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ABSTRACT
We set up two open-science machine learning (ML) challenges focusing on building models to automatically analyze mass
spectrometry (MS) data for Mars exploration. ML challenges provide an excellent way to engage a diverse set of experts with
benchmark training data, explore a wide range of ML and data science approaches, and identify promising models based on
empirical results, as well as to get independent external analyses to compare to those of the internal team. These two challenges
were proof-of-concept projects to analyze the feasibility of combining data collected from different instruments in a single
ML application. We selected mass spectrometry data from 1) commercial instruments and 2) the Sample Analysis at Mars
(SAM, an instrument suite that includes a mass spectrometer subsystem onboard the Curiosity rover) testbed. These challenges,
organized with DrivenData, gathered more than 1,150 unique participants from all over the world, and obtained more than 600
solutions contributing powerful models to the analysis of rock and soil samples relevant to planetary science using various mass
spectrometry datasets. These two challenges demonstrated the suitability and value of multiple ML approaches to classifying
planetary analog datasets from both commercial and flight-like instruments.
We present the processes from the problem identification, challenge setups, and challenge results that gathered creative and
diverse solutions from worldwide participants, in some cases with no backgrounds in mass spectrometry. We also present the
potential and limitations of these solutions for ML application in future planetary missions. Our longer-term goal is to deploy
these powerful methods onboard the spacecraft to autonomously guide space operations and reduce ground-in-the-loop reliance.

Key words: machine learning – open science challenge – planetary mission instruments – transfer learning – data science –
mars exploration

1 Introduction
1.1 Challenges of planetary science data

Many planetary exploration missions aim at evaluating the
habitability and the existence of potential life on the target bodies.
Missions exploring further away in our solar system (e.g., Titan,
Europa, Enceladus, Ceres, etc.) or shorter-duration missions due to
extreme environmental conditions (e.g., Venus, Mercury) will face
communication constraints due to limited transfer rates and short
communication windows.

Current space missions operations processes are centered

★ E-mail: victoria.dapoian@nasa.gov

around ground-in-the-loop activities: data is sent back to scientist
teams on Earth for analysis and decision-making for future opera-
tions and desired analyses to run. The analysis time during which
scientists collect the scientific data, analyze it, infer the information
contained in it, and decide which next operations should be run on the
spacecraft is often extremely limited (e.g., a few hours for the SAM
instrument on Curiosity, 24-48 hours for the mass spectrometer in-
strument onboard the ExoMars mission). Further, ground-in-the-loop
operations require significant planning and coordination, restraining
the missions’ flexibility (Thompson et al. (2012)). Our open-science
challenge leverages machine learning (ML) and data science tech-
niques to improve methods for analyzing mass spectrometry (MS)
data to support scientists’ decision-making process during missions
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operations (Da Poian et al. (2022)). The goal is to make science op-
erations faster and more efficient, and ultimately maximize missions’
scientific returns, especially for missions to the outer solar system
(Theiling et al. (2020)) that will face more severe communication
and resource limitations than missions to Mars.

One of the main challenges of applying ML techniques to plan-
etary mission instruments is the limitation of the available training
datasets. It is essential to understand that planetary mission instru-
ments are unique due to their development and design in-house.
Indeed, planetary instruments are often built for a specific mission,
each with their own set of unique requirements and scientific goals.
Therefore, each instrument onboard a planetary mission is precisely
tailored to the specific mission’s target and scientific objectives, while
being constrained by mission requirements. During the development
of space instruments, scientists and engineers use commercial in-
struments and develop testbed instruments (e.g., flight analog instru-
ment) to optimize and understand flight models. Testbed instruments
are essential to 1) simulate space conditions, 2) test the instrument
functionality (for engineering, science, operations purposes), 3) cali-
brate the instrument, and to 4) start collecting data similar to the ones
that will be collected during the mission. Because the development
and the use of testbeds is time-consuming and resource-intensive,
scientists often use commercial instruments in the early stage of the
development. Commercial instruments off the shelf (COTS) have
lower fidelity but offer a higher accessibility and more experimen-
tal freedom (i.e., less restrictions about possible samples to analyze
and methods), while flight models (FM) represent the ground truth
but are used less frequently and with highly mission relevant sam-
ples to limit potential contamination and over use of hard to replace
flight-like components. Our research investigates the combination
of commercial instruments and flight-like instrument datasets in the
development of a ML model to help analyze mass spectrometry data
for Mars exploration via open science challenges.

1.2 Opportunity Grant for Open Science Challenges
In 2020, the NASA’s Science Mission Directorate (SMD)

Strategic Data Management Working Group (SDMWG) launched a
call for challenge proposals entitled “Using NASA Science Data and
Computing for Cross-Disciplinary Science”. This call was looking
for challenge proposals that could be turned into topics for significant
prize-based challenges focusing on utilizing NASA’s free and open
science data from multiple science disciplines. The call was also
looking for proposals encouraging collaboration across the various
NASA science divisions. This call for proposals had up to $1M to
put toward developing and executing these challenge proposals.

