritical purpose by enabling larger data sets to be collected. 

Our challenge’s proposal focused on finding some alternate ap-
roaches to assisting in the interpretation of space missions’ instru-
ent data without having large amounts of data with which to train
L algorithms. We sought innov ati ve methods (e.g. transfer learning

r other no v el approaches) to help analyse and interpret the output
easurements of planetary mission instruments constrained by

imited data sets (restraining the use of ML algorithms). Specifically,
he two challenges presented in this paper aimed at (1) e v aluating
ow ML could be applied to MS analysis, with a specific focus
n Mars planetary mineralogy , geochemistry , and chemistry , and at
2) e v aluating ho w well models trained on commercial instruments
ould perform on SAM-like data. Challenge 1 used EGA-MS data,
hile challenge 2 focused on the GCMS data to develop methods
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o accurately interpret the chemical composition of material samples 
nalysed by the SAM instrument on the Curiosity ro v er. 

Our ultimate goal was to use ‘transfer learning’ to leverage the 
nowledge gained from commercial instruments used to develop 
lanetary science missions (Wong & Michaels 2022 ). Transfer 
earning relies on developed algorithms trained on large data sets 
rom similar instruments to then tune those algorithms to adapt them 

o planetary instruments with limited training data sets. For example, 
ommercial mass spectrometers and flight-like models such as an 
ngineering Test Unit or Testbed model are instruments that collect 
pectra and hav e man y tunable parameters that can produce different
esults with the same sample. More flight-like models are often 
eserved for mission-related activities and commercial instruments 
re used to collect large amounts of data from rele v ant samples (e.g.
aboratory simulants or Earth-based analogues). The larger data set 
rom commercial instruments could be used to train ML models, and 
hen, the learned algorithms can be adjusted for very limited flight 
nstrument data sets, ultimately benefiting missions’ preparation 
nd operations. To summarize our task in one question: Can we 
rain ML on data sets from commercial laboratory instruments and 
hen successfully apply those ML models to science data from FM
nstruments? 

.2 Process set-up 

he organization of these challenges was conducted with various 
tak eholders. First, NASA w as the project organizer and the sponsor
ith the principal investigator’s team from the NASA Goddard Space 
light Center (GSFC). Second, the NASA Center of Excellence for 
ollaborativ e Inno vation (CoECI), established in 2011 at the request 
f the White House Office of Science and Technology Policy, was 
he project coordinator. CoECI aims at collaborating with innovators 
cross NASA and the Federal Go v ernment to generate ideas and
olve important problems by working with global communities via 
he NASA Tournament Lab (NTL). NTL offers a variety of open 
nnovation platforms that engage the crowdsourcing community 
n challenges to create the most innov ati ve, ef ficient, and optimal
olutions for specific, real-world challenges faced by NASA. These 
hallenges were designed and hosted by DrivenData, a company 
ocused on the organization of online ML challenges for projects at 
he intersection of data science and social impacts in various areas 
uch as international development, health, education, research, and 
ublic services. Finally, HeroX supported the communication around 
he challenges and the publication of press releases. 

Both challenges used MS data collected for Mars exploration 
issions. The first challenge focused on EGA-MS (see Section 3.2 ) 

ata with data sets coming from laboratory instruments at NASA’s 
SFC and Johnson Space Center (JSC) that are affiliated with the 
AM instrument science team. The data sets were collected from (1)
ommercial instruments: commercially manufactured instruments 
hat have been configured to be used in SAM-like conditions at 
SFC (Franz et al. 2020 ) and JSC (Archer et al. 2013 ; Clark et al.
019 ), and (2) the SAM testbed at GSFC, a high-fidelity replica of the
AM instrument suite, operating in a Mars chamber (under Martian 

emperature and pressure conditions). It is worth mentioning that 
ifferences between commercial instruments and the SAM testbed 
ead to additional difficulties in preprocessing the non-uniform data 
ets. For instance, commercial instruments measure ion abundance as 
on current in amperes (amps, Coulombs per second), while the SAM
estbed measures abundance as counts per second. Another major 
ifference includes a higher time resolution in commercial mass 
pectrometers, due to a lower scanning rate in the testbed instrument. 
n order to deal with these differences, some data processing steps
nd calibration needed to be applied to enable the comparison of
ommercial instrument data and testbed data. The second challenge 
sed GCMS (see Section 3.3 ) data only from GSFC commercial
nstruments. In future challenges, we envision using actual Mars data 
ollected by the SAM instrument thanks to NASA’s Planetary Data 
ystem (PDS; https:// pds.nasa.gov/ ) that archives and distributes 
ublicly available digital data related to the study of surfaces and
nteriors of terrestrial planetary bodies. 

