

Extensive H2O degassing in deeply erupted submarine glasses inferred from Samoan melt inclusions: The EM2 mantle source is damp, not dry

Olivia E Anderson, Matthew G Jackson, Ayla S Pamukçu, Estelle F. Rose-Koga, Véronique Le Roux, Frieder Klein, Kenneth T. Koga, Glenn A Gaetani, Allison A Price

▶ To cite this version:

Olivia E Anderson, Matthew G Jackson, Ayla S Pamukçu, Estelle F. Rose-Koga, Véronique Le Roux, et al.. Extensive H2O degassing in deeply erupted submarine glasses inferred from Samoan melt inclusions: The EM2 mantle source is damp, not dry. Chemical Geology, 2024, 651, pp.121979. 10.1016/j.chemgeo.2024.121979. insu-04516946

HAL Id: insu-04516946 https://insu.hal.science/insu-04516946v1

Submitted on 22 Mar 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Extensive H₂O degassing in deeply erupted submarine glasses inferred from 1 Samoan melt inclusions: The EM2 mantle source is damp, not dry 2 O. E. Anderson^{1*}, M. G. Jackson¹, A. S. Pamukçu^{2,3}, E. F. Rose-Koga⁴, V. Le Roux², F. 3 Klein², K. T. Koga⁴, G. A. Gaetani², A. A. Price¹ 4 5 ¹Isotope Geochemistry Facility – Global Center for Mantle Zoology (GCMZ), University of California Santa Barbara, Department of Earth Science, Santa Barbara, CA, USA ²Woods Hole 6 Oceanographic Institution, Woods Hole, Massachusetts 02543, USA ³Geological Sciences, 7 Stanford University, Stanford, CA, USA ⁴Institut des Sciences de la Terre d'Orléans (ISTO), 8 UO/CNRS/BRGM, 1A rue de la Férollerie, 45071, Orléans, France 9 *Corresponding author: Olivia E. Anderson (anderson03@ucsb.edu) 10 11 **Highlights:** 12 13 • Samoan melt inclusions have higher H₂O/Ce—indicating less degassing—compared to 14 Samoan pillow glasses. 15 16 • High ⁸⁷Sr/⁸⁶Sr melt inclusions have high H₂O/Ce, contrary to prior observations using 17 pillow glasses. 18 19 • Low H₂O/Ce in high ⁸⁷Sr/⁸⁶Sr glasses indicates extensive degassing has occurred, so 20 cannot be used to infer mantle H₂O/Ce. 21 22 23 • Melt inclusions show that enriched mantle (EM) lavas have H₂O/Ce similar to non-EM lavas. 24 25 • Elevated CO₂ in EM melts leads to greater degassing and lower H₂O/Ce in erupted 26 27 glasses compared to depleted mantle. 28 29 30 31 32 33 34 Find the final version of the article at: 35 Anderson, O.E., Jackson, M.G., Pamukçu, A.S., Rose-Koga, E.F., Le Roux, V., Klein, F., Koga, 36 K.T., Gaetani, G.A. and Price, A.A. (2024). Extensive H₂O degassing in deeply erupted 37 submarine glasses inferred from Samoan melt inclusions: The EM2 mantle source is damp, not 38

dry. Chemical Geology, 651, 121979. https://doi.org/10.1016/j.chemgeo.2024.121979

39

Abstract

41	Submarine glasses erupted at intraplate volcanic hotspot settings sampling enriched mantle
42	(EM)—characterized by high ⁸⁷ Sr/ ⁸⁶ Sr—exhibit lower H ₂ O/Ce than glasses representing less
43	enriched mantle domains, leading to the interpretation that the EM mantle is H_2O -poor ("dry").
44	We test whether low H ₂ O/Ce observed in pillow glasses of EM lavas resulted from degassing of
45	higher H_2O/Ce primary melts by measuring H_2O/Ce and $^{87}Sr/^{86}Sr$ in olivine-hosted melt
46	inclusions from two deeply-erupted (3950 and 2190 meters below sea level (mbsl)) Samoan
47	submarine lavas from Vailulu'u and Malumalu seamounts. Vailulu'u ($H_2O/Ce=161-275$) and
48	Malumalu (149–232) melt inclusions have an average H_2O/Ce (197 ± 58 2SD, $N=15$) that is
49	nearly twice as high as H ₂ O/Ce in pillow glasses from these two seamounts (average
50	$H_2O/Ce=106\pm51,N=65)$. Notably, the average H_2O/Ce of Samoan melt inclusions (197 ±58) is
51	comparable to pillow glasses from non-EM hotspots. We show that lower H ₂ O/Ce in submarine
52	Samoan glasses compared to melt inclusions results from greater closed-system degassing, and
53	concomitant loss of H ₂ O, because EM melts have higher initial concentrations of CO ₂ . We show
54	that the lower H ₂ O/Ce in global EM pillow glasses compared to non-EM pillow glasses can be
55	modeled to be the result of more extensive degassing of H ₂ O in EM melts, which owes to higher
56	CO ₂ in primary melts (20,000–90,000 ppm) of EM sources compared to non-EM melts (300–
57	50,000 ppm CO ₂). Instead of originating from a dry mantle, we conclude that EM lavas derive
58	from a damp mantle, but EM melts lose more H ₂ O by degassing than non-EM melts.
59	Keywords: melt inclusion, Samoa, hotspot, degassing, enriched mantle, H ₂ O

1. Introduction

Although volatiles are a minor component in silicate melts, they play an outsize role on
the properties and behavior of magmatic systems. Hydrogen and carbon affect the rheology of
the mantle, the depth and extent of melting, the composition of melts, and how melts evolve
(e.g., Asimow & Langmuir, 2003; Gaetani & Grove, 1998; Hirschmann, 2006; Hirth &
Kohlstedt, 1996, 2003; Portnyagin et al., 2007). Therefore, connecting volatile element
compositions to mantle domains characterized by particular isotopic compositions, such as
enriched mantle (EM), can provide additional insights into mantle heterogeneities. A variety of
geochemical "flavors" have been identified in the mantle via geochemical taxonomy of ocean
island basalts (OIB), and the various mantle species are broadly encompassed by several
canonical mantle endmembers that include HIMU (high μ = 238 U/ 204 Pb), EM1 (enriched mantle 1),
EM2 (enriched mantle 2), and DM (depleted mantle). Samoan lavas have unique geochemical
signatures that extend to Enriched Mantle 2 (EM2) isotopic compositions (e.g., high ⁸⁷ Sr/ ⁸⁶ Sr,
intermediate ²⁰⁶ Pb/ ²⁰⁴ Pb, and low ¹⁴³ Nd/ ¹⁴⁴ Nd). The EM2 mantle source has been suggested to be
derived from recycled continental materials (e.g., White & Hofmann, 1982; White & Duncan,
1996; Jackson & Macdonald, 2022). Therefore, characterization of Samoan EM2 lavas can
provide insights into the role that deep continental crust subduction plays in controlling the
volatile budgets of the mantle.

The ratios H_2O/La or H_2O/Ce measured in submarine glasses are commonly used to evaluate H_2O enrichment or depletion in the mantle because H_2O , La, and Ce have similar degrees of incompatibility (e.g., Michael, 1995). Thus, their ratios are not significantly affected by partial melting and crystal fractionation. The EM2 mantle source has been interpreted to be 'dry' because the H_2O/Ce (or H_2O/La) is lower at higher $^{87}Sr/^{86}Sr$ for Samoan glasses (Workman

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

et al., 2006). Workman et al. (2006) found that H₂O/La anticorrelates with ⁸⁷Sr/⁸⁶Sr: the more geochemically enriched (higher ⁸⁷Sr/⁸⁶Sr) Samoan glasses have lower H₂O/La than more geochemically depleted Samoan glasses; the high H₂O/La MORB mantle endmember anchors the low ⁸⁷Sr/⁸⁶Sr portion of the array. Workman et al. (2006) explained this relationship between ⁸⁷Sr/⁸⁶Sr and H₂O/La as the result of diffusive H₂O loss from EM2 reservoirs during long-term storage in a dry and depleted mantle, resulting in a "dry" EM2 mantle domain that has low H₂O/La and low H₂O. Similarly, Dixon et al. (2002) found that high ⁸⁷Sr/⁸⁶Sr basalts erupted in MOR settings had low H₂O/Ce. However, unlike Workman et al. (2006), Dixon et al. (2002) suggested that the dry nature of the EM reservoir was due to dehydration of sediments during subduction, resulting in low H₂O/Ce signatures in subducted, dehydrated sediments, which ultimately contribute to enriched mantle domains. Bizimis and Peslier (2015) offered further discussion regarding the origin of apparently dry EM2 domains and argued that the low H₂O/Ce in EM lavas is the result of recycling of pyroxenite-bearing oceanic lithosphere. The pyroxenites they examined have low H₂O/Ce and high H₂O, a result of preferential partitioning of Ce into clinopyroxene compared to H₂O.

Additional work highlights the low H₂O/Ce in enriched mantle domains (Kendrick et al., 2017). In particular, classical EM1 and EM2 oceanic hotspots—Pitcairn and Societies, respectively—exhibit negative correlations between ⁸⁷Sr/⁸⁶Sr and H₂O/Ce in submarine glasses (Kendrick et al., 2014). Thus, low H₂O/Ce appears to be a defining feature of EM lavas, and constraining the origin of this geochemical signature is critical for understanding the origin of the EM mantle and/or the petrogenesis of EM lavas.

Existing models for the origin of low H₂O/La and H₂O/Ce in EM-flavored OIB pillow glasses quenched in deep submarine environments are predicated on the assumption that the low

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

 H_2O/Ce is a source feature and the EM primary melts have low H_2O/Ce inherited from the mantle source (Dixon et al., 2002; Dixon & Clague, 2001; Wallace, 2002; Workman et al., 2006; Kendrick et al., 2014). This interpretation assumes that magmatic degassing follows open system behavior, a mechanism that results in significant loss of CO_2 , but not H_2O , from the melt by degassing: the H_2O/Ce in deeply erupted glasses (i.e., ≥ 0.1 kbar; Workman et al., 2006) resulting from this process are similar to the mantle source despite having degassed most of their magmatic CO_2 .