Bull et al. (2016) describes the power of crowdsourcing to
increase capacity for data science with open challenges where ex-
perts (and non-experts) from around the world can contribute and
organizations can receive high-performing algorithms with empiri-
cally demonstrated results among different models explored during a
competition. The intention of NASA SMD to organize open science
ML challenges is to leverage the great benefits of this approach listed
below and illustrated in Figure 1:

• Engagement of a large and global community: open science chal-
lenges make research more accessible and inclusive, attracting a
broader range of researchers
• Fast progress: multiple researchers from different fields can de-
velop different approaches and test hundreds / thousands of models
quickly.
• Enhanced creativity: the diversity of participants leads to di-
versity of perspectives and approaches to solve research problems.

Novel approaches and breakthroughs can be developed and proven
to be a good solution for this topic of research.
• Cost-effective: leveraging the collective resources and expertise
from various participants with various backgrounds enables to
achieve significant research progress while reducing costs.
• Transparency: open science challenges increase research trans-
parency by the open access to datasets, methods, and results.
• Open Benchmarking: open science challenges offer a standard-
ized evaluation process so that participants can benchmark their
algorithms and models against others, creating emulation and lead-
ing to continuous improvement in the models development.

Figure 1: Some of the main benefits of organizing open science challenges
for enhancing science and research topics.

This research benefited from sharing of resources and data, and
the cost-effectiveness of open science challenges to develop novel
collaboration practices, and ultimately accelerated research progress
on the use of commercial datasets for flight-like instrument imple-
mentation while fostering an open scientific community. While open
science challenges have been used in the field of astrophysics (Diele-
man (2015), Hložek (2020)), this is quite a new approach in the
field of planetary science. Via the two open science ML challenges
described in this paper, we investigated the potential of machine
learning techniques on mass spectrometry data for planetary science
analyses. The first challenge that used Evolved Gas Analysis Mass
Spectrometry (EGA-MS) data mainly investigated the potential for
transfer learning between commercial and flight-like instruments and
showed that transferability between these instruments datasets exist
and could be leveraged to train ML algorithms for planetary sci-
ence missions. These initial results on mass spectrometry data could
also be applied to other planetary science instruments that generate
spectral data, such as Raman spectroscopy, infrared spectroscopy.

2 Challenge Organization
2.1 Proposal for planetary science data

Mass spectrometers have been deployed onboard space missions
since the 1970s (Nier & McElroy (1977); Niemann et al. (1996)). A
mass spectrometer is an analytical instrument measuring the mass-
to-charge (m/z) ratio of ionized particles in a sample. The three main
components of any mass spectrometer are the ion source, mass an-
alyzer, and detector (Figure 2). The ion source generates ions from
the neutral analytes. The ionization process can be done via various
methods (e.g., electron impact, electrospray ionization, chemical ion-
ization, etc.). These ions are then accelerated and focused into a beam
by an electric field or a magnetic field. The mass analyzer separates
the ions based on their mass-to-charge ratio (m/z). The most com-
mon tools for this separation are quadrupole, time-of-flight, magnetic
sectors, linear ion trap, and Orbitrap(™), etc. The detector counts
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the separated ions or measures the charges electrically, sometimes
amplifying the signal to measure the ion’s relative abundance.

Figure 2: Representation of the three main components of mass spectrometer
instruments (ionization source, mass analyzer, mass detector) (adapted from
Arevalo et al., 2019). The modularity of each subsystem allows various mass
spectrometer designs for targeted applications.

Mass spectrometry and associated subsystems are used in various
disciplines such as medical science, chemistry, biology, environmen-
tal science, and planetary science. For planetary science applications,
the main uses of mass spectrometers and associated devices include
1) determination of the composition of planetary surfaces and atmo-
spheres in order to understand the origin and evolution of planetary
bodies, the dynamics of atmospheric processes and climate on plan-
etary bodies, as well as past and present habitability, 2) identification
of inorganic molecules from surface samples, to determine the min-
eralogy of an environment and its evolution over geological times, 3)
identification of organic molecules from surface samples that could
be building blocks for life as we know it on Earth, and 4) measurement
of isotopic ratios that can provide information about the formation
and evolution of planets as well as the history of geological and
atmospheric processes on a planetary body. Mass spectrometry is
a high-heritage technique and powerful tool for planetary missions
(Chou et al. (2021)) as it provides valuable insights about the com-
position, the evolution, the processes of our solar system and the
potential for life beyond Earth.

The Mars Science Laboratory (MSL) mission, launched in 2011
and landed on Mars in 2012 in Gale Crater, aims at investigating
the potential habitability of Mars by studying Mars’ geology, cli-
mate, and organic matter distribution at Mars’ surface and subsur-
face (Grotzinger et al. (2012)). The MSL mission consists of the
Curiosity rover equipped with ten powerful instruments including
the Sample Analysis at Mars (SAM) instrument suite (Mahaffy et al.
(2012), Figure 3). SAM is designed to analyze the chemical and iso-
topic composition of samples of Martian rocks, soil, and atmosphere
on Mars. It is composed of three main subsystems:1) A gas chro-
matograph (GC), to separate gases prior to their identification in the
MS (GC-MS), 2)A mass spectrometer, to detect and identify the key
molecules necessary for life (i.e., containing carbon, hydrogen, ni-
trogen, oxygen, phosphorus, sulfur, commonly known at CHNOPS),
and 3)A tunable laser spectrometer, to detect light gases (such as
CO2 or CH4 that could have been produced by life or geological
processes), and investigate their isotopic composition