.  C H A L L E N G E S  SET-UP  

hese two ML open science challenges are multilabel classification 
asks. A multilabel classification problem is a type of supervised 
earning problem where each input data (in our case, mass spectra)
s labelled with multiple classes (also called labels). Each mass 
pectrum can belong to zero or more classes (in our case, chemical
amilies) rather than just a single class. The model outputs a probabil-
ty distribution for each class, with probability scores between 0 and
 that indicate the likelihood of that label being present for the given
nput data. Several performance metrics can be used to e v aluate
he performance of the ML models. For these two challenges, we
sed the logistic loss and the average precision as they encompass
ther performance indicators and combine them to assess the o v erall
odel’s performance. 

.1 Performance metrics 

pen science challenges rely on the use of various performance 
etrics to e v aluate and compare the ef fecti veness of different

esearch approaches and methodologies. For these two challenges, 
e use the log loss metric and the average precision metric. 

.1.1 Log loss metric 

he logistic loss (also called cross-entropy loss) is a commonly used
oss function in ML and statistics models, especially for classification 
asks. The log loss calculates the difference between the predicted 
robabilities and the true labels. For a single observation, the log loss
s expressed as follows: 

 log ( y, p) = −( y log ( p) + (1 − y) log (1 − p)) 

ith y , a binary variable indicating if the label is correct (0 or 1), and
 , the predicted probability that the label is present. 
The logistic loss aims at penalizing the model when it is con-

dent (e.g. predicts high probability) for incorrect predictions . 
he log loss is a reliable and widely used metric for the e v aluation of
lassification models as it provides a better measure of performance 
o incorrect predictions and is more sensitive to differences in 
redicted probabilities between classes. This is even more important 
n application to planetary science, as the misclassification of one 
lass might be more important than another one. Lower log loss
cores indicate better performance of the model. For these challenges, 
he metric is the average across label classes of the binary log losses
or each class. 

.1.2 Avera g e precision metric 

he average precision is calculated as the weighted mean of pre-
isions at each threshold. The precision measures how well the 
lgorithm finds true positives (TPs) out of all the positive predictions
RASTAI 3, 156–165 (2024) 
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Figure 4. Example of an EGA mass spectra focusing on masses m / z = 18.0 
and m / z = 32.0. 
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Table 1. Summary table of the 10 labels used in the EGA-MS challenge to 
represent main families of minerals of interest for the study of Mars. 

Label Brief geochemical description 

Basalt Extrusive igneous (volcanic) rock, low in silica (Si) 
content, dark in colour, comparatively rich in iron (Fe) 
and magnesium (Mg) 

Carbonate A salt that contains CO 3 
2 − and a cation, generally Fe 2 + , 

Ca 2 + , or Mg 2 + 
Chloride A salt that contains the Cl − anion 
Iron oxide Chemical compounds composed of iron (Fe) and oxygen 

(O) 
Oxalate Minerals containing the C 2 O 4 

2 − anion 
Oxychlorine Oxidizing chlorine-containing salts of general 

composition ClOx, that includes the widespread Martian 
perchlorates (ClO 

4 −) 
Phyllosilicate Compounds with structures containing tetrahedral s 

sheets (silica tetrahedrons consisting of a central silicon 
atom surrounded by four oxygen atoms) and octahedral 
sheets (arrangements of OH 

− and cations), commonly 
called clay minerals 

Silicate Minerals containing polyatomic anions consisting of 
silicon and oxygen (e.g. SiO 4 

2 −) 
Sulfate A salt containing SO 4 

2 − and cations such as Fe 2 + , Ca 2 + , 
or Mg 2 + 

Sulfide A compound containing one or more S 2 − ions 

Table 2. Example of the label file for each sample. ‘1’ indicates the presence 
of the mineral phase in the studied sample, while ‘0’ indicates otherwise. 

Sample id S000 S001 S002 S003 S004 ... 

Basalt 0 0 0 0 0 ... 
Carbonate 0 1 0 1 0 ... 
Chloride 0 0 0 0 0 ... 
Iron oxide 0 0 0 1 1 ... 
Oxalate 0 0 0 0 0 ... 
Oxychlorine 0 0 1 0 1 ... 
Phyllosilicate 0 0 0 0 1 ... 
Silicate 0 0 0 0 0 ... 
Sulfate 1 0 0 1 0 ... 
Sulfide 0 0 0 0 0 ... 
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TPs and false positives). This performance metric aims at rewarding
he algorithm that assigns positive samples with higher scores than
e gativ e samples. It ranges from 0.0 (completely wrong predictions)
o 1.0 (perfect predictions). The average precision metrics reported
or these challenges are micro-averaged across label classes-each
abel’s prediction for each observation is treated as an observation in
 global precision-recall calculation. 