In this study, we test this assumption using combined H₂O/Ce and ⁸⁷Sr/⁸⁶Sr measurements in individual olivine-hosted melt inclusions isolated from two well-characterized submarine Samoan basalts that were characterized by Workman et al. (2006). We present volatile (H₂O, CO₂, Cl, F, S), major, and trace element concentrations and ⁸⁷Sr/⁸⁶Sr on Samoan melt inclusions from both samples—AVON3-78-1 and AVON3-71-2—which were obtained from Malumalu and Vailulu'u seamounts, respectively. Malumalu lavas reach ⁸⁷Sr/⁸⁶Sr of up to 0.708901, which is the most extreme EM2 composition that we explore in this study. In contrast, Vailulu'u lavas have ⁸⁷Sr/⁸⁶Sr that range from 0.705352 to 0.706720, and thus represent a less enriched composition at the Samoan hotspot. Previous ⁸⁷Sr/⁸⁶Sr analyses of Samoan melt inclusions demonstrated extreme heterogeneity (0.70434 to 0.70926) that has been verified using both in situ LA-ICP-MS approach (laser-ablation inductively coupled plasma mass spectrometry; Jackson & Hart, 2006) and an approach involving wet chemistry followed by TIMS (thermal ionization mass spectrometry; Reinhard et al., 2018). Critically for this study, the melt inclusions from the two lavas examined here span nearly the same range of ⁸⁷Sr/⁸⁶Sr (0.704858–0.709225) as identified in prior melt inclusion studies (Jackson & Hart, 2006; Reinhard et al., 2018) and have similar trace element characteristics as the Samoan glasses examined for H₂O/La and

⁸⁷Sr/⁸⁶Sr by Workman et al. (2006) (0.704521–0.708901). We interpret this to indicate that the melt inclusions thus sample the same mantle sources as the pillow glasses studied by Workman et al. (2006).

However, Samoan melt inclusions in this study exhibit two key differences with the Samoan submarine glasses reported in Workman et al. (2006): 1) the melt inclusions have higher H₂O/Ce than Samoan submarine glasses and 2) the inclusions exhibit no relationship between H₂O/Ce and ⁸⁷Sr/⁸⁶Sr, which contrasts with the negative correlation between ⁸⁷Sr/⁸⁶Sr and H₂O/Ce observed in Samoan pillow glasses. We model the difference in H₂O/Ce between melt inclusions and pillow glasses as being a result of closed-system degassing, a mechanism that results in greatly diminished CO₂ and H₂O concentrations in the melt (in contrast to open-system degassing, which results in greatly diminished CO₂, but not H₂O, melt concentrations). In this model, the melt inclusions experience less closed-system degassing compared to submarine glasses because of deep entrapment of the melt inclusions in growing olivine crystals within magma chambers. Melts that were not trapped continued to degas both CO₂ and H₂O up until eruption and quenching on the seafloor, resulting in lower H₂O/Ce in the submarine glasses compared to the deeply entrapped melt inclusions.

We also present a model suggesting that, across global oceanic hotspots, primary melts with higher ⁸⁷Sr/⁸⁶Sr (e.g., Samoan and Societies EM2 glasses, Pitcairn EM1 glasses) have higher primary melt CO₂ than lower ⁸⁷Sr/⁸⁶Sr melts (e.g., Foundation, Hawai'i (Lō'ihi), and Easter hotspots). Higher CO₂ in high ⁸⁷Sr/⁸⁶Sr (EM) melts results in greater degassing of both CO₂ and H₂O (and a greater reduction in the H₂O/Ce ratio) compared to low ⁸⁷Sr/⁸⁶Sr melts, which explains the negative global correlation between H₂O/Ce and ⁸⁷Sr/⁸⁶Sr in OIB glasses. This new result suggests that submarine glasses sourcing EM domains do not provide reliable

records for evaluating the H_2O and H_2O/Ce in the mantle source. In melt inclusions, degassing is arrested at great depth, making it possible to identify H_2O/Ce ratios that are closer to values in the primary melt.

2. Methods

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

Submarine pillow basalt samples in this study are from two Samoan seamounts (Figure 1) that are young (<8 ka; Sims et al., 2008) and associated with visually fresh lavas: Malumalu (sample AVON3-78-1; 2260–2190 mbsl) and Vailulu'u (sample AVON3-71-2; 4420–3950 mbsl) are olivine-rich lavas with glassy chill margins on the pillow rims. Olivine-hosted melt inclusions from Vailulu'u and Malumalu seamounts in this study were rehomogenized on a heating stage (see supplement for methods), and these rehomogenized inclusions were then characterized for ⁸⁷Sr/⁸⁶Sr (15 melt inclusions total), ¹⁴³Nd/¹⁴⁴Nd (only three melt inclusions), stable hydrogen isotope ratios (δD), and major, trace and volatile element concentrations (Table S1). This supplement also includes methodological details for the glass major element (electron microprobe), volatile (ion probe), hydrogen isotope (ion probe), and trace element (LA-ICP-MS) analyses and the host olivine major element (electron microprobe) analyses. Strontium separation chemistry and ⁸⁷Sr/⁸⁶Sr analyses by TIMS used in this study follow the same procedure as described in Anderson et al. (2021). The supplement includes details of Nd separation chemistry for melt inclusions, and ¹⁴³Nd/¹⁴⁴Nd analyses by TIMS at the University of California, Santa Barbara Isotope Geochemistry Facility. Only three melt inclusions (all from the Vailulu'u Seamount sample) in this study had sufficient Nd for the isotopic analysis. The results of *in situ* analyses (of δD , and major, trace and volatile element concentrations)

of geologic reference materials (ALV519-4-1, ALV1833-1, GL07 D52-5, and BCR-2) can be

found in Table S2, and 87 Sr/ 86 Sr and 143 Nd/ 144 Nd analyses of BCR-2 can be found in Tables S6 and S8.

Melt inclusion major, trace, and volatile element concentrations were corrected for postentrapment crystallization (PEC) by addition or subtraction of equilibrium olivine in 0.1% increments until the major element composition of the inclusion is in equilibrium with the host olivine forsterite (Fo) content. In the calculation, two assumptions are made: (i) the olivine-melt Fe-Mg $K_d = 0.30$ (Roeder & Emslie, 1970; Ford et al., 1983; $K_d = (Fe^{2+}/Mg)_{olivine}/(Fe^{2+}/Mg)_{melt}$) and (ii) Fe^{3+} comprises 10% of the total moles of iron in the melt (following Hauri, 1996). Unless stated otherwise, all major, trace, and volatile element concentrations reported below have been corrected for equilibrium olivine addition/subtraction so that the inclusion is in equilibrium with the host olivine.

The supplement also details the method of accounting for all CO₂ within a melt inclusion, including both the CO₂ in the glass analyzed by ion probe, the CO₂ contained within the vapor bubble obtained by Raman spectroscopy, and the volumes of bubble and glass for each melt inclusion obtained by X-ray computed microtomography (see Table S3 for the method of reconstructing the total CO₂ content of each melt inclusion).

3. Methods for data treatment

We use a series of criteria to identify inclusions where the volatile contents have been compromised. This way the results and discussion can focus on primary magmatic signatures. Figure 2 shows all melt inclusions from which we collected volatile data. Inclusions whose volatile contents were likely compromised are designated with a black "x" in Figure 2. We do

not consider these inclusions further in our data analysis and interpretation so as to focus on primary magmatic signatures. However, one inclusion with exceptionally high Cl concentration (1.90 wt.% Cl) is included in subsequent analysis, but it is identified in all plots where it is shown.

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

i)

Inclusions are excluded if they show evidence of being affected by one or more of the following:

Diffusive proton loss. Hydrogen isotopes can indicate whether H₂O loss from the melt inclusion has occurred by proton diffusion through the host olivine. Melt inclusions that have been affected by proton diffusion will have low H₂O contents and high δD values due to faster diffusion of hydrogen over deuterium (Hauri, 2002; Gaetani et al., 2012; Bucholz et al., 2013; Hartley et al., 2015). Therefore, we measured δD on all melt inclusions reported in this study. Melt inclusions in the Malumalu sample (AVON3-78-1) have a δD range of -51.8% to +127.6%, and melt inclusions in the Vailulu'u sample (AVON3-71-2) have a δD range of -52.4‰ to -22.0‰ (Figure 2). Diffusive H₂O loss from melt inclusions should produce a systematic relationship between melt inclusion δD and volume. Melt inclusions from both lavas with volumes $> 10^5 \, \mu \text{m}^3$ exhibit no systematic relationship between δD and melt inclusion volume, and they exhibit a relatively narrow range in δD of -35.8±17.0‰ (2SD, N=19). However, the two melt inclusions with positive δD values, both from Malumalu (samples AVON3-78-1#13 and AVON3-78-1#32), have the smallest volumes (\sim 8.8 x 10^4 μm^3 and 4.3 x 10^4 μm^3). Prior work has shown that smaller volume melt inclusions are more susceptible to diffusive proton loss that results in elevated δD (Hauri, 2002; Gaetani et al., 2012; Bucholz et al., 2013; Hartley et al., 2015). Therefore, the two small-volume inclusions are excluded.

221	11)	Breaching. Two melt inclusions have likely suffered breaching because CO_2 is <200
222		ppm and H ₂ O is <1 wt. % (see Figure S4; AVON3-78-1#25, AVON3-78-1#37). Both
223		melt inclusions exhibit melt-filled cracks that intersect the melt inclusions, which is
224		strong physical evidence that supports the breaching interpretation.
225	iii)	Extremely large vapor bubbles. Three melt inclusions (AVON3-78-1#10, AVON3-
226		78-1#28, AVON3-71-2#20) have vapor bubbles that make up >10 vol. % of the melt
227		inclusion and are excluded. Prior work suggested that large vapor bubbles result from
228		simultaneous entrapment of a mix of melt and CO ₂ fluid (e.g. Anderson, 1974;
229		Frezzotti, 2001; Hanyu et al., 2020; Moore et al., 2015), which is not representative of
230		melt-only compositions.
231	iv)	No CO2 detected by Raman. No Fermi doublets were observed by Raman
232		spectroscopy for two melt inclusions (AVON3-71-2#14, AVON3-71-2#18), thus the
233		CO ₂ densities may have been too low for detection. To err on the side of caution, we
234		are excluding these two melt inclusions from the interpretations of this study. For
235		other excluded melt inclusions, CO ₂ densities in the vapor bubbles were highly
236		uncertain (AVON3-71-2#20; ± 0.092) or so low that negative values resulted from the
237		calibration (AVON3-78-1#25, AVON3-78-1#37, AVON3-71-2#14), and the volatile
238		data for these four melt inclusions are excluded from the discussion (except for
239		AVON3-71-2#14, which has an unusually high Cl concentration and is identified in
240		each plot where it is shown).
241	v)	Carbonate detected by Raman. If carbon exists as carbonate in a melt inclusion, the
242		CO ₂ budget of the melt inclusion may be underestimated. In this study, carbonates

were detected by Raman in two Malumalu melt inclusions (AVON3-78-1#15 and AVON3-78-1#32), and volatile data for these inclusions are excluded.