Because of the high heritage of mass spectrometers for space
missions, many future missions looking for chemistry or biology of
a given planetary body, orbiting it or landing on it, will be equipped
with mass spectrometers, particularly as part of a suite in combination
with a sample pre-processing component (e.g., the Sample Manipu-
lation System on MSL) and separation system (e.g., GC, etc.). For
example, MOMA (Mars Organic Molecule Analyser) will be onboard
the ExoMars 2028 mission (Rosalind Franklin rover), a joint mission
between the European Space Agency (ESA) and NASA (Goesmann
et al. (2017)). MOMA will notably be used to search for traces of
past life on Mars by analyzing samples collected up to 2 meters
below the surface. In the next decade, the Dragonfly Mass Spec-
trometer (DraMS) will be onboard the Dragonfly mission, targeting

Figure 3. Sample Analysis at Mars (SAM) mass spectrometer instrument
onboard the Curiosity rover, operating on Mars since 2012 (credit: NASA).

arrival at Titan by 2034 (Grubisic et al. (2021)). DraMS will address
the question of the complex chemistry and potential habitability of
Titan’s surface. The Mass Spectrometer for Planetary Exploration
(MASPEX) is developed for the Europa Clipper mission, targeting
Europa for a launch in 2024 (Brockwell et al. (2016)). It will be used
to analyze the composition of Europa’s icy surface and subsurface in
order to understand the moon’s potential habitability. For small body
investigations, the Laser Ablation Mass Spectrometer (LAMS) will
be onboard the Psyche mission, set to be launched in October 2023,
to analyze the composition of the metallic asteroid Psyche to under-
stand its origin and evolution (Hart et al. (2018)). Finally, mission
concepts such as the Enceladus Orbilander propose using a HRMS
(High-Resolution Mass Spectrometer) to investigate the origin and
habitability of Enceladus as well as look for signatures of life on this
moon (MacKenzie et al. (2021)).

Planetary missions are highly constrained in communication links
and data downlinks. As instrument complexity and resolution in-
creases, it will be increasingly challenging to downlink the full output
data files of scientific instruments, especially when going further in
the outer solar system (e.g., Titan, Europa). Algorithms and methods
capable of reading and interpreting the output of these scientific in-
struments with high confidence onboard the spacecraft will not only
enable the missions to collect more data, but will also benefit the
data prioritization process to send back to Earth the most interesting
and promising results first. Artificial Intelligence (AI) and ML tech-
niques could greatly benefit the development of such algorithms. ML
applications require large datasets that planetary science instruments
do not often have. In particular, NASA-built science instruments are
highly customized and have constraints in the list of samples that
can be tested, often leading to small datasets and a variety of analyt-
ical parameters that can prevent ML applications. However, during
the development of space missions, laboratory equivalents of instru-
mental subsystems as well as commercial instruments serve a critical
purpose by enabling larger datasets to be collected.

Our challenge’s proposal focused on finding some alternate ap-
proaches to assisting in the interpretation of space missions instru-
ment data without having large amounts of data with which to train
ML algorithms. We sought innovative methods (e.g., transfer learn-
ing or other novel approaches) to help analyze and interpret the output
measurements of planetary mission instruments constrained by lim-
ited datasets (restraining the use of ML algorithms). Specifically, the
two challenges presented in this paper aimed at 1) evaluating how
ML could be applied to mass spectrometry analysis, with a specific
focus on Mars planetary mineralogy, geochemistry and chemistry,
and at 2) evaluating how well models trained on commercial instru-
ments would perform on SAM-like data. Challenge 1 used Evolved
Gas Analysis Mass Spectrometry (EGA-MS) data, while challenge 2
focused on the Gas Chromatography - Mass Spectrometry (GC-MS)
data to develop methods to accurately interpret the chemical compo-
sition of material samples analyzed by the SAM instrument on the
Curiosity rover.
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Our ultimate goal was to use “transfer learning” to leverage the
knowledge gained from commercial instruments used to develop
planetary science missions (Wong & Michaels (2022)). Transfer
learning relies on developed algorithms trained on large datasets
from similar instruments to then tune those algorithms to adapt them
to planetary instruments with limited training datasets. For example,
commercial mass spectrometers and flight-like models such as an
Engineering Test Unit (ETU) or Testbed model are instruments that
collect spectra and have many tunable parameters that can produce
different results with the same sample. More flight-like models are
often reserved for mission-related activities and commercial instru-
ments are used to collect large amounts of data from relevant samples
(e.g., laboratory simulants or Earth-based analogs). The larger dataset
from commercial instruments could be used to train ML models, and
then, the learned algorithms can be adjusted for very limited flight
instrument datasets, ultimately benefiting missions preparation and
operations. To summarize our task in one question: Can we train ML
on datasets from commercial laboratory instruments and then suc-
cessfully apply those ML models to science data from flight model
instruments?