It is worth noting that many other performance metrics exist
or classification tasks. Log loss and average precision provide
oncise and comprehensive summaries of overall model performance
cross operating thresholds. Log loss considers predictions with a
robabilistic interpretation and rewards models that are statistically
ell-calibrated. Average precision measures the quality of prediction

cores’ rank ordering. Models with strong performance will generally
core well on both of these metrics, but they are not inherently
orrelated with one another. 

.2 Ev olv ed gas analysis-mass spectrometry 

he Evolved Gas Analysis (EGA) mode in SAM (Mahaffy et al.
012 ; Sutter et al. 2017 ; McAdam et al. 2022 ) involves heating a
olid sample at a rate of 35 ◦C min −1 from ambient to 850 ◦C under
 He flow and measuring in real-time the quantity of released gases
sing a mass spectrometer. The temperature at which specific gases
re released provide information about the sample’s mineralogy and
eochemistry. The EGA-MS’s measurements are time series that
cientists study to identify the gases produced by the sample o v er
ime while being heated. Scientists’ expertise and domain knowl-
dge enable the determination of the chemical and mineralogical
omposition of the studied sample. Fig. 4 illustrates an example of
1) a sample ion abundance plotted o v er time and (2) the temperature
rofile the sample was heated at. A specific volatile compound will
roduce a series of fragments that are recorded as m / z by the MS. As a
implified example, sulfate minerals will decompose at temperatures
bo v e 600 ◦C and release SO 2 , a gas that is characterized with m / z
4, 48, and 32 (among others). The detection of those concurrent m / z
t the same high temperature thus determines the presence of sulfate
n the sample. The specific type of sulfate in a sample can then be
onstrained by using the temperature of evolution of the SO 2 peak. 

The challenge data set was shared as .csv file format. Each input
ata in the challenge data set represented the study of a physical
ASTAI 3, 156–165 (2024) 
ample. The features for each sample are the EGA-MS measurements
ontaining four dimensions: 

(i) Time : The time in seconds since the start of the reference time
e.g. the start of sample heating), 

(ii) Temp : The temperature of the sample in ◦C at the time of the
easurement, 
(iii) m / z : The mass-to-charge ratio of the measured ion, and 
(iv) Abundance : The count or current of ions being detected per

can (note: abundance values are compared in a relative way within
ach sample’s analysis). 

For the EGA-MS challenge, competitors were asked to predict the
robability that each of the classes described in Table 1 was present in
he sample. These classes represent certain families of mineralogies
hat are of scientific interest in analysing conditions for the history of

ars and its past habitability. Details about this EGA-MS challenge
re available on DrivenData website: https://www.drivendata.org/ 
ompetitions/ 93/ nasa- mars- spectrometry/ page/ 437/ ). Each sample
an have multiple class assignments or can have none. In the labels
le (as shown in Table 2 ), a ‘1’ indicates that the studied sample
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Figure 5. EGA-MS results for the top three winners and the benchmark. 
Comparison between the models results on the commercial data and on the 
SAM testbed data. Log loss in blue (the lower the better), and micro-averaged 
precision in green (the higher the better). We can note that the top three 
winners’ solutions outperform the benchmark model for commercial and 
testbed data, and that the task on testbed data is more difficult but proposed 
solutions also outperformed the benchmark model. The top three winners’ 
solutions are further detailed in Section 4 . 
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Figure 6. Example of a GCMS experiment output. The top plot represents 
the ‘ion chromatograms’ which show the intensities o v er time for ions by 
their individual mass. Ion chromatograms of m / z 40.0, 44.0, 73.0, 147.0, and 
233.0 are highlighted. The mass spectrum example (bottom panel) represents 
the fragmentation peaks for a compound of this sample. 
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ontains a mineral phase from that specific family, while a ‘0’
ndicates otherwise. 