4. Results

4.1 Hydrogen and strontium isotopes

After filtering the data for the compromised melt inclusions, the Samoan melt inclusions from Malumalu (-37.8 \pm 13.2%, N=9) and Vailulu'u (-33.9 \pm 19.7%, N=10) are relatively homogenous in δD with an average δD value of -35.8% (\pm 17.0%, 2SD, N=19). The Samoan inclusions have heavier δD than most MORB and Lō'ihi (now known as Kama'ehuakanaloa) values, consistent with heavy δD values (ca. -40%) found in OIBs with recycled components (Loewen et al., 2019).

Critically, ⁸⁷Sr/⁸⁶Sr measurements in melt inclusions provide a test for whether the Samoan melt inclusions of this study represent the Samoan mantle sources sampled by Vailulu'u and Malumalu glasses. If they do represent the same sources, then the volatile and trace element concentrations of the melt inclusions can be directly compared to concentration measurements in Samoan pillow lava glasses. The ⁸⁷Sr/⁸⁶Sr range for all of the Malumalu (sample AVON3-78-1) melt inclusions reported here is large, from 0.706594 to 0.709225 (Figure 3, 4). The inclusions largely fall within the range reported for Malumalu pillow glasses and whole rocks (0.706374–0.708901; Workman et al., 2006). The ⁸⁷Sr/⁸⁶Sr range for all of the Vailulu'u (sample AVON3-71-2) melt inclusions reported here is smaller compared to AVON3-78-1 melt inclusions, from 0.704858 to 0.705718. The range of Vailulu'u melt inclusion ⁸⁷Sr/⁸⁶Sr overlaps with the range reported for Vailulu'u pillow glasses (0.705352–0.706720; Workman et al., 2006) but, relative to

Vailulu'u pillow glasses and whole rocks, the Vailulu'u melt inclusions are shifted to less radiogenic (lower) ⁸⁷Sr/⁸⁶Sr values. Taken together, the ⁸⁷Sr/⁸⁶Sr for the Malumalu and Vailulu'u melt inclusions in this study bracket the ⁸⁷Sr/⁸⁶Sr obtained pillow glasses from each volcano: the lowest ⁸⁷Sr/⁸⁶Sr in the melt inclusions (0.704858) is somewhat lower than the lowest value measured in whole rocks and pillow glasses (0.705352) from these two seamounts, and the highest ⁸⁷Sr/⁸⁶Sr in the melt inclusions (0.709225) is slightly higher than the highest value measured in pillow glasses (0.708901). This statement is also true for the (La/Sm)_N and K₂O/TiO₂ for the melt inclusions compared to the whole rocks and pillow glasses (Figure 4). Therefore, the Malumalu and Vailulu'u melt inclusions from these two hand samples represent the full compositional range previously identified in these volcanoes and, in fact, span nearly the entire range encountered in ⁸⁷Sr/⁸⁶Sr (i.e., 0.7045 to 0.7089) for the eastern Samoan volcanic province—including Ta'u, Vailulu'u, and Malumalu volcanoes—examined by Workman et al. (2006). Thus, the melt inclusions can be used to interpret mantle source geochemical characteristics, including volatile budgets, of the volcanoes examined in Workman et al. (2006).

4.2 Volatiles

After omitting melt inclusions that have been contaminated, breached, affected by hydrogen diffusion, and have unreliable CO₂ analyses by Raman, the magmatic volatile content of the Samoan melt inclusions can be explored. Figure 5 provides ratios (H₂O/Ce, CO₂/Nb, Cl/Nb, S/Gd, and F/Nd) of volatile (H₂O, CO₂, Cl, S, and F) to nonvolatile (Ce, Nb, Gd, and Nd) incompatible trace elements (ITEs) that have similar mineral-melt partition coefficients during mantle melting and magmatic differentiation processes. Below we examine the volatile concentrations and their ratios to nonvolatile ITEs.

We use the CO₂ concentration in the melt inclusion glass analyzed by SIMS and the CO₂

4.2.1. CO₂ in Samoan melt inclusions.

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

density in the vapor bubble from Raman spectroscopy to reconstruct the total CO₂ concentration of the melt inclusion. When comparing melt inclusion and vapor bubble CO₂, 3 to 94 mass percent (average ~59 mass percent) of the total CO₂ (i.e., melt inclusion CO₂+vapor bubble CO₂) resides in the vapor bubble, consistent with prior findings of large CO₂ fractions residing in melt inclusion vapor bubbles (e.g., DeVitre et al., 2021; Aster et al., 2016; Moore et al., 2015). Malumalu and Vailulu'u melt inclusions have relatively similar total CO₂ contents of 1506–5746 ppm and 658-4771 ppm, respectively. The associated host pillow glasses for the Malumalu and Vailulu'u samples have total CO₂ contents of 70 ppm and 179 ppm, respectively (Workman et al., 2006), which is far lower than the melt inclusions from these two volcanoes. These observations are consistent with greater CO₂-H₂O saturation pressures for the melt inclusions than the pillow glasses. During melting and crystallization, the incompatibility (i.e., the bulk partition coefficient) of CO₂ is similar to Nb and Ba, thus the ratios of CO₂/Nb or CO₂/Ba have been used to estimate upper mantle carbon content (Hirschmann, 2018; Michael & Graham, 2015; Saal et al., 2002; Cartigny et al., 2008; Le Voyer et al., 2017). However, only undegassed, CO₂-undersaturated melts will have CO₂/Nb or CO₂/Ba that are representative of the mantle source, but such melts are rare (Hauri et al., 2018; Graham & Michael, 2021; Le Voyer et al., 2017; Michael & Graham, 2015; Saal et al., 2002). These CO₂-undersaturated melts tend to be geochemically depleted (Hauri et al., 2018; Shimizu et al., 2023) and have higher CO₂/Nb than most submarine volcanic glasses, which are CO₂-saturated and thus degassed (e.g., the Samoan pillow glasses and melt inclusions examined here). The Samoan melt inclusions in this study have a measured CO₂/Nb

range of 19 to 125 for Vailulu'u melt inclusions and 27 to 133 for Malumalu melt inclusions, and such ratios are lower than inferred for mantle sources of oceanic hotspot lavas (e.g., >1000 for Iceland; Matthews et al., 2021) and MORB (CO₂/Nb > 283; Michael & Graham, 2015). Thus, we suggest the Samoan samples are CO₂-saturated and degassed, which is consistent with highly variable total CO₂ contents (658 to 5746 ppm) relative to the narrow range of Nb concentrations in our Samoan melt inclusions (Figure S6b,d). The Samoan pillow glasses from these two volcanoes have even lower (more degassed) CO₂ concentrations while exhibiting similar Nb concentrations to the melt inclusions (Figure S6b,d).

4.2.2. Cl in Samoan melt inclusions versus Samoa pillow glasses.

Malumalu melt inclusions have 651–1198 ppm Cl, and Vailulu'u melt inclusions have 412–765 ppm Cl (excluding the high Cl inclusion AVON3-71-2#14, which has a Cl concentration of 1.9 wt.% Cl). The associated pillow glasses from the two samples hosting the melt inclusions—AVON3-78-1 and AVON3-71-2—have 1004 ppm Cl and 1490 ppm Cl, respectively. The suite of pillow glasses from all Malumalu and Vailulu'u samples have Cl contents that vary from 886 to 1725 ppm and 547 to 1818 ppm, respectively.

To determine if any melt inclusions are influenced by the assimilation of seawater-derived materials, we use Cl/Nb as an indicator of assimilation of seawater-derived materials (e.g., Kendrick et al., 2013, 2015; Kent et al., 1999a, 1999b, 2002). This is a useful ratio because Cl and Nb behave similarly during crystal fractionation and melting due to their similar incompatibility in basalt melts (Rowe & Lassiter, 2009). Malumalu melt inclusions have a Cl/Nb range of 14–25 and Vailulu'u melt inclusions have a Cl/Nb range of 14–22 (excluding melt

inclusion sample AVON3-71-2#14, which has with Cl/Nb = 840) (Figure 5). The Samoan melt 333 inclusions have Cl/Nb that overlap with mid-ocean ridge basalts (MORB), where Cl/Nb_{MORB} is 5 334 to 17 (Lassiter et al., 2002; Le Roux et al., 2006), but the Samoan inclusions tend to be shifted to 335 higher Cl/Nb. 336 The pillow glasses for the Malumalu (AVON3-78-1) and Vailulu'u (AVON3-71-2) samples 337 338 hosting the Samoan melt inclusions have Cl/Nb of 13 and 27, respectively (Kendrick et al., 2015). Both lavas have been previously suggested to have assimilated seawater-derived materials 339 (Kendrick et al., 2014; Reinhard et al., 2018). We find some evidence for assimilation in a single 340 341 melt inclusion from Vailulu'u (AVON3-71-2#14), which has a high Cl/Nb ratio of 840, suggesting contamination by seawater-derived materials; however, any such assimilation does 342 not appear to have impacted ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ (0.705471±0.000022) as it is at the lower end of the range 343 344 observed here (Figure 5). 4.2.3 S in Samoan melt inclusions versus Samoa pillow glasses. 345 Malumalu melt inclusions have 1786–3163 ppm S, and Vailulu'u melt inclusions have 1582– 346 2090 ppm S. The associated host pillow glasses (AVON3-78-1 and AVON3-71-2) have 831 ppm 347 S and 2337 ppm S, respectively. The suite of pillow glasses from all Malumalu and Vailulu'u 348 samples have S contents varying from 781 to 2391 ppm and 1010 to 4834 ppm, respectively 349 (Workman et al., 2006). 350 Sulfur and Gd and Dy have similar incompatibility during melting and crystal fractionation 351 (Saal et al., 2002) when sulfide is not present, except at lower pressures when sulfur degasses. 352 However, Samoan basalts are known to host both sulfates and sulfides (Labidi et al., 2015). The 353 melt inclusions in this study are sulfide supersaturated (Figure S5; using the model of Fortin et 354