2.2 Process Setup
The organization of these challenges was conducted with various

stakeholders. First, NASA was the project organizer and the spon-
sor with the principal investigator’s team from the NASA Goddard
Space Flight Center (GSFC). Second, the NASA Center of Excel-
lence for Collaborative Innovation (CoECI), established in 2011 at
the request of the White House Office of Science and Technology
Policy (OSTP), was the project coordinator. CoECI aims at collabo-
rating with innovators across NASA and the Federal Government to
generate ideas and solve important problems by working with global
communities via the NASA Tournament Lab (NTL). NTL offers a
variety of open innovation platforms that engage the crowdsourc-
ing community in challenges to create the most innovative, efficient,
and optimal solutions for specific, real-world challenges faced by
NASA. These challenges were designed and hosted by DrivenData,
a company focused on the organization of online machine learning
challenges for projects at the intersection of data science and social
impacts in various areas such as international development, health,
education, research, and public services. Finally, HeroX supported
the communication around the challenges and the publication of press
releases.

Both challenges used mass spectrometry data collected for Mars
exploration missions. The first challenge focused on EGA-MS (see
section 3.2) data with datasets coming from laboratory instruments
at NASA’s Goddard Space Flight Center (GSFC) and Johnson Space
Center (JSC) that are affiliated with the SAM instrument science
team. The datasets were collected from 1) commercial instruments:
commercially manufactured instruments that have been configured
to be used in SAM-like conditions at GSFC (Franz et al. (2020))
and JSC (Archer Jr. et al. (2013); Clark et al. (2019)), and 2) the
SAM testbed at GSFC, a high-fidelity replica of the SAM instrument
suite, operating in a Mars chamber (under martian temperature and
pressure conditions). It is worth mentioning that differences between
commercial instruments and the SAM testbed lead to additional dif-
ficulties in preprocessing the non-uniform datasets. For instance,
commercial instruments measure ion abundance as ion current in
amperes (amps, Coulombs per second), while the SAM testbed mea-
sures abundance as counts per second. Another major difference
includes a higher time resolution in commercial mass spectrometers,
due to a lower scanning rate in the testbed instrument. In order to

deal with these differences, some data processing steps and calibra-
tion needed to be applied to enable the comparison of commercial
instrument data and testbed data. The second challenge used GCMS
(see section 3.3) data only from GSFC commercial instruments. In
future challenges, we envision using actual Mars data collected by
the SAM instrument thanks to NASA’s Planetary Data System (PDS,
https://pds.nasa.gov/) that archives and distributes publicly available
digital data related to the study of surfaces and interiors of terrestrial
planetary bodies.

3 Challenges Setup
These two ML open science challenges are multilabel classifica-

tion tasks. A multilabel classification problem is a type of supervised
learning problem where each input data (in our case, mass spec-
tra) is labeled with multiple classes (also called labels). Each mass
spectrum can belong to zero or more classes (in our case, chemical
families) rather than just a single class. The model outputs a proba-
bility distribution for each class, with probability scores between 0
and 1 that indicate the likelihood of that label being present for the
given input data. Several performance metrics can be used to evalu-
ate the performance of the ML models. For these two challenges, we
used the logistic loss and the average precision as they encompass
other performance indicators and combine them to assess the overall
model’s performance.

3.1 Performance Metrics
Open science challenges rely on the use of various performance met-
rics to evaluate and compare the effectiveness of different research
approaches and methodologies. For these two challenges, we use the
log loss metric and the average precision metric.

3.1.1 Log loss metric
The logistic loss (also called cross-entropy loss) is a commonly

used loss function in ML and statistics models, especially for clas-
sification tasks. The log loss calculates the difference between the
predicted probabilities and the true labels. For a single observation,
the log loss is expressed as follows:

𝐿log (𝑦, 𝑝) = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝))

with 𝑦, a binary variable indicating if the label is correct (0 or 1),
and 𝑝, the predicted probability that the label is present.

The logistic loss aims at penalizing the model when it is con-
fident (e.g., predicts high probability) for incorrect predictions.
The log loss is a reliable and widely used metric for the evaluation of
classification models as it provides a better measure of performance
to incorrect predictions and is more sensitive to differences in pre-
dicted probabilities between classes. This is even more important in
application to planetary science, as the misclassification of one class
might be more important than another one. Lower log loss scores
indicate better performance of the model. For these challenges, the
metric is the average across label classes of the binary log losses for
each class.

3.1.2 Average Precision metric
The average precision is calculated as the weighted mean of

precisions at each threshold. The precision measures how well the
algorithm finds true positives (TP) out of all the positive predictions
(true positives TP and false positives FP). This performance metric
aims at rewarding the algorithm that assigns positive samples with
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higher scores than negative samples. It ranges from 0.0 (completely
wrong predictions) to 1.0 (perfect predictions). The average precision
metrics reported for these challenges are micro-averaged across label
classes—each label’s prediction for each observation is treated as an
observation in a global precision–recall calculation.

It is worth noting that many other performance metrics exist
for classification tasks. Log loss and average precision provide con-
cise and comprehensive summaries of overall model performance
across operating thresholds. Log loss considers predictions with a
probabilistic interpretation and rewards models that are statistically
well-calibrated. Average precision measures the quality of prediction
scores’ rank ordering. Models with strong performance will gener-
ally score well on both of these metrics, but they are not inherently
correlated with one another.