In order to better understand the possibility of transferability 
o flight-like instruments, we organized a bonus prize specifically 
edicated to the performance on the SAM testbed data. Because 
AM testbed samples were limited to only 76 inputs, 12 samples 
ere used in the training set and 64 samples in the test set as we were

ooking to emphasize this e v aluation. The task of making correct
redictions for the SAM testbed data were clearly more difficult than 
or the o v erall data set. The two main performance metrics of log-
oss score and o v erall micro-av eraged av erage precision (described
n Section 3.3 ) were respectively higher and lower than for the
 v erall test set as shown in Fig. 5 . It is essential to note that log-
oss scores cannot be directly compared across different data sets 
between commercial and testbed predictions for instance, or even 
etween different label classes). Nevertheless, the difference from 

he top three solutions with the basic benchmark provided to the 
articipants pro v es that some transferability can be applied to data
rom commercial instruments to flight-like instruments. For both 
hallenges, the original benchmarks we provided the participants 
ontain basic exploration data analysis steps, preprocessing, and 
odel development. The EDA step aims at better understanding 

he proportion of samples in each training, validation, and testing set
or each instrument type (commercial versus flight-like), and some 
ain features of MS data. The preprocessing step standardizes the 
ass values, remo v es background noise, and conv erts abundances to

elative abundances. The benchmark model uses a simple modelling 
pproach as ‘one versus all’ for this multilabel classification: binary 
lassifiers using logistic regression are developed for each label class 
ndependently. The winners’ solutions are described in more detail 
n Section 4.1 . 

.3 Gas chromatography mass spectrometry 

CMS is an analytical method used to determine the molecular 
omposition of samples. The SAM GCMS experiment involves 
eating a solid sample up to 850 ◦C in a pyrolysis o v en in order
o vaporize the samples, directing compounds that volatilized o v er a
hosen temperature range during the heating ramp into GC capillary 
olumns for their separation, and at the outlet of the columns,
nalysing the discrete compounds with the MS. A deri v atization
gent (a chemical reagent) can be added to the sample to aid in the
aporization of compounds with low volatility such as amino acids. 
he role of the GC column is to separate the chemical species released

rom the sample into their individual components. Components are 
eleased from the column at different times based on their chemical
nd physical properties. The time at which the compound is released
rom the GC column is the compound’s retention time (Fig. 6 ).
ifferent GC columns (composed of a stationary phase), carrier 
as (a mobile phase such as helium), and the GC o v en temperature
rograms will result in different retention times for the same analyte.
hus, the retention time of a given compound on a given column
ill be the same under the same analytical conditions. Once the

omponent leaves the GC column, it is guided to and through the
ass spectrometer in order to be identified. The outputs of GCMS

xperiments contain a chromatogram (representing the abundance, 
hrough one mass ion ( m/z ) or the sum of all selected mass ions,
 v er time) and for each recorded time a mass spectrum is generated
Fig. 6 ). 

The challenge data set was shared as .csv file format. Each input
ata in the challenge data set represented the study of a physical
ample. The features for each sample are the GCMS measurements 
ontaining three dimensions: 

(i) Time : The time in seconds since the start of the reference time,
(ii) m / z : The mass-to-charge ratio of the measured ion at a defined

etention time, and 
RASTAI 3, 156–165 (2024) 
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Table 3. Summary table of the nine labels used in the GCMS challenge to 
represent main families of organic compounds and minerals of interest for 
the study of Mars. 

Label Brief chemical description 

Aromatic Any of a large class of unsaturated chemical 
compounds characterized by one or more planar 
rings of atoms joined by covalent bonds of two 
different kinds 

Hydrocarbon Any of a class of aliphatic (e.g. non-aromatic) linear 
or branched organic chemical compounds composed 
only of the elements carbon (C) and hydrogen (H) 

Carboxylic acid Any of a class of organic compounds in which a 
carbon (C) atom is bonded to an oxygen (O) atom by 
a double bond and to a hydroxyl group ( −OH) by a 
single bond. Examples are fatty acids or amino acids 

Nitrogen bearing 
compound 

Samples with nitrogen (N)-containing compounds 
such as amines [organic compound derived from 

ammonia (NH 3 )] or nitriles [any of a class of organic 
compounds having molecular structures in which a 
cyano group (?C ≡N) is attached to a carbon (C) 
atom] 

Chlorine bearing 
compound 

Sample containing chlorine (Cl). Typically the type 
of compounds detected in presence of perchlorates or 
other oxychlorines in the sample 

Sulfur bearing 
compound 

Sample containing sulfur (S). Typically the type of 
compounds detected in presence of sulfate minerals 

Alcohol Any of a class of organic compounds characterized 
by one or more hydroxyl ( −OH) groups attached to a 
carbon atom of a hydrocarbon chain 

Other oxygen 
bearing 
compound 

Samples contain oxygen atoms but are not 
carboxylic acids or alcohols. Examples are esters 
(R-COOR’) and ethers (R-OR’) 

Mineral Naturally occurring homogeneous solid with a 
definite chemical composition and a highly ordered 
atomic arrangement, usually formed by inorganic 
processes 
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Figure 7. GCMS results for the top three winners and the benchmark only 
on commercial data. Logistic loss in blue (the lower the better), and micro- 
averaged precision in green (the higher the better). We can note that the top 
three winners’ solutions outperform the benchmark model especially for the 
micro-averaged precision metric. The top three winners’ solutions are further 
detailed in Section 4 . 
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(iii) Abundance : The rate of ions being detected per second
note: abundance values are compared in a relative way within each
ample’s analysis). 