355	al., 2015 and Smythe et al., 2017)—and sulfides are in fact, observed in some of the inclusions
356	from the two samples examined here —thus S/Gd (Figure 5) of Samoan melt inclusions in this
357	study may have been influenced by sulfide saturation and are likely not representative of the
358	Samoan primary melts.
359	
360	4.2.4. F in Samoan melt inclusions versus Samoa pillow glasses.
361	Malumalu melt inclusions have 1161–1293 ppm F, and Vailulu'u melt inclusions have 777–
362	1145 ppm F. The associated host pillow glasses (AVON3-78-1 and AVON3-71-2) have 1254
363	ppm F and 903 ppm F, respectively. The suite of pillow glasses from all Malumalu and Vailulu'u
364	samples have F contents varying from 1173 to 1409 ppm, and 843 to 1188 ppm F, respectively
365	(Workman et al., 2006).
366	F/Nd in melt inclusions and glasses from global datasets of MORB and OIB are suggested to
367	be relatively constant because there is no significant F/Nd fractionation during crystallization and
368	melting. The F/Nd values of global OIB and MORB have been estimated to be 20.1±5.8
369	(Workman et al., 2006), but there is evidence for greater F/Nd variability (Koleszar et al., 2009;
370	Shimizu et al., 2016; Jackson et al., 2015; Lassiter et al., 2002; Métrich et al., 2014; Cabral et al.,
371	2014; Rose-Koga et al., 2012). The average F/Nd for Malumalu melt inclusions (30±6 2SD,
372	N=9) is similar to the average F/Nd for Vailulu'u melt inclusions (29±14 2SD, N=10), but
373	Vailulu'u melt inclusions have more variability in F/Nd (Figure 5). Three Vailulu'u melt
374	inclusions (AVON3-71-2#7, #17, #22) have ~200 ppm lower F contents than the other Samoan
375	melt inclusions, but similar Nd contents, resulting in lower F/Nd (21-23). The Samoan melt

inclusion have F/Nd (29 \pm 11, 2SD, N=19) tends to be higher than the canonical F/Nd (\sim 21) for

376

fresh global OIB and MORB, and higher than the average pillow glass F/Nd from Malumalu (22±2, 2SD, N=17; Workman et al., 2006) and Vailulu'u (22±3, 2SD, N=48; Workman et al., 2006). However, the average F/Nd of Samoan melt inclusions overlaps within two standard deviations of the canonical F/Nd value and the F/Nd of Samoan pillow glasses. Nonetheless, the Vailulu'u melt inclusions tend to very high F/Nd up to 41. Elevated F may be characteristic of the HIMU mantle source (Hauri & Hart, 1993; Rose-Koga et al., 2017; Jackson et al., 2015), and Vailulu'u is thought to contain a small contribution from a HIMU component (Workman et al., 2004; Jackson et al., 2014). However, we do not have an explanation for the higher F/Nd in the Vailulu'u melt inclusions relative to the glasses from this seamount.

4.2.5. H₂O in Samoan melt inclusions versus Samoa pillow glasses.

Malumalu melt inclusions have 1.56-1.95 wt.% H_2O , and Vailulu'u melt inclusions have 1.13-1.39 wt.% H_2O . The associated host glasses from these two submarine samples tend to have lower H_2O contents than the melt inclusions with 0.91 wt.% H_2O (AVON3-78-1) and 1.18 wt.% H_2O (AVON3-71-2), respectively. The low H_2O in the AVON3-78-1 Malumalu glass sample lies within the range of H_2O for pillow glass samples from Malumalu (0.89 to 1.43 wt.%), and the same applies for the AVON3-71-2 Vailulu'u glass sample as it also lies in the range of pillow glasses from this seamount (0.63 to 0.50 wt.%) (Figure 6). When the melt inclusions and pillow glasses are corrected for olivine fractionation to be in equilibrium with mantle olivine (0.63 to 0.50 wt.%) versus 0.60 (ppm) shows that the melt inclusions and pillow glasses from Malumalu and Vailulu'u seamounts have similar 0.60 but the inclusions have 0.60 that is higher than the pillow glasses (Figure 0.60 we also show the same plot but instead provide the

measured H₂O and Ce in the glass glasses—due to uncertainties associated with the olivine correction—and find that it does not change our conclusions.

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

Consistent with this observation, the H₂O/Ce range of the Malumalu AVON3-78-1 melt inclusions (149–232, average 193±47, 2SD, N=10) and the Vailulu'u AVON3-71-2 melt inclusions (161–275, average 190±78, 2SD, N=10) are higher than the host pillow glasses, 59 (for pillow glass from sample AVON3-78-1) and 123 (for pillow glass from sample AVON3-71-2), respectively. Critically, the average H₂O/Ce (197±58 2SD, N=15) in the melt inclusion dataset from Malumalu and Vailulu'u seamounts is nearly twice as high as the same ratio in the Samoan pillow glasses from these two seamounts (106±51, 2SD, N=65). This is notable because the inclusions and pillow glasses are from the same two volcanoes, span the same range of ⁸⁷Sr/⁸⁶Sr (Figure 3), and have similar ITE ratios (Figure 4), suggesting they sample the same mantle sources. This observation that melt inclusions have higher H₂O/Ce than submarine pillow glasses may relate to the fact that the Samoan melt inclusions from Malumalu and Vailulu'u have universally higher calculated MagmaSat CO₂-H₂O vapor saturation pressures (Figure 3) than the submarine pillow glasses, reflective of higher entrapment pressures for the melt inclusions (>0.870 kbar) than the eruption pressures experienced by the glasses (<0.53 kbar) (see Figure 3).

While Workman et al. (2006) found a negative correlation between H₂O/La and ⁸⁷Sr/⁸⁶Sr for Samoan glasses, we find that the Samoan melt inclusions in this study exhibit *no correlation* between H₂O/Ce and ⁸⁷Sr/⁸⁶Sr (Figure 3, 5a, 7a), even though the melt inclusions are from two of the three volcanoes studied by Workman et al. (2006) and span the same range of ⁸⁷Sr/⁸⁶Sr as their pillow glasses. In contrast to Workman et al. (2006), the H₂O/Ce of the melt inclusions is quite constant (i.e., 197±58 2SD, N=15) over a range of ⁸⁷Sr/⁸⁶Sr from 0.704858 to 0.709225,

and the melt inclusions with the strongest EM2 mantle signatures (i.e., $^{87}Sr/^{86}Sr > 0.7080$, N=4) have elevated H₂O/Ce (193±19 2SD) that is indistinguishable from the H₂O/Ce (202±31) in melt inclusions with weaker EM2 signatures ($^{87}Sr/^{86}Sr < 0.7080$, N=3).

While the Samoan pillow glasses and melt inclusions exhibit some overlap with each other in H₂O/Ce at the lowest ⁸⁷Sr/⁸⁶Sr, they exhibit diverging trends in H₂O/Ce with increasing ⁸⁷Sr/⁸⁶Sr: melt inclusions exhibit unchanging H₂O/Ce with increasing ⁸⁷Sr/⁸⁶Sr, and glass exhibit decreasing H₂O/Ce with increasing ⁸⁷Sr/⁸⁶Sr. Thus, the difference in H₂O/Ce between melt inclusions and glasses is largest at the highest ⁸⁷Sr/⁸⁶Sr (Figure 7). To illustrate this, we note that all four pillow glasses with the strongest EM2 signatures (87 Sr/ 86 Sr > 0.7080) have H₂O/Ce < 90 (H₂O/Ce average of 75±30, 2SD) while the H₂O/Ce of the four melt inclusions with the highest ⁸⁷Sr/⁸⁶Sr (>0.7080) have H₂O/Ce that is more than twice as high as that in the pillow glasses (H₂O/Ce average of 193±19, 2SD). Prior studies (e.g., Workman et al., 2006) often cite that pillow glasses erupted at depths >1000 mbsl retain volatile/ITE ratios of the mantle source. All pillow glasses shown in Figure 7 have H₂O-CO₂ saturation pressures ≥0.1 kbar. Given that the melt inclusions and glasses in Figure 7 exhibit deep saturation pressures and appear to sample the same mantle source (Figure 4), we might expect the deeply-erupted pillow glasses should have the same H₂O/Ce as melt inclusions. These observations raise a key question that we will address in the discussion: why do melt inclusions and pillow glasses erupted at depths >1000 mbsl from the same volcanoes and with the same ⁸⁷Sr/⁸⁶Sr (i.e., sampling the same mantle sources) have H₂O/Ce that differ, on average, by nearly a factor of two?

442

443

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

5. Modeling degassing processes for Samoan melts

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

We find that melt inclusions from the Vailulu'u and Malumalu seamounts have higher CO₂ concentrations than their corresponding pillow glasses (Figure 6), indicating that the deeply-erupted submarine pillow glasses are more degassed than the melt inclusions. An outstanding question is whether the lower H₂O/Ce in the pillow glasses reflects this higher degree of degassing via concomitant degassing of both CO₂ and H₂O.

We show that the data are consistent with Samoan pillow glasses being related to the Samoan melt inclusions through closed-system degassing; the new insight gained here is that, when compared with genetically-related melt inclusions, it is clear that even deeply erupted glasses (with CO₂-H₂O saturation pressures ≥0.1 kbar) have lost significant H₂O and have lower H₂O/Ce compared to their primary melt (Figure 3). This is evident in models we have run using a set of open- and closed-system degassing paths while also varying the fraction of CO₂+H₂O fluid in equilibrium with the initial melt (Figure 6). In the models, we define the variable M as the percentage of fluid in equilibrium with the melt, where M = 0% means that no initial fluid is in equilibrium with the melt (i.e., all volatiles are dissolved in the melt, no fluid is present), and where M = 100% means that all volatiles are in the fluid (i.e., no melt is present). The higher the M value, the deeper degassing starts. We generate degassing paths assuming a starting H₂O and CO₂ composition equivalent to the melt inclusion with the highest H₂O content from Malumalu seamount (sample AVON3-78-1#3) to model Malumalu data, and the equivalent high-H₂O melt inclusion from Vailulu'u (sample AVON3-71-2#10) to model Vailulu'u data. We use MagmaSat (Ghiorso & Gualda, 2015) to calculate the fluid composition (i.e., XCO₂ and XH₂O) in equilibrium with the two melt inclusions (see Table S9 for model melt inclusion compositions). Additionally, we use rhyolite-MELTS v.1.2 (which incorporates the same fluid solubility model as MagmaSat) to simulate degassing because this model is well-suited for high CO₂ contents in

the initial melt composition (Ghiorso & Gualda, 2015; Gualda et al., 2012). The models are run at 1200 °C, and start at 7–15 kbar (for Malumalu degassing paths, due to higher initial CO₂ contents), or 7 kbar (for Vailulu'u, which has lower initial CO₂), and run to 1 bar. The influence of oxygen fugacity on the model degassing path is negligible, so we assume QFM for all models. The compositional and physical parameters used in the MagmaSat and rhyolite-MELTS models are given in Table S9.