3.2 Evolved Gas Analysis - Mass Spectrometry (EGA-MS)
The Evolved Gas Analysis (EGA) mode in SAM (McAdam et al.

(2022), Sutter et al. (2017), Mahaffy et al. (2012)) involves heating
a solid sample at a rate of 35 °C/min from ambient to 850 °C
under a He flow and measuring in real-time the quantity of released
gases using a mass spectrometer. The temperature at which specific
gases are released provide information about the sample’s mineral-
ogy and geochemistry. The EGA-MS’s measurements are time series
that scientists study to identify the gases produced by the sample over
time while being heated. Scientists’ expertise and domain knowledge
enable the determination of the chemical and mineralogical compo-
sition of the studied sample. Figure 4 illustrates an example of (a)
a sample ion abundance plotted over time and (b) the temperature
profile the sample was heated at. A specific volatile compound will
produce a series of fragments that are recorded as m/z by the MS.
As a simplified example, sulfate minerals will decompose at temper-
atures above 600 °C and release SO2, a gas that is characterized with
m/z 64, 48, and 32 (among others). The detection of those concurrent
m/z at the same high temperature thus determines the presence of
sulfate in the sample. The specific type of sulfate in a sample can
then be constrained by using the temperature of evolution of the SO2
peak.

Figure 4: Example of an evolved gas analysis (EGA) mass spectra focusing
on masses m/z = 18.0 and m/z = 32.0.

The challenge dataset was shared as .csv file format. Each input
data in the challenge dataset represented the study of a physical
sample. The features for each sample are the EGA-MS measurements
containing four dimensions:

• time: the time in seconds since the start of the reference time
(e.g., the start of sample heating)
• temp: the temperature of the sample in ºC at the time of the
measurement
• m/z: the mass-to-charge ratio of the measured ion
• abundance: the count or current of ions being detected per scan
(note: abundance values are compared in a relative way within each
sample’s analysis)

For the EGA-MS challenge, competitors were asked to pre-
dict the probability that each of the classes described in Ta-
ble 1 was present in the sample. These classes represent certain
families of mineralogies that are of scientific interest in analyz-
ing conditions for the history of Mars and its past habitability.
Details about this EGA-MS challenge are available on Driven-
Data website: https://www.drivendata.org/competitions/93/nasa-
mars-spectrometry/page/437/). Each sample can have multiple class
assignments or can have none. In the labels file (as shown in Table 2),
a 1 indicates that the studied sample contains a mineral phase from
that specific family, while a 0 indicates otherwise.

Label Brief geochemical description

Basalt Extrusive igneous (volcanic) rock, low in silica (Si)
content, dark in color, comparatively rich in iron (Fe)
and magnesium (Mg)

Carbonate A salt that contains CO3
2- and a cation, generally Fe2+,

Ca2+, or Mg2+.

Chloride A salt that contains the Cl- anion

Iron_oxide Chemical compounds composed of iron (Fe) and oxy-
gen (O)

Oxalate Minerals containing the C2O4
2- anion

Oxychlorine Oxidizing chlorine-containing salts of general com-
position ClOx, that includes the widespread martian
perchlorates (ClO4-)

Phyllosilicate Compounds with structures containing tetrahedral s
sheets (silica tetrahedrons consisting of a central sili-
con atom surrounded by four oxygen atoms) and oc-
tahedral sheets (arrangements of OH- and cations),
commonly called clay minerals.

Silicate Minerals containing polyatomic anions consisting of
silicon and oxygen (example: SiO4

2-)

Sulfate A salt containing SO4
2- and cations such as Fe2+,

Ca2+, or Mg2+.

Sulfide A compound containing one or more S2- ions.

Table 1: Summary table of the 10 labels used in the EGA-MS challenge to
represent main families of minerals of interest for the study of Mars

In order to better understand the possibility of transferability to
flight-like instruments, we organized a bonus prize specifically ded-
icated to the performance on the SAM testbed data. Because SAM
testbed samples were limited to only 76 inputs, 12 samples were used
in the training set and 64 samples in the test set as we were looking
to emphasize this evaluation. The task of making correct predictions
for the SAM testbed data was clearly more difficult than for the over-
all dataset. The two main performance metrics of log-loss score and
overall micro-averaged average precision (described in section 3.3)
were respectively higher and lower than for the overall test set as
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sample_id S000 S001 S002 S003 S004 ...

basalt 0 0 0 0 0 ...

carbonate 0 1 0 1 0 ...

chloride 0 0 0 0 0 ...

iron_oxide 0 0 0 1 1 ...

oxalate 0 0 0 0 0 ...

oxychlorine 0 0 1 0 1 ...

phyllosilicate 0 0 0 0 1 ...

silicate 0 0 0 0 0 ...

sulfate 1 0 0 1 0 ...

sulfide 0 0 0 0 0 ...

Table 2: Example of the label file for each sample. “1” indicates the presence
of the mineral phase in the studied sample, while “0” indicates otherwise.

shown in Figure 5. It is essential to note that log-loss scores cannot
be directly compared across different datasets (between commercial
and testbed predictions for instance, or even between different label
classes). Nevertheless, the difference from the top 3 solutions with
the basic benchmark provided to the participants proves that some
transferability can be applied to data from commercial instruments
to flight-like instruments. For both challenges, the original bench-
marks we provided the participants contain basic exploration data
analysis steps, preprocessing, and model development. The EDA
step aims at better understanding the proportion of samples in each
training, validation, and testing set for each instrument type (com-
mercial vs flight-like), and some main features of mass spectrometry
data. The preprocessing step standardizes the mass values, removes
background noise, and converts abundances to relative abundances.
The benchmark model uses a simple modeling approach as “one vs
all” for this multilabel classification: binary classifiers using logis-
tic regression are developed for each label class independently. The
winners’ solutions are described in more detail in Section 4.1.