For the GCMS challenge, competitors were asked to predict
he probability that each of the molecular classes or minerals
escribed in Table 3 was detected in the chromatogram. Because
f the nature of pyrolysis-GCMS, the compounds detected in the
hromatogram cannot be directly extrapolated to the ones that were
riginally present in the sample. These classes represent a range
f chemical families that are of scientific interest in analysing
onditions for past habitability, or that have been found on Mars.
etails about this GCMS challenge are available on DrivenData
ebsite: https:// www.drivendata.org/ competitions/ 97/ nasa- mars- 
cms/ page/ 519/ . Similar to the EGA-MS challenge, each sample can
av e an y number of class assignments. For the GCMS challenge,
nly commercial instrument data were used. As shown in Fig. 7 , the
op three winners performed similarly o v erall. 

Similarly to the EGA-MS challenge, we provided a benchmark
o the participants containing basic exploration data analysis steps,
reprocessing, and model development. The EDA step aims at better
nderstanding the proportion of samples in each training, validation,
nd testing set for each instrument type (commercial versus flight-
ike), and some main features of MS data. The preprocessing
tep standardizes the mass values, remo v es background noise, and
onverts abundances to relative abundances. The benchmark model
ASTAI 3, 156–165 (2024) 
ses a simple modelling approach as ‘one versus all’ for this
ultilabel classification: binary classifiers using logistic regression

re developed for each label class independently. The winners’
olutions are described in more detail in Section 4.1 . 

.  C H A L L E N G E  RESULTS  

hese two challenges organized by NASA and hosted by DrivenData
ocusing on MS data for Mars exploration raised a lot of interest from
he community. Indeed, we experienced an extensive engagement
rom all o v er the world, with 9962 site visitors from 142 different
ountries (data obtained with Google Analytics). 

egions % Countries % 

sia 41 USA 24 
orth 
merica 

27 India 21 

urope 21 Turkey 6 
outh 
merica 

5 Russia 3 

ceania 5 UK 3 

.1 EGA-MS challenge (F eb–A pr 2022) 

he first challenge organized in the first quarter of 2022 that focused
n EGA-MS data received an extensive engagement, with 713 unique
articipants and 656 submissions. Out of these submissions, 93
articipants beat the benchmark model’s score (0.3242 aggregated
og loss) with a log loss value of 0.092 and 0.95 average precision for
he first place solution. The first place participant also won the SAM
estbed modelling methodology bonus prize for technical merits
nd potential to be applied to future data. The participants used a
ariety of approaches: two-dimensional (2D) deep learning model,
nsembles of different tree-based and deep learning trained on 1D
epresentations of the data as shown in Table 4 . 

The winners (dmytro, NQ , and devnikhilmishra) brought a wide
 ariety of creati v e strate gies to perform this task such as feature
ngineering, data augmentation, and ensembling. Feature engineer-
ng is the process of selecting and transforming or creating rele v ant
eatures from input data to impro v e the ML models performance.

https://www.drivendata.org/competitions/97/nasa-mars-gcms/page/519/
https://www.drivendata.org/competitions/97/nasa-mars-gcms/page/519/
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Table 4. Summary table of the GCMS challenge top three winners, bonus winner, and benchmark models, representing the main modelling approaches used 
per model and the two performance metrics used for e v aluation. 
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n this EGA-MS challenge, feature engineering was used to capture 
he ion abundance curves. Data augmentation techniques are used 
o artificially increase the size of the input data set, but applying
ifferent transformations to the original data such as adding noise, 
hifting some peaks, etc. Ensembling techniques involve combining 
redictions from several ML models to produce a single and more 
ccurate prediction. 