The degassing model results are presented in Figure 6. While there is no single degassing path that explains the difference in pillow glass and melt inclusion CO₂ and H₂O concentrations, closed-system degassing paths with M values ranging from 0% to 10% describe most of the pillow glasses from both seamounts. However, there are some Vailulu'u pillow glasses that have H₂O that is higher than the range described by the calculated degassing paths. For example, three Vailulu'u pillow glasses have higher H₂O concentrations than the highest-H₂O melt inclusion. This could be because the melt inclusion suite in this study does not represent the full range of H₂O contents possible at the seamount, and higher initial H₂O concentrations may be more reflective of the primary melts.

A primary observation from this modeling exercise is that closed-system degassing from melt inclusion entrapment pressures (i.e., >0.87 kbar) to eruption on the seafloor (pillow glasses have equilibrium pressures of 0.08 to 0.53 kbar) results in significant loss of both CO₂ and H₂O, even for glasses with CO₂-H₂O saturation depths near 0.4 kbar (see closed-system degassing paths in Figure 6). Furthermore, the presence of equilibrium fluid (M) indicates that the magmatic system is richer in CO₂, and thus starts to degas at greater depths. Below we show that loss of H₂O during closed-system degassing to shallow levels (i.e., <0.53 kbar) explains the lower H₂O/Ce in pillow glasses compared to the melt inclusions.

6. Discussion

H₂O has incompatibility during mantle melting similar Ce (Michael, 1995), thus H₂O/Ce of the melt inclusions and glasses should reflect the mantle source unless the samples have degassed. Clear negative correlations between H₂O/Ce and ⁸⁷Sr/⁸⁶Sr in pillow glasses have been used to infer the H₂O/LREE (light rare earth element) ratios of the mantle source, assuming the H₂O has not been degassed. The primary observation in this study that we seek to explain is that Samoan pillow glasses and olivine-hosted melt inclusions span the same range of ⁸⁷Sr/⁸⁶Sr and trace element ratios—and thus sample the same mantle sources, yet the melt inclusions have H₂O/Ce ratios that are approximately twice as high as the pillow glasses. The second key observation is that the melt inclusion H₂O/Ce ratios are relatively constant over a wide range of ⁸⁷Sr/⁸⁶Sr, in contrast to the pillow glasses whose H₂O/Ce ratios anticorrelate with ⁸⁷Sr/⁸⁶Sr. This raises two key questions: Why do Samoan EM2 pillow glasses exhibit H₂O/Ce that are approximately half the values in Samoan EM2 melt inclusions at the same seamounts, and what does this mean for the H₂O content of the EM2 mantle?

6.1. Higher H₂O/Ce in melt inclusions relative to pillow glasses: Diffusive H₂O gain through host olivine and/or assimilation of seawater-derived materials?

In order to compare the volatile contents of the Samoan melt inclusions and pillow glasses in this study, it is important to assess whether the higher H₂O/Ce in the inclusions reflects processes operating in the magma during ascent, such as diffusive proton gain (i.e., addition of H) or assimilation of seawater-derived materials. Prior work has shown that, compared to large melt inclusions, small inclusions are more susceptible to diffusive loss or addition of protons,

and this results in modified δD (Hauri, 2002; Portnyagin et al., 2008; Gaetani et al., 2012; Bucholz et al., 2013; Hartley et al., 2015). Given enough time, the δD of all inclusions will eventually equilibrate with the external melt. Diffusive proton loss from the inclusion can be identified by an increase in δD , which is associated with decreasing melt inclusion volume. Conversely, diffusive gain of protons by the inclusion is identified by a decrease in δD , where the magnitude of the δD reduction is greater in the smaller volume melt inclusions. The new δD analyses on melt inclusions show a lack of variation in δD (-35.8±17.0‰, 2SD, N=19) with melt inclusion size for melt inclusions with volumes >10⁵ μm^3 , which indicates no water loss or gain in the larger inclusions (Figure 2). However, the two smallest melt inclusions (AVON3-78-1#13 and AVON3-78-1#32), both with melt inclusion volume <10⁵ μm^3 , have significantly higher δD (+128‰ and +6 ‰, respectively) than the other melt inclusions from this lava, which indicates that the small volume melt inclusions have experienced diffusive H₂O loss, not H₂O addition (Figure 2). These two small volume inclusions are excluded from the discussion below.

Assimilation of seawater-derived materials can increase H₂O in magmas (except if the magma is saturated in H₂O), and this process can be traced by monitoring Cl/Nb, a ratio that is elevated in seawater-derived materials. One hypothesis for the higher H₂O/Ce in melt inclusions is that they have experienced more assimilation of seawater-derived materials compared to Samoan pillow glasses, and this hypothesis can be tested by measurement of ⁸⁷Sr/⁸⁶Sr. A plot of Cl/Nb versus ⁸⁷Sr/⁸⁶Sr shows that Samoan pillow glasses and melt inclusions have an overlapping range of Cl/Nb at any given ⁸⁷Sr/⁸⁶Sr, so the offset to higher H₂O/Ce in the melt inclusions is not explained by greater assimilation experienced by melt inclusions (Figure 5). We do acknowledge that one melt inclusion with exceptionally high Cl/Nb (840)—a ratio consistent with assimilation of seawater-derived materials (Table S1)—also has elevated H₂O/Ce (366),

suggesting a role for assimilation in increasing the H₂O/Ce in this particular inclusion. However, this single inclusion has been excluded from the discussion below owing to its very high Cl/Nb.

In short, diffusive gain of H₂O and preferential assimilation of seawater-derived materials by the melt inclusions relative to the pillow glasses do not explain the higher H₂O/Ce in the melt inclusions relative to the pillow glasses. Instead, we argue in the following section that closed-system degassing plays a key role in lowering the H₂O and the H₂O/Ce of pillow glasses. In contrast, limited H₂O degassing has occurred in the melt inclusions in this study, leaving the melt inclusion H₂O/Ce relatively unchanged, thereby explaining why melt inclusions have higher H₂O/Ce than pillow glasses. This contrasts with prior studies (e.g., Workman et al., 2006) suggesting that pillow glasses erupted at depths >1000 mbsl retain H₂O/LREE ratios of the mantle source.

6.2 Higher H₂O/Ce in melt inclusions relative to pillow glasses: H₂O loss in Samoan glasses caused by degassing

We argue that the difference in H₂O/Ce between Samoan EM2-flavored melt inclusions and pillow glasses from the same seamounts relates to greater degassing of the pillow glasses relative to the melt inclusions. Unlike the pillow glasses, which can experience degassing from great depth all the way to eruption and quenching on the seafloor, melt inclusions trap melts at magma chamber depths and act as pressure vessels, which inhibits degassing at shallower levels during magma ascent. To evaluate this hypothesis, we build on the indistinguishable ⁸⁷Sr/⁸⁶Sr and nonvolatile incompatible trace element ratios between pillow glasses and melt inclusions and argue that, at the depth of melt inclusion entrapment, the H₂O/Ce of the melts that later erupted as Samoan pillow glasses was *also* the same as the Samoan melt inclusions (i.e., nonvolatile ITE ratios—which remain unmodified from primary melt compositions during fractional

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

crystallization of magmas with MgO as high as identified in the data reported here (Figure S1)—and ⁸⁷Sr/⁸⁶Sr data obtained on the melt inclusions indicate that they derive from the same parental melts as the pillow glasses and thus should have started with the same H₂O/Ce). The H₂O/Ce of the pillow glasses, but not the melt inclusions, was then lowered by H₂O degassing during ascent.

The hypothesis of H₂O loss from the matrix melts by degassing is supported by closedsystem degassing models in Figure 6. For example, the degassing model for Malumalu AVON3-78-1 starts with a melt inclusion composition like AVON3-78-1#3 which has an elevated CO₂ concentration of 2810 ppm, the highest H₂O concentration from this lava (1.95 wt.%), and a high entrapment pressure of 2.63 kbar (i.e., the CO₂-H₂O saturation pressure calculated for the melt inclusion using MagmaSat). Closed-system degassing of this melt composition from 2.63 kbar to 0.2 kbar—the approximate CO₂-H₂O saturation pressure for the pillow glass from this lava, sample AVON3-78-1—at M=1.6 lowers the water content by a factor of ~2.1 to 0.90 wt.%, and the CO₂ content by a factor of ~40 to 69 ppm. The red "x" in Figure 6a defines the CO₂ and H₂O composition of the model melt following degassing, and the degasted model melt is very similar in composition to the pillow glass sample AVON3-78-1 and helps explain the low H₂O (0.91 wt.%) and CO₂ (70 ppm) of AVON3-78-1. This is important because this particular pillow glass sample anchors the highest ${}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr}$ (0.7089) and lowest $\mathrm{H}_2\mathrm{O}/\mathrm{Ce}$ (59) portion of the ${}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr}$ versus H₂O/Ce array produced by Workman et al. (2006) who interpreted that the low H₂O/Ce in this EM2 glass reflects melting of a water-poor ("dry") EM2 mantle. In contrast, we show that dramatic H₂O-loss during closed-system degassing of an ascending EM2 melt with an initially high H_2O/Ce ratio ($H_2O/Ce = 200$) is responsible for the low H_2O/Ce (59) in the AVON3-78-1 glass. This model contrasts with prior studies (e.g., Workman et al., 2006) suggesting that pillow

glasses erupted at depths >1000 mbsl (≥0.1 kbar) retain the H₂O/LREE ratios of the mantle source.

We observe a relatively constant and elevated H₂O/Ce ratio in melt inclusions over a wide range of ⁸⁷Sr/⁸⁶Sr—melt inclusions with strong EM2 mantle signatures (i.e., ⁸⁷Sr/⁸⁶Sr > 0.7080) have elevated H₂O/Ce (193±19 2SD, N=4) that is indistinguishable from H₂O/Ce (202 \pm 31, N=3) in melt inclusions with weaker EM2 signatures (87 Sr/ 86 Sr < 0.7080). This also contrasts with Workman et al.'s (2006) observation that H₂O/LREE is lower in the Samoan EM2 pillow glasses with higher ⁸⁷Sr/⁸⁶Sr. Unlike Workman et al. (2006), who argued that the low H₂O/LREE in Samoan EM2 glasses is a source feature, we show that the low ratio in these pillow glasses relative to that of the melt inclusions can be explained by closed-system degassing of magmas during ascent to the seafloor. If this degassing model is correct, and if Samoan high ⁸⁷Sr/⁸⁶Sr and low ⁸⁷Sr/⁸⁶Sr melts have the same initial H₂O/Ce—as supported by observations from melt inclusions in Figure 5a—then the negative correlation between ⁸⁷Sr/⁸⁶Sr in H₂O/Ce in the pillow glasses in Workman et al. (2006) (Figure 7) leads us to an important conclusion: the Samoan EM2 pillow glasses have degassed more H₂O (to achieve lower H₂O/Ce) than Samoan pillow glasses with weaker EM2 signatures (which have higher H₂O/Ce). Therefore, we next focus on identifying the mechanism that results in greater H₂O degassing in more extreme EM melts relative to non-EM melts.