Figure 5: EGA-MS results for the top 3 winners and the benchmark. Com-
parison between the models results on the commercial data and on the SAM
testbed data. Log loss in blue (the lower the better), and micro-averaged pre-
cision in green (the higher the better). We can note that the top 3 winners’
solutions outperform the benchmark model for commercial and testbed data,
and that the task on testbed data is more difficult but proposed solutions also
outperformed the benchmark model. The top 3 winners’ solutions are further
detailed in section 4.

3.3 Gas Chromatography Mass Spectrometry (GCMS)
Gas Chromatography Mass Spectrometry (GCMS) is an analyti-

cal method used to determine the molecular composition of samples.
The SAM GCMS experiment involves heating a solid sample up to
850 °C in a pyrolysis oven in order to vaporize the samples, directing
compounds that volatilized over a chosen temperature range during
the heating ramp into GC capillary columns for their separation, and
at the outlet of the columns, analyzing the discrete compounds with
the MS. A derivatization agent (a chemical reagent) can be added to
the sample to aid in the vaporization of compounds with low volatil-
ity such as amino acids. The role of the GC column is to separate
the chemical species released from the sample into their individual
components. Components are released from the column at different
times based on their chemical and physical properties. The time at
which the compound is released from the GC column is the com-
pound’s retention time (Figure 6). Different GC columns (composed
of a stationary phase), carrier gas (a mobile phase such as helium),
and the GC oven temperature programs will result in different reten-
tion times for the same analyte. Thus, the retention time of a given
compound on a given column will be the same under the same an-
alytical conditions. Once the component leaves the GC column, it
is guided to and through the mass spectrometer in order to be iden-
tified. The outputs of GCMS experiments contain a chromatogram
(representing the abundance, through one mass ion (m/z) or the sum
of all selected mass ions, over time) and for each recorded time a
mass spectrum is generated (Figure 6).

Figure 6: Example of a GCMS experiment output. The top plot represents
the “ion chromatograms” which show the intensities over time for ions by
their individual mass. Ion chromatograms of m/z 40.0, 44.0, 73.0, 147.0,
233.0 are highlighted. The mass spectrum example (bottom) represents the
fragmentation peaks for a compound of this sample.

The challenge dataset was shared as .csv file format. Each input
data in the challenge dataset represented the study of a physical
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sample. The features for each sample are the GCMS measurements
containing three dimensions:

• time: the time in seconds since the start of the reference time
• m/z: the mass-to-charge ratio of the measured ion at a defined
retention time
• abundance: the rate of ions being detected per second (note:
abundance values are compared in a relative way within each sam-
ple’s analysis)

For the GCMS challenge, competitors were asked to predict
the probability that each of the molecular classes or minerals de-
scribed in Table 3 was detected in the chromatogram. Because
of the nature of pyrolysis-GCMS, the compounds detected in the
chromatogram cannot be directly extrapolated to the ones that
were originally present in the sample. These classes represent a
range of chemical families that are of scientific interest in ana-
lyzing conditions for past habitability, or that have been found on
Mars. Details about this GCMS challenge are available on Driven-
Data website: https://www.drivendata.org/competitions/97/nasa-
mars-gcms/page/519/). Similar to the EGA-MS challenge, each sam-
ple can have any number of class assignments. For the GCMS chal-
lenge, only commercial instrument data was used. As shown in Figure
7, the top three winners performed similarly overall.

Label Brief chemical description

Aromatic Any of a large class of unsaturated chemical com-
pounds characterized by one or more planar rings of
atoms joined by covalent bonds of 2 different kinds

Hydrocarbon Any of a class of aliphatic (e.g. non-aromatic) linear
or branched organic chemical compounds composed
only of the elements carbon (C) and hydrogen (H)

Carboxylic_acid Any of a class of organic compounds in which a carbon
(C) atom is bonded to an oxygen (O) atom by a double
bond and to a hydroxyl group (-OH) by a single bond.
Examples are fatty acids or amino acids

Nitrogen_bearing
_compound

Samples with nitrogen (N)-containing compounds
such as amines (organic compound derived from am-
monia (NH3)) or nitriles (any of a class of organic
compounds having molecular structures in which a
cyano group (—C≡N) is attached to a carbon (C) atom

Chlorine_bearing
_compound

Sample containing chlorine (Cl). Typically the type
of compounds detected in presence of perchlorates or
other oxychlorines in the sample

Sulfur_bearing
_compound

Sample containing sulfur (S). Typically the type of
compounds detected in presence of sulfate minerals

Alcohol Any of a class of organic compounds characterized
by one or more hydroxyl (-OH) groups attached to a
carbon atom of an hydrocarbon chain

Other_oxygen
_bearing_comp
ound

Samples contain oxygen atoms but are not carboxylic
acids or alcohols. Examples are esters (R-COOR’) and
ethers (R-OR’)

Mineral Naturally occurring homogeneous solid with a definite
chemical composition and a highly ordered atomic
arrangement, usually formed by inorganic processes.