The first-place winner converted the input mass spectrum in 
D image representations (temperature versus m / z values) before 
sing these as inputs to convolutional neural networks (CNNs) 
nd recurrent neural networks. This participant did not use feature 
ngineering but used ensembling techniques and made e xtensiv e 
se of augmentation techniques by representing a single sample 
6 times. The second-place and third-place winners both used feature 
ngineering and ensembling techniques. The second-place winner 
sed a light gradient boosting (LightGBM) model trained with the 
ngineered features and 1D deep learning neural networks. Finally, 
he third-place winner who converted the multilabel problem into a 
et of binary classification problems, used LightGBM model along 
ith ensembling techniques (Poplavskiy, Lander & Mishra 2022 ). 

.2 GCMS challenge (Oct–Dec 2022) 

he second challenge was organized in the last quarter of 2022. It
ocused on GCMS data and again received an extensive engagement, 
ith 537 unique participants and 491 submissions. Out of these 

ubmissions, 43 participants beat the benchmark model’s score 
0.2200 aggregated log loss) with a log loss value of 0.14 and
.81 average precision for the first place solution. The top of the
eaderboard (nvnn, dmitryakono valo v, and ouranos,) was v ery close 
ith the top five participants separated by less than 0.01 aggregated 

og loss. The bonus prize for the best write-up of methods also
xpanded understanding of modelling approaches and increased 
isibility beyond the top three winners. The winners of this second 
hallenge used deep learning models similar to the first place EGA 

hallenge winner with the main differences being in how (and 
hether) they combined the predictions of these deep learning 
odels with those from other models as shown in Table 5 . 
For this second challenge, the winners also brought a wide 

 ariety of creati v e strate gies to perform this task such as feature
ngineering, statistical features generation, and ensembling. They 
lso were able to leverage the successful techniques of the first
hallenge (e.g. converting the mass spectra from 1D representation 
o 2D image representations). The best solutions included deep 
earning models using image or sequence representations of the input 

ass spectra. The first- and second-place winners both used deep 
earning approaches while the third-place and bonus prize winners 
rst generated features to describe the input mass spectra. The third-
lace winner engineered statistical features across the entire sample 
e.g. means and standard deviations of ion intensity per time interval), 
hile the bonus prize technique engineered features commonly used 

n signal processing such as peak height and peak width. The top
olutions of this GCMS challenge mainly used 2D deep learning 
odels CNNs. The third-place winner used CNN models as well 

ut also combined two tree-based models (logistic regression and 
idge classification). All these awarded solutions used some form of 
nsembling by either training multiple models with different types 
f preprocessing and of model architectures or by training models 
n different subsets (also called ‘folds’) of the input data NVN et al.
 2022 ). 

.  DI SCUSSI ONS  

.1 Challenges successes 

he organization of these two challenges was successful in many 
spects. The main one being the close collaboration between the 
ifferent partners: the sample science team, the data science team, 
nd the management team. The sample scientists w ork ed closely
ith the challenge organizers in framing the proper problem of each

hallenge and in preparing the data sets. This close collaboration 
ro v ed essential in developing thorough documentation of specific 
omain knowledge to help participants understand the problem 

riving these challenges. Secondly, the challenge host and organizer 
ri venData de veloped a well-written and understandable benchmark 

ode and tutorials to provide the participants a mature starting point.
hirdly, setting up these challenges required the preparation of 

esearch data sets for ML applications, with meaningful labels for 
nalysis. Developing and featuring these unique data sets for the 
roader community to engage with was an important product of the
RASTAI 3, 156–165 (2024) 
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Table 5. Summary table of the EGA-MS challenge top three winners and benchmark models, representing the main modelling approaches used per model and 
the two performance metrics used for e v aluation. 
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hallenge. These data sets and labels are publicly available on the
egistry of Open Data on AWS ( https://re gistry.opendata.a ws/) and
etails about the two challenges can be found on the DrivenData
ebsite ( https:// drivendata.org/ ). Finally, the bonus prizes required
ritten documentation that provided great visibility into the various
odels’ approaches and potential for future applications, as well as

ecommendations for future challenges. 

.2 Challenges and potential impro v ements 

he great collaboration between the experts (mass spectrometer
cientists) and the challenges’ organizers was highly time-consuming
hile being critical for the set-up. For future challenges, we recom-
end to involve the science team early in the process and provide

unding support for these problem framing and data set preparation
asks. We also recommend scientists to be aware and open to any
uture data science potential tasks on their data and project early in
he development phase, in order to optimize the data strategy and

etadata collection in a thorough and well-documented manner. ML
pplications usually require a large volume of data and consistent
ata sets. In many current applications, ML techniques are applied
sing an opportunistic and existing data set to investigate methods to
xtract meaningful insights from it. For future challenges, we would
ecommend collecting data with potential future ML applications
n mind. Although we acknowledge it may be difficult to set up,
he data collection considering ML applications will need (1) to
etter keep track of experimental parameters, metadata, and label
nnotations (preferably in a virtual manner, instead of laboratory
otebooks); (2) to keep experimental procedures consistent (same
etadata, same experimental profiles); and if possible (3) to collect
ore representative data set for specific cases of interest. Finally,

t would be beneficial to better understand contamination during
xperiments (from sample to sample, from chemical noise of the
nstruments) and incorporate that variable into the problem framing
nd modelling in a useful way. 