599

600

601

602

603

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

6.3 Explaining the inverse relationship between ⁸⁷Sr/⁸⁶Sr and H₂O/Ce in global pillow glasses by degassing.

The global OIB dataset on submarine pillow glasses exhibits an inverse relationship between ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ and H₂O/Ce (Figure 7) that is similar to the inverse correlation observed in

Samoan submarine glasses, and it has long been known that submarine glasses with low 6/Sr/80Sr
tend to have higher H_2O/Ce than glasses with high ${}^{87}Sr/{}^{86}Sr$ (e.g., Dixon et al., 2002; Workman
et al., 2006; Kendrick et al., 2014). The Samoan melt inclusions noticeably stray from this trend.
The Samoan melt inclusions with high $^{87}\text{Sr}/^{86}\text{Sr}$ are shifted to higher, relatively constant H_2O/Ce
(197 \pm 58 2SD, N=15) compared to the H ₂ O/Ce (108 \pm 58, 2SD, N=41) in a global database of OIB
glasses (including Samoa) that have similarly high ⁸⁷ Sr/ ⁸⁶ Sr (i.e., >0.7037) (Figure 7). In fact, the
high H_2O/Ce of Samoan inclusions (197 \pm 58 2SD, N=15) is similar to the H_2O/Ce (209 \pm 92, 2SD,
N=32) of pillow glasses characterized by low ${}^{87}\mathrm{Sr}/{}^{86}\mathrm{Sr}$ (<0.7037, the threshold value used to
distinguish between EM and non-EM melts). If the Samoan melt inclusions represent less
degassed versions of the melts sampled by Samoan submarine glasses, then the similarity in
H_2O/Ce between low ${}^{87}Sr/{}^{86}Sr$ (<0.7037) OIB pillow glasses and Samoan melt inclusions
(>0.7037) raises the possibility that non-EM OIB melts and EM OIB melts initially have the
same H_2O/Ce , but the latter suffer more degassing of H_2O than the former during magma ascent.
If the inverse correlation between H_2O/Ce and $^{87}Sr/^{86}Sr$ in Samoan, and global, OIB glasses is
driven by greater degassing of the most geochemically enriched lavas compared to
geochemically depleted lavas, what mechanism causes geochemically enriched glasses from OIB
mantle sources to have suffered more H ₂ O degassing than geochemically depleted glasses?
Previous work suggests that EM mantle sources have higher CO ₂ , and generate primary
melts with higher CO ₂ , than non-EM mantle sources (Burnard et al., 2014; Cartigny et al., 2008;
Taracsák et al., 2019; Hauri et al., 2018; Miller et al 2019; Matthews et al. 2021; Michael &
Graham, 2015; Shimizu et al., 2023). We show that primary melts with higher CO ₂ degas more
CO ₂ and more H ₂ O by closed-system degassing during ascent than primary melts with the same
H ₂ O but lower CO ₂ concentrations. As a result, EM layas that were initially more CO ₂ -rich erupt

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

on the seafloor with lower H₂O/Ce than their geochemically-depleted non-EM counterparts that started with lower primary melt CO₂, even though both EM and non-EM primary melts started with the same H₂O concentrations and H₂O/Ce. At the extreme end, non-EM (i.e., geochemically depleted) melts erupted at, for example, MORB settings, can have such low primary melt CO₂ that they never saturate and neither CO₂ nor H₂O are lost by degassing (Saal et al., 2002; Michael & Graham, 2015; Hauri et al., 2018).

By contrast, we argue that CO₂-rich primary melts, typical of geochemically-enriched OIB settings, saturate CO₂ at great depths and lose significant CO₂ and H₂O by closed-system degassing. In order to show this, we first estimate primary melt CO₂ for a suite of global OIB glasses using a set of relationships shown in Figures 8 and 9. Because OIB glasses are degassed in CO₂ to variable degrees, we estimate primary melt (undegassed) CO₂ for OIB glasses in the following way. First, using a new correlation between undegassed CO₂/Nb and (La/Sm)_N in MORB and OIB (see equation in Figure 9a and discussion in Supplementary Information section S1.8), together with the measured (La/Sm)_N available in the suite of OIB glasses examined here, we can calculate the primary melt CO₂/Nb in the OIB glasses (Figure 8c). (It is worth noting that the correlation between CO₂/Nb and (La/Sm)_N in Figure 9a is similar to a relationship previously suggested for MORB by Cartigny et al. (2008) (Figure 9b).) We then calculate the primary melt Nb concentrations for each of the OIB glasses by correcting for olivine addition or subtraction so the melts are in equilibrium with mantle (Fo₉₀) olivine (Figure 8d). By multiplying calculated primary melt CO₂/Nb (Figure 8c) by the calculated primary melt Nb concentrations (Figure 8d), we obtain primary melt CO₂ concentrations for the OIB glasses (Figure 8e). These calculations suggest that the most extreme EM OIB glasses (which have the lowest H₂O/Ce)—all from the Samoa, Societies, and Pitcairn hotspots—tend to have the highest primary melt CO₂ (Figure 8e),

with CO₂ concentrations commonly as high as 5 to 6 wt.% in Samoa and Societies lavas (and higher than 80,000 ppm CO₂ in two Samoan lavas). These high OIB primary melt CO₂ concentrations calculated with our new model are in broad agreement with CO₂ concentrations calculated using the petrologic model of Sun and Dasgupta (2020) (see supplementary Figure S9 for direct comparison).

Based on these calculations, Samoan primary melts inferred from the pillow rim glass data have CO₂ concentrations between ~28,000 ppm and ~94,000 ppm, with most values clustering near ~60,000 ppm CO₂ (Figure 8e). With few exceptions, the non-EM OIB (which have the highest erupted H₂O/Ce)—Lōʻihi, Easter, and Foundation—have lower calculated primary melt CO₂ than the EM OIB—Samoa, Societies, Pitcairn, and Réunion (Figure 8e). This is consistent with prior suggestions that geochemically enriched mantle domains with higher ⁸⁷Sr/⁸⁶Sr generate primary melts with higher CO₂ than geochemically depleted mantle domains (Burnard et al., 2014; Cartigny et al., 2008). Like Burnard et al. (2014), we argue that melts with higher initial CO₂—characteristic of EM melts (Figure 8e)—undergo greater degrees of degassing than melts with lower initial CO₂. We then show that, everything else being the same, higher initial CO₂ melts experience greater degassing of H₂O (and thus have lower erupted H₂O/Ce) than melts with lower initial CO₂ (Figure 8).

In order to demonstrate this quantitatively, we use the calculated primary melt CO₂ of the OIB glasses in Figure 8e, as well as estimated primary melt H₂O (see below), as inputs to a closed-system degassing model. We then show that the CO₂-rich (60,000 ppm) model primary melt degasses by closed-system degassing to have H₂O concentration and H₂O/Ce similar to values measured in Samoan EM pillow glasses. To test our hypothesis that high primary melt CO₂ concentrations results in more degassing of H₂O, and thus, lower H₂O/Ce in the final

erupted and degassed melt, we examine how H ₂ O and CO ₂ concentrations change with
decreasing pressure starting with two hypothetical primary melts that are identical in all respects
except for the initial CO ₂ concentrations: the two melt endmembers are given the same starting
H_2O (2 wt.%), H_2O/Ce (200), and major and trace element chemistry (see compositions in Table
S9). The first model melt is assigned a higher CO ₂ concentration of 60,000 ppm, meant to
approximate the elevated CO2 concentration of EM glasses in Figure 8e (see previous
paragraph), and comes from our new model for calculating CO2 in OIB primary melts (Figure
8c, 9a) for which calculated Samoan primary melt CO ₂ concentrations tend to cluster near 60,000
ppm CO ₂ . The second model melt is assigned an initial CO ₂ concentration of 5,000 ppm, and is
meant to approximate the CO ₂ concentration of the non-EM glasses from Foundation, Easter,
and Lō'ihi in Figure 8e. In order to illustrate the impact of H2O loss during degassing as a
function of initial primary melt CO ₂ concentration, we model the closed-system degassing paths
of the two melts using rhyolite-MELTS. Degassing of the high CO ₂ (60,000 ppm) melt starts at
26 kbar (i.e., where CO ₂ first saturates; see dark green line in Figure 10), which is higher than the
4 kbar pressure where the lower CO ₂ melt saturates (see light green line in Figure 10). After both
the high- and low-CO ₂ melts degas to the same low eruptive pressure (Figure 10)—0.5 kbar,
meant to represent pressure for eruption on the seafloor at $\sim\!5000$ mbsl—the high CO_2 melt has a
significantly lower H ₂ O concentration and lower H ₂ O/Ce (~0.94 wt.% and 94, respectively)
compared to the low CO_2 melt (~1.56 wt.% wt.% and 156, respectively), even though both melts
started with the same H_2O (2 wt.%) and H_2O/Ce (200). In summary, a melt with initial CO_2 of
$60,\!000$ ppm degases nearly 53% of its H_2O (and 99.4% of its CO_2) during ascent to 0.5 kbar, but
the melt with 5000 ppm initial CO ₂ degases just 22% of its H ₂ O (and 96.8% of its CO ₂) during

ascent to 0.5 kbar. Thus, everything else being the same, high CO₂ melts degas more H₂O and have lower H₂O/Ce than low CO₂ melts.