Table 3: Summary table of the 9 labels used in the GCMS challenge to
represent main families of organic compounds and minerals of interest for the
study of Mars

Similarly to the EGA-MS challenge, we provided a benchmark
to the participants containing basic exploration data analysis steps,
preprocessing, and model development. The EDA step aims at better
understanding the proportion of samples in each training, validation,
and testing set for each instrument type (commercial vs flight-like),
and some main features of mass spectrometry data. The preprocess-
ing step standardizes the mass values, removes background noise, and
converts abundances to relative abundances. The benchmark model
uses a simple modeling approach as “one vs all” for this multilabel
classification: binary classifiers using logistic regression are devel-
oped for each label class independently. The winners’ solutions are
described in more detail in Section 4.1.

Figure 7: GCMS results for the top 3 winners and the benchmark only on
commercial data. Logistic loss in blue (the lower the better), and micro-
averaged precision in green (the higher the better). We can note that the top 3
winners’ solutions outperform the benchmark model especially for the micro-
averaged precision metric. The top 3 winners’ solutions are further detailed
in section 4.

4 Challenge Results
These two challenges organized by NASA and hosted by Driven-

Data focusing on mass spectrometry data for Mars exploration raised
a lot of interest from the community. Indeed, we experienced an ex-
tensive engagement from all over the world, with 9,962 site visitors
from 142 different countries (data obtained with Google Analytics):

Regions %
Asia 41
North America 27
Europe 21
South America 5
Oceania 5

Countries %
USA 24
India 21
Turkey 6
Russia 3
UK 3

4.1 EGA-MS Challenge (Feb - Apr, 2022)
The first challenge organized in the first quarter of 2022 that fo-

cused on EGA-MS data received an extensive engagement, with 713
unique participants and 656 submissions. Out of these submissions,
93 participants beat the benchmark model’s score (0.3242 aggregated
log loss) with a log loss value of 0.092 and 0.95 average precision for
the first place solution. The first place participant also won the SAM
testbed modeling methodology bonus prize for technical merits and
potential to be applied to future data. The participants used a variety
of approaches: 2D deep learning model, ensembles of different tree-
based and deep learning trained on 1D representations of the data as
shown in Table 4.

The winners (dmytro, _NQ_, devnikhilmishra) brought a wide
variety of creative strategies to perform this task such as feature en-
gineering, data augmentation, and ensembling. Feature engineering
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is the process of selecting and transforming or creating relevant fea-
tures from input data to improve the ML models performance. In this
EGA-MS challenge, feature engineering was used to capture the ion
abundance curves. Data augmentation techniques are used to artifi-
cially increase the size of the input dataset, but applying different
transformations to the original data such as adding noise, shifting
some peaks, etc. Ensembling techniques involve combining predic-
tions from several ML models to produce a single and more accurate
prediction.

Table 4: Summary table of the EGA-MS challenge top 3 winners and bench-
mark models, representing the main modeling approaches used per model
and the two performance metrics used for evaluation.

The first-place winner converted the input mass spectrum in 2D
image representations (temperature vs m/z values) before using these
as inputs to convolutional neural networks (CNN) and recurrent neu-
ral networks (RNN). This participant did not use feature engineering
but used ensembling techniques and made extensive use of aug-
mentation techniques by representing a single sample 16 times. The

second-place and third-place winners both used feature engineering
and ensembling techniques. The second-place winner used a light
gradient boosting (LightGBM) model trained with the engineered
features and 1D deep learning neural networks. Finally, the third-
place winner who converted the multilabel problem into a set of
binary classification problems, used lightGBM model along with
ensembling techniques (Poplavskiy et al. (2022)).

4.2 GCMS Challenge (Oct - Dec, 2022)
The second challenge was organized in the last quarter of 2022. It

focused on GCMS data and again received an extensive engagement,
with 537 unique participants and 491 submissions. Out of these sub-
missions, 43 participants beat the benchmark model’s score (0.2200
aggregated log loss) with a log loss value of 0.14 and 0.81 average
precision for the first place solution. The top of the leaderboard (nvnn,
dmitryakonovalov, ouranos,) was very close with the top five partic-
ipants separated by less than 0.01 aggregated log loss. The bonus
prize for the best write-up of methods also expanded understanding
of modeling approaches and increased visibility beyond the top 3
winners. The winners of this second challenge used deep learning
models similar to the first place EGA challenge winner with the main
differences being in how (and whether) they combined the predic-
tions of these deep learning models with those from other models as
shown in Table 5.

For this second challenge, the winners also brought a wide variety
of creative strategies to perform this task such as feature engineer-
ing, statistical features generation, and ensembling. They also were
able to leverage the successful techniques of the first challenge (e.g.,
converting the mass spectra from 1D representation to 2D image
representations). The best solutions included deep learning models
using image or sequence representations of the input mass spec-
tra. The first- and second-place winners both used deep learning
approaches while the third-place and bonus prize winners first gen-
erated features to describe the input mass spectra. The third-place
winner engineered statistical features across the entire sample (e.g.,
means and standard deviations of ion intensity per time interval),
while the bonus prize technique engineered features commonly used
in signal processing such as peak height and peak width. The top
solutions of this GCMS challenge mainly used 2D deep learning
models CNNs. The third-place winner used CNN models as well
but also combined two tree-based models (logistic regression and
ridge classification). All these awarded solutions used some form of
ensembling by either training multiple models with different types
of preprocessing and of model architectures or by training models
on different subsets (also called “folds”) of the input data NVN et al.
(2022).
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Table 5: Summary table of the GCMS challenge top 3 winners, bonus winner,
and benchmark models, representing the main modeling approaches used per
model and the two performance metrics used for evaluation.