.3 Main takeaways 

e demonstrated that multiple ML approaches can be leveraged
f fecti vely with MS data for planetary science samples. Data science
echniques and ML models can be used to better analyse, investigate,
ASTAI 3, 156–165 (2024) 

a

nd understand the chemical composition of materials from other
lanets, and could greatly benefit future space exploration missions.
his work adds up to previous work proving the capabilities of
L-based and data science-based methods using MS data in the

eld of planetary science (Da Poian et al. 2022 ; Theiling et al.
022 ). 
These two open science challenges also provide some evidence

hat models trained on commercial data have some transferability to
o v er science instruments onboard planetary exploration missions.
cientists and engineers could then leverage existing models and
evelop models to inform their research for planetary missions.
urther tests and research will be needed to determine the extent
nd the limitations of this transferability for SAM data on Martian
pplications and for other planetary targets such as Ocean Worlds
oons (e.g. Titan, Europa, and Enceladus). 

.  C O N C L U S I O N  

hese two open science ML challenges’ results demonstrated that
ultiple ML approaches can be leveraged effectively with MS data

or planetary science analysis. The results of these challenges provide
vidence that models trained on commercial instrument data set
ave some transferability to flight-like science instruments. This is
 substantial step forward in the development of ML algorithms for
lanetary science disco v eries. 
Open challenges are a marvellous resource and valuable platform

or advancing research in various fields. The formulation and
mplementation of open science ML challenges require a well-
rganized framework to tackle data preparation, benchmarking steps,
 v aluation metrics choice, and long-term sustainability challenges.
he most time-consuming step after defining the challenges tasks was

he data preparation that included the data collection and labelling,
s well as the anonymization and data protection measures to prevent
isuse or unauthorized access. When defining the challenges’ tasks,

ur team highly focused on resource development to attract a
iverse and engaged participant community. With the help of NASA
eam members and science experts, the DrivenData team developed
oncise and clear resource documentation about planetary science
issions’ limits and MS data. Our team also brainstormed on the
ost suitable e v aluation metrics for the tasks to solve and the

vailable data sets. 
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These initial results from these two open science ML challenges 
ill serve as bases for future work using SAM data collected on
ars and archived on NASA’s PDS system. We will also investigate 

ollaborative science using EGA-MS and GCMS data together in 
 single task, and collaborative science using other instruments 
nboard the Curiosity ro v er (e.g. CheMin, Curiosity cameras). 
The main tak eaw ays are the engagement and enhanced creativity 

rom worldwide participants in various fields, the reproducibility of 
he developed models (participants are required to provide detailed 
escriptions of their method and code), and the benchmarking of 
he challenges allowing participants to compare the performance of 
arious models. 

C K N OW L E D G E M E N T S  

he research described in this paper was hosted by NASA Goddard 
pace Flight Center (GSFC) and by DrivenData, under a contract 
ith the National Aeronautics and Space Administration (NASA). 
he authors would like to acknowledge the reviewers and the 
ditors for providing feedback which greatly helped in improving 
he clarity of this manuscript. We thank the NASA Headquarters 
eams, Steven Rader, Katie Baynes, Stev en Cra wford, and Me gan
nsdell for the funding support, the constant management sup- 
ort, and for their guidance along the project. We also thank the
AM scientists’ team for sharing their data and their expertise. 
inally, we thank all the worldwide participants for these two 

ncredible challenges, the complete list of the participants can be 
ound on DrivenData webpages: https://www.drivendata.org/compe 
itions/93/nasa- mars- spectrometr y/leader boar d/ and https://www.dr 
vendata.org/competitions/97/nasa- mars- gcms/leader boar d/. A por- 
ion of this work was supported by NASA under award number 
0GSFC21M0002. 
2024 The Author(s) 

ublished by Oxford University Press on behalf of the Royal Astronomical Society. This is an Open Access ar

 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproductio
EFERENCES  

rcher Jr. P. D. et al., 2013, J. Geophys. Res. Planets , 119, 237 
re v alo R. , Ni Z., Danell R. M., 2020, J. Mass. Spectrom., 55, 1 
rockwell T. G. , Meech K., Pickens K., Waite J., Miller G., Roberts J., Lunine