The simple degassing model in Figure 10 helps explain the observation that EM pillow glasses erupted on the seafloor have lower H₂O/Ce compared to non-EM pillow glasses: EM primary melts, which are associated with higher initial CO₂ (Figure 8e), saturate in volatiles deeper in the crust/mantle and degas more CO₂ and H₂O prior to eruption than non-EM melts with lower primary melt CO₂. The Samoan melt inclusions in this study exhibit high H₂O/Ce, similar to non-EM melts, because CO₂ and H₂O degassing was arrested following melt inclusion entrapment in olivine at high pressures (0.870 to 5.13 kbar). Although the Samoan melt inclusions lost significant amounts of CO₂ prior to being entrapped by olivine, these melt inclusions still preserve higher H₂O/Ce than the erupted pillow glasses due to having degassed less CO₂ and, thus, less H₂O. However, we acknowledge that, prior to entrapment, even the melt inclusions may have already lost some H₂O due to concomitant loss of both H₂O and CO₂ during closed-system degassing. Nonetheless, melt inclusions preserve higher H₂O and H₂O/Ce than pillow glasses, and thus preserve values closer to the primary melts.

6.4 Comparison with prior models for the origin of low H₂O/Ce in EM lavas, and implications for a "damp" EM mantle.

Previous studies have suggested that the negative correlation between H₂O/Ce and ⁸⁷Sr/⁸⁶Sr is the result of dehydration (H₂O depletion) in the EM source, which has low H₂O/Ce that gives rise to EM primary melts with low H₂O/Ce. In these models, the EM mantle source has low H₂O/Ce because subducted materials contributing to the EM mantle lose H₂O during subduction (Dixon et al., 2002) or via diffusion during residence in the mantle (Workman et al., 2006), or because the pyroxenite—which has low H₂O/Ce—contributes to the EM mantle

(Bizimis & Peslier et al., 2015). However, if these models explained the origin of the low H_2O/Ce in high ${}^{87}Sr/{}^{86}Sr$ glasses from Samoa, then the Samoan melt inclusions with high ${}^{87}Sr/{}^{86}Sr$ should also exhibit lower H_2O/Ce , but this is not the case.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

Thus, an important implication is that submarine glasses cannot be reliably used to estimate the H₂O/Ce content of OIB primary melts, particularly glasses for EM OIB that appear to experience greater degassing (owing to higher initial CO₂) than non-EM OIB. Our data show that, unlike Samoan submarine glasses, Samoan melt inclusions have similar H₂O/Ce (197±58, 2SD, N=15) that does not vary with ⁸⁷Sr/⁸⁶Sr. In fact, the H₂O/Ce ratio (193±19, 2SD, N=4) for extreme Samoan EM2 (87 Sr/ 86 Sr > 0.708) melt inclusions overlaps with H₂O/Ce suggested for depleted mantle domains that are sampled by non-EM OIB (87Sr/86Sr<0.7037; H₂O/Ce = 209±92), average Pacific MORB (180±20; Dixon et al., 2017), average depleted N. Atlantic MORB (230±20; Dixon et al., 2017), and PREMA (Prevalent Mantle) Pacific and Atlantic OIB (215±30 and 220±30, respectively, where PREMA-type OIB do not bear EM or HIMU signatures; Dixon et al., 2017). Thus, the major implication of this work is that, instead of being "dry", the EM2 mantle sampled by Samoa is just as "damp" as non-EM reservoirs, but this can only be seen by examining deeply entrapped melt inclusions that preserve higher CO₂ and H₂O than submarine pillow glasses. Due to pronounced CO₂ and concomitant H₂O degassing that appears to impact enriched lavas more than depleted ones—owing to higher primary melt CO₂ in the former relative to the latter—future melt inclusion studies will be important for determining the initial H₂O/Ce in EM1 (Pitcairn) and other EM2 (Societies) lavas, where existing low H₂O/Ce values measured in high ⁸⁷Sr/⁸⁶Sr Pitcairn and Societies submarine glasses (Kendrick et al. 2014) may also be due to the same degassing mechanism that lowers H₂O/Ce in Samoan OIB. If so, H₂O/Ce in the mantle is not likely to be as variable as previously supposed, and much of

the mantle sampled by MORB and OIB have very similar H₂O/Ce that is, on average, close to a value of 200, and not as low as values found in pillow glasses of EM lavas (down to 59 in Samoan pillow glasses, 86 in Societies glasses, and 95 in Pitcairn glasses). Thus, like the Pb/Ce ratio, which is similar in OIB and MORB globally (Hofmann et al., 1986), the H₂O/Ce ratio may also be similar in the sources of plume-derived lavas (Michael, 1995).

A second implication of "damp" H₂O/Ce in EM Samoan lavas is that, in spite of hosting subducted continental materials which have presumably lost H₂O by degassing at an ancient subduction zone (White & Hofmann, 1982; Farley et al., 1992; Jackson et al., 2007), Samoan EM2 melt (as sampled by EM melt inclusions) do not have lower H₂O/Ce than non-EM OIBs. This is a surprising result, and suggests that recycled continental materials may not play a large role in governing the H₂O budgets of mantle domains. This could be because the amount of recycled continental crust in the mantle sources of OIB is small, and thus has a diminished impact on the overall H₂O and H₂O/Ce of the mantle source. For example, Samoan lava AVON3-78-1 examined in this study, which has a strong EM2 signature (⁸⁷Sr/⁸⁶Sr of 0.7089), is estimated to have only ~1% continental crust (Reinhard et al., 2018) that is added to a depleted plume component that constitutes the rest (99%) of the mantle source. In this model, the H₂O and Ce budgets of the EM2 mantle source is primarily controlled by the depleted plume component, even if the recycled continental crust component has low H₂O/Ce. In this way, both depleted mantle and EM OIB can have similar H₂O/Ce.

Acknowledgements: MGJ gratefully acknowledges being wrong (and that John Lassiter was correct) in the debate about whether mantle source H₂O/Ce is preserved in deeply dredged (>1000 mbsl) submarine pillow glasses. OEA thanks Marc Hirschmann for a discussion about

- 764 CO₂/Nb in oceanic lavas, Gareth Seward for his skillful assistance with UCSB's electron
- 765 microprobe, Jean-Luc Devidal for assisting EFR-K with LA-ICP-MS analyses, and Brian
- Monteleone for his time and help with ion probe analyses. MGJ acknowledges NSF grants OCE-
- 767 1736984, EAR-1900652, OCE-1912931, and OCE-1929095 that supported this work.

768

769

References cited

- 770 Adams, J.V., Spera, F.J. and Jackson, M.G. (2021). Trachytic melt inclusions hosted in clinopyroxene
- offer a glimpse into Samoan EM2-endmember melts. Geochemistry, Geophysics, Geosystems, 22(3),
- p.e2020GC009212. https://doi.org/10.1029/2020GC009212
- Anderson, A.T. (1974). Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California.
- 774 *Journal of Petrology*, 15, 243–267. https://doi.org/10.1093/petrology/15.2.243
- Anderson, K. R., & Poland, M. P. (2017). Abundant carbon in the mantle beneath Hawai'i. *Nature*
- 776 Geoscience, 10(9), 704–708. https://doi.org/10.1038/ngeo3007
- Anderson, O.E., Jackson, M.G., Rose-Koga, E.F., Marske, J.P., Peterson, M.E., Price, A.A., Byerly, B.L.
- and Reinhard, A.A. (2021). Testing the recycled gabbro hypothesis for the origin of "ghost plagioclase"
- melt signatures using ⁸⁷Sr/⁸⁶Sr of individual olivine-hosted melt inclusions from Hawai'i. *Geochemistry*,
- 780 Geophysics, Geosystems, 22(4). https://doi.org/10.1029/2020GC009260
- 781 Aiuppa, A., Casetta, F., Coltorti, M., Stagno, V., & Tamburello, G. (2021). Carbon concentration
- increases with depth of melting in Earth's upper mantle. *Nature Geoscience*, 14(9), 697–703.
- 783 https://doi.org/10.1038/s41561-021-00797-y
- Asimow, P. D., & Langmuir, A. C. (2003). The importance of water to oceanic mantle melting
- 785 regimes. *Nature*, 421(6925), 815–820. https://doi.org/10.1038/nature01429
- Aster, E. M., Wallace, P. J., Moore, L. R., Watkins, J., Gazel, E., & Bodnar, R. J. (2016). Reconstructing
- 787 CO₂ concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. *Journal of*
- 788 *Volcanology and Geothermal Research*, 323, 148–162. https://doi.org/10.1016/j.jvolgeores.2016.04.028
- Aubaud, C. (2022). Carbon stable isotope constraints on CO₂ degassing models of ridge, hotspot and arc
- 790 magmas. Chemical Geology, 605, 120962. https://doi.org/10.1016/j.chemgeo.2022.120962
- 791 Bizimis, M., & Peslier, A. H. (2015). Water in Hawaiian garnet pyroxenites: Implications for water
- heterogeneity in the mantle. *Chemical Geology*, 397, 61–75.
- 793 https://doi.org/10.1016/j.chemgeo.2015.01.008
- Boudoire, G., Rizzo, A. L., Di Muro, A., Grassa, F., & Liuzzo, M. (2018). Extensive CO₂ degassing in the
- volcanoes: First insights from Piton de la Fournaise volcano (La