5 Discussions
5.1 Challenges Successes

The organization of these two challenges was successful in many
aspects. The main one being the close collaboration between the dif-
ferent partners: the sample science team, the data science team, and
the management team. The sample scientists worked closely with
the challenge organizers in framing the proper problem of each chal-
lenge and in preparing the datasets. This close collaboration proved
essential in developing thorough documentation of specific domain
knowledge to help participants understand the problem driving these
challenges. Secondly, the challenge host and organizer DrivenData
developed a well-written and understandable benchmark code and tu-
torials to provide the participants a mature starting point. Thirdly, set-
ting up these challenges required the preparation of research datasets
for ML applications, with meaningful labels for analysis. Developing
and featuring these unique datasets for the broader community to en-
gage with was an important product of the challenge. These datasets

and labels are publicly available on the registry of Open Data on AWS
(https://registry.opendata.aws/) and details about the two challenges
can be found on the DrivenData website (https://drivendata.org/). Fi-
nally, the bonus prizes required written documentation that provided
great visibility into the various models’ approaches and potential for
future applications, as well as recommendations for future challenges.

5.2 Challenges and Potential Improvements
The great collaboration between the experts (mass spectrometer

scientists) and the challenges’ organizers was highly time-consuming
while being critical for the setup. For future challenges, we recom-
mend to involve the science team early in the process and provide
funding support for these problem framing and dataset preparation
tasks. We also recommend scientists to be aware and open to any fu-
ture data science potential tasks on their data and project early in the
development phase, in order to optimize the data strategy and meta-
data collection in a thorough and well-documented manner. ML
applications usually require a large volume of data and consistent
datasets. In many current applications, ML techniques are applied
using an opportunistic and existing dataset to investigate methods to
extract meaningful insights from it. For future challenges, we would
recommend collecting data with potential future ML applications in
mind. Although we acknowledge it may be difficult to set up, the data
collection considering ML applications will need 1) to better keep
track of experimental parameters, metadata, and label annotations
(preferably in a virtual manner, instead of laboratory notebooks), 2)
to keep experimental procedures consistent (same metadata, same ex-
perimental profiles), and if possible 3) to collect more representative
dataset for specific cases of interest. Finally, it would be beneficial
to better understand contamination during experiments (from sample
to sample, from chemical noise of the instruments) and incorporate
that variable into the problem framing and modeling in a useful way.

5.3 Main Takeaways
We demonstrated that multiple ML approaches can be leveraged

effectively with mass spectrometry data for planetary science sam-
ples. Data science techniques and ML models can be used to better
analyze, investigate, and understand the chemical composition of
materials from other planets, and could greatly benefit future space
exploration missions. This work adds up to previous work proving
the capabilities of ML-based and data science-based methods using
mass spectrometry data in the field of planetary science (Da Poian
et al. (2022); (Theiling et al. (2022))).

These two open science challenges also provide some evidence
that models trained on commercial data have some transferability to
rover science instruments onboard planetary exploration missions.
Scientists and engineers could then leverage existing models and de-
velop models to inform their research for planetary missions. Further
tests and research will be needed to determine the extent and the lim-
itations of this transferability for SAM data on martian applications
and for other planetary targets such as Ocean Worlds moons (e.g.,
Titan, Europa, Enceladus).

6 Conclusion
These two open science ML challenges results demonstrated

that multiple ML approaches can be leveraged effectively with mass
spectrometry data for planetary science analysis. The results of these
challenges provide evidence that models trained on commercial in-
strument dataset have some transferability to flight-like science in-
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struments. This is a substantial step forward in the development of
ML algorithms for planetary science discoveries.

Open challenges are a marvelous resource and valuable platform
for advancing research in various fields. The formulation and imple-
mentation of open science ML challenges require a well-organized
framework to tackle data preparation, benchmarking steps, evalu-
ation metrics choice, and long-term sustainability challenges. The
most time-consuming step after defining the challenges tasks was
the data preparation that included the data collection and labeling,
as well as the anonymization and data protection measures to pre-
vent misuse or unauthorized access. When defining the challenges’
tasks, our team highly focused on resource development to attract a
diverse and engaged participant community. With the help of NASA
team members and science experts, the DrivenData team developed
concise and clear resource documentation about planetary science
missions limits and mass spectrometry data. Our team also brain-
stormed on the most suitable evaluation metrics for the tasks to solve
and the available datasets.

These initial results from these two open science ML challenges
will serve as bases for future work using SAM data collected on Mars
and archived on NASA’s PDS system. We will also investigate collab-
orative science using EGA-MS and GCMS data together in a single
task, and collaborative science using other instruments onboard the
Curiosity rover (e.g., CheMin, Curiosity cameras).

The main takeaways are the engagement and enhanced creativity
from worldwide participants in various fields, the reproducibility of
the developed models (participants are required to provide detailed
descriptions of their method and code), and the benchmarking of
the challenges allowing participants to compare the performance of
various models.
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