J., Wilson P., 2016, Proc. IEEE Aerospace Conference. IEEE 

ull P. , Slavitt I., Lipstein G., 2016. preprint ( arXiv:1606.07781 ) 
hou L. et al., 2021, Frontiers Astron. Space Sci. , 8, 173 
lark J. V. et al., 2019, J. Geophys. Res. Planets , 125, e2019JE006173 
a Poian V. , Lyness E., Danell R., Li X., Theiling B., Trainer M., Kaplan D.,

Brinckerhoff W., 2022, Frontiers Astron. Space Sci. , 9, 848669 
ieleman S. , Willett K. W., Dambre J., 2015, MNRAS , 450, 1441 
ranz H. B. et al., 2020, Nat. Astron. , 4, 526 
oesmann F. et al., 2017, Astrobiology , 17, 655 
rotzinger J. et al., 2012, Space Sci. Rev. , 170, 5 
rubisic A. et al., 2021, Internat. J. Mass Spectrometry , 470, 116707 
art W. et al., 2018, IEEE Aerospace Conference. Big Sky, MT, p. 1 
lo ̌zek R. et al., 2020, preprint ( arXiv:2012.12392 ) 
acKenzie S. et al., 2021, Planet. Sci. J. , 2, 77 
ahaffy P. et al., 2012, Space Sci. Rev. , 170, 401 
cAdam A. , et al., 2022, J. Geophys. Res. Planets , 127, e2022JE007179 
iemann H. et al., 1996, Science , 272, 846 
ier A. O. , McElroy M. B., 1977, J. Geophys. Res. , 82, 4341 
VN N. , Kono valo v D., Nasios I., Ninalga D., 2022, Winning code from the

Mars Spectrometry 2: Gas Chromatography challenge , Zenodo, available 
at: https://zenodo.org/r ecor ds/8284743 

oplavskiy D. , Lander A., Mishra N., 2022, Winning code from the Mars
Spectrometry: Detect Evidence for Past Habitability challenge . Zenodo, 
available at: https://zenodo.org/r ecor ds/8284806 

utter B. et al., 2017, J. Geophys. Res. Planets , 122, 2574 
heiling B. et al., 2021, BAAS , 53, 048 
heiling B. et al., 2022, Astrobiol. , 22, 0062 
hompson D. , Castillo-Rogez J., Chien S., Doyle R., Estlin T., McLaren D.,

2012, AIAA Meeting Paper - SpaceOps 2012 Conference. ARC 

ong L. , Michaels A., 2022, Sensors , 22, 1416 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
RASTAI 3, 156–165 (2024) 

ticle distributed under the terms of the Creative Commons Attribution License 

n in any medium, provided the original work is properly cited. 

/7630195 by guest on 18 April 2024

https://www.drivendata.org/competitions/93/nasa-mars-spectrometry/leaderboard/
https://www.drivendata.org/competitions/97/nasa-mars-gcms/leaderboard/
http://dx.doi.org/10.1002/2013JE004493
http://arxiv.org/abs/1606.07781
http://dx.doi.org/10.3389/fspas.2021.755100
http://dx.doi.org/10.1029/2019JE006173
http://dx.doi.org/10.3389/fspas.2022.848669
http://dx.doi.org/10.1093/mnras/stv632
http://dx.doi.org/10.1038/s41550-019-0990-x
http://dx.doi.org/10.1089/ast.2016.1551
http://dx.doi.org/10.1007/s11214-012-9892-2
http://dx.doi.org/10.1016/j.ijms.2021.116707
http://arxiv.org/abs/2012.12392
http://dx.doi.org/10.3847/PSJ/abe4da
http://dx.doi.org/10.1007/s11214-012-9879-z
http://dx.doi.org/10.1029/2022JE007179
http://dx.doi.org/10.1126/science.272.5263.846
http://dx.doi.org/10.1029/JS082i028p04341
http://dx.doi.org/10.5281/zenodo.8284743
https://zenodo.org/records/8284743
http://dx.doi.org/10.5281/zenodo.8284806
https://zenodo.org/records/8284806
http://dx.doi.org/10.1002/2016JE005225
http://dx.doi.org/10.3847/25c2cfeb.ee4e6b64
http://dx.doi.org/10.1089/ast.2021.0062
http://dx.doi.org/10.3390/s22041416
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 CHALLENGE ORGANIZATION
	3 CHALLENGES SET-UP
	4 CHALLENGE RESULTS
	5 DISCUSSIONS
	6 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