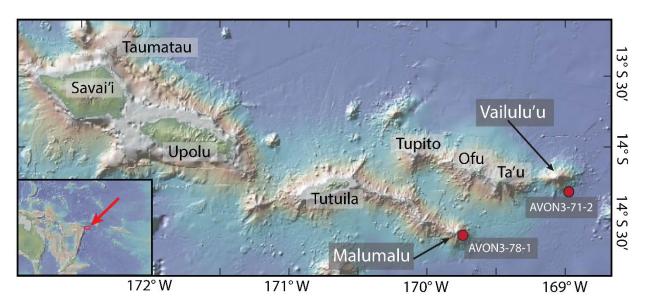
- 796 Réunion Island). Geochimica et Cosmochimica Acta, 235, 376–401.
- 797 https://doi.org/10.1016/j.gca.2018.06.004
- 798 Bucholz, C. E., Gaetani, G. A., Behn, M. D., & Shimizu, N. (2013). Post-entrapment modification of
- volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth and Planetary Science Letters, 374,
- 800 145–155. https://doi.org/10.1016/j.epsl.2013.05.033
- Burnard, P., Reisberg, L., & Colin, A. (2014). An observed link between lithophile compositions and
- degassing of volatiles (He, Ar, CO₂) in MORBs with implications for Re volatility and the mantle C/Nb
- 803 ratio. Earth and Planetary Science Letters, 395, 159–167. https://doi.org/10.1016/j.epsl.2014.03.045
- Cabral, R.A., Jackson, M.G., Koga, K.T., Rose-Koga, E.F., Hauri, E.H., Whitehouse, M.J., Price, A.A.,
- Day, J.M., Shimizu, N. and Kelley, K.A., 2014. Volatile cycling of H₂O, CO₂, F, and Cl in the HIMU
- mantle: A new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook
- Islands. Geochemistry, Geophysics, Geosystems, 15(11), 4445–4467.
- 808 https://doi.org/10.1002/2014GC005473
- 809 Cartigny, P., Pineau, F., Aubaud, C., & Javoy, M. (2008). Towards a consistent mantle carbon flux
- 810 estimate: Insights from volatile systematics (H₂O/Ce, δD, CO₂/Nb) in the North Atlantic mantle (14 N
- 811 and 34 N). Earth and Planetary Science Letters, 265(3–4), 672–685.
- 812 https://doi.org/10.1016/j.epsl.2007.11.011
- Danyushevsky, L. V., Della-Pasqua, F. N., & Sokolov, S. (2000). Re-equilibration of melt inclusions
- trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications.
- 815 Contributions to Mineralogy and Petrology, 138(1), 68–83. https://doi.org/10.1007/PL00007664
- Danyushevsky, L. V., Leslie, R. A., Crawford, A. J., & Durance, P. (2004). Melt inclusions in primitive
- olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions.
- 818 *Journal of Petrology*, 45(12), 2531–2553. https://doi.org/10.1093/petrology/egh080
- Danyushevsky, L. V., Perfit, M. R., Eggins, S. M., & Falloon, T. J. (2003). Crustal origin for coupled
- 820 'ultra-depleted' and 'plagioclase' signatures in MORB olivine-hosted melt inclusions: evidence from the
- 821 Siqueiros Transform Fault, East Pacific Rise. Contributions to Mineralogy and Petrology, 144(5), 619–
- 822 637. https://doi.org/10.1007/s00410-002-0420-3
- B23 Devey, C. W., Albarede, F., Cheminée, J. L., Michard, A., Mühe, R., & Stoffers, P. (1990). Active
- submarine volcanism on the Society hotspot swell (West Pacific): a geochemical study. *Journal of*
- 825 Geophysical Research: Solid Earth, 95(B4), 5049–5066. https://doi.org/10.1029/JB095iB04p05049
- 826 DeVitre, C. L., Allison, C. M., & Gazel, E. (2021). A high-precision CO₂ densimeter for Raman
- spectroscopy using a Fluid Density Calibration Apparatus. *Chemical Geology*, 584, 120522.
- 828 https://doi.org/10.1016/j.chemgeo.2021.120522
- 829 Dixon, J.E., Bindeman, I.N., Kingsley, R.H., Simons, K.K., Le Roux, P.J., Hajewski, T.R., Swart, P.,
- Langmuir, C.H., Ryan, J.G., Walowski, K.J., & Wada, I. (2017). Light stable isotopic compositions of

- enriched mantle sources: Resolving the dehydration paradox. *Geochemistry, Geophysics*,
- 832 *Geosystems*, 18(11), 3801–3839. https://doi.org/10.1002/2016GC006743
- Dixon, J. E., & Clague, D. A. (2001). Volatiles in basaltic glasses from Loihi Seamount, Hawaii:
- Evidence for a relatively dry plume component. *Journal of Petrology*, 42(3), 627–654.
- 835 https://doi.org/10.1093/petrology/42.3.627
- Dixon, J. E., Clague, D. A., Wallace, P., & Poreda, R. (1997). Volatiles in alkalic basalts form the North
- Arch Volcanic Field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. *Journal*
- 838 *of Petrology*, 38(7), 911–939. https://doi.org/10.1093/petroj/38.7.911
- Dixon, J. E., Leist, L., Langmuir, C., & Schilling, J. G. (2002). Recycled dehydrated lithosphere observed
- in plume-influenced mid-ocean-ridge basalt. *Nature*, 420(6914), 385–389.
- 841 https://doi.org/10.1038/nature01215
- Farley, K. A., Natland, J. H., & Craig, H. (1992). Binary mixing of enriched and undegassed (primitive?)
- mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth and Planetary Science Letters, 111(1), 183–
- 844 199. https://doi.org/10.1016/0012-821X(92)90178-X
- Ford, C. E., Russell, D. G., Craven, J. A., & Fisk, M. R. (1983). Olivine-liquid equilibria: temperature,
- pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe²⁺, Ca
- and Mn. *Journal of Petrology*, 24(3), 256–266. https://doi.org/10.1093/petrology/24.3.256
- Fortin, M. A., Riddle, J., Desjardins-Langlais, Y., & Baker, D. R. (2015). The effect of water on the
- 849 sulfur concentration at sulfide saturation (SCSS) in natural melts. *Geochimica et Cosmochimica Acta*,
- 850 160, 100–116. https://doi.org/10.1016/j.gca.2015.03.022
- Fretzdorff, S., & Haase, K. M. (2002). Geochemistry and petrology of lavas from the submarine flanks of
- 852 Réunion Island (western Indian Ocean): implications for magma genesis and the mantle source.
- 853 *Mineralogy and Petrology*, 75, 153–184. https://doi.org/10.1007/s007100200022
- Frey, F. A., Clague, D., Mahoney, J. J., & Sinton, J. M. (2000). Volcanism at the edge of the Hawaiian
- plume: petrogenesis of submarine alkalic lavas from the North Arch volcanic field. *Journal of*
- 856 *Petrology*, 41(5), 667–691. https://doi.org/10.1093/petrology/41.5.667
- Frezzotti, M. L. (2001). Silicate-melt inclusions in magmatic rocks: applications to petrology. *Lithos*,
- 858 55(1–4), 273–299. https://doi.org/10.1016/S0024-4937(00)00048-7
- 859 Gaetani, G. A., & Grove, T. L. (1998). The influence of water on melting of mantle
- peridotite. *Contributions to Mineralogy and Petrology*, 131, 323–346.
- 861 https://doi.org/10.1007/s004100050396
- Gaetani, G. A., O'Leary, J. A., Shimizu, N., Bucholz, C. E., & Newville, M. (2012). Rapid reequilibration
- of H₂O and oxygen fugacity in olivine-hosted melt inclusions. *Geology*, 40(10), 915–918.
- 864 https://doi.org/10.1130/G32992.1

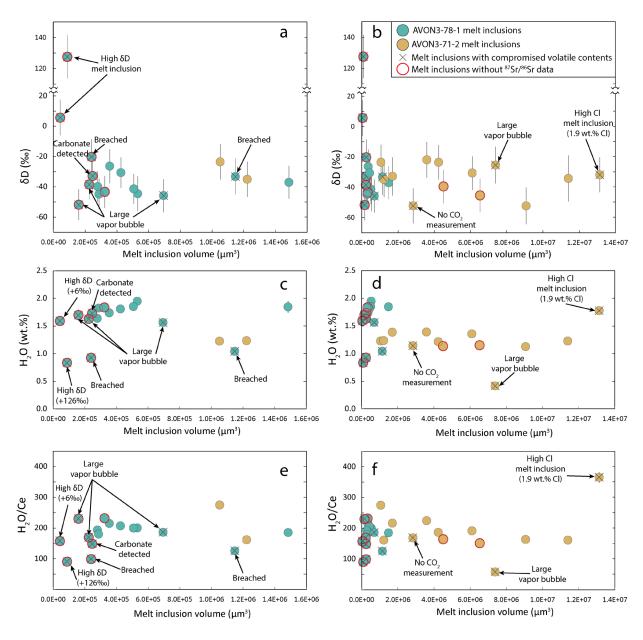
- 865 Ghiorso, M. S., & Gualda, G. A. (2015). An H₂O–CO₂ mixed fluid saturation model compatible with
- 866 rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169, 1–30. https://doi.org/10.1007/s00410-
- 867 015-1141-8
- 688 Graham, D. W., & Michael, P. J. (2021). Predominantly recycled carbon in Earth's upper mantle revealed
- by He-CO₂-Ba systematics in ultradepleted ocean ridge basalts. Earth and Planetary Science Letters, 554,
- 870 116646. https://doi.org/10.1016/j.epsl.2020.116646
- 671 Gualda G.A.R., Ghiorso M.S., Lemons R.V., Carley T.L. (2012) Rhyolite-MELTS: A modified
- 872 calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. *Journal of Petrology*,
- *53*, 875–890. https://doi.org/10.1093/petrology/egr080
- Hanyu, T., Yamamoto, J., Kimoto, K., Shimizu, K., & Ushikubo, T. (2020). Determination of total CO₂ in
- melt inclusions with shrinkage bubbles. *Chemical Geology*, 557, 119855.
- 876 https://doi.org/10.1016/j.chemgeo.2020.119855
- Hartley, M. E., Maclennan, J., Edmonds, M., & Thordarson, T. (2014). Reconstructing the deep CO₂
- degassing behaviour of large basaltic fissure eruptions. Earth and Planetary Science Letters, 393, 120–
- 879 131. https://doi.org/10.1016/j.epsl.2014.02.031
- Hartley, M. E., Neave, D. A., Maclennan, J., Edmonds, M., & Thordarson, T. (2015). Diffusive over-
- hydration of olivine-hosted melt inclusions. *Earth and Planetary Science Letters*, 425, 168–178.
- 882 https://doi.org/10.1016/j.epsl.2015.06.008
- Hauri, E. H. (1996). Major-element variability in the Hawaiian mantle plume. *Nature*, 382(6590), 415–
- 419. https://doi.org/10.1038/382415a0
- Hauri, E. H., & Hart, S. R. (1993). ReOs isotope systematics of HIMU and EMII oceanic island basalts
- from the south Pacific Ocean. Earth and Planetary Science Letters, 114(2–3), 353–371.
- 887 https://doi.org/10.1016/0012-821X(93)90036-9
- Hauri, E. (2002). SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian
- melt inclusions. Chemical Geology, 183(1–4), 115–141. https://doi.org/10.1016/S0009-2541(01)00374-6
- Hauri, E. H., Maclennan, J., McKenzie, D., Gronvold, K., Oskarsson, N., & Shimizu, N. (2018). CO₂
- content beneath northern Iceland and the variability of mantle carbon. *Geology*, 46(1), 55–58.
- 892 https://doi.org/10.1130/G39413.1
- Hirschmann, M. M. (2006). Water, melting, and the deep Earth H₂O cycle. Annu. Rev. Earth Planet.
- 894 *Sci.*, *34*, 629–653. https://doi.org/10.1146/annurev.earth.34.031405.125211
- Hirschmann, M. M. (2018). Comparative deep Earth volatile cycles: The case for C recycling from
- exosphere/mantle fractionation of major (H₂O, C, N) volatiles and from H₂O/Ce, CO₂/Ba, and CO₂/Nb
- exosphere ratios. *Earth and Planetary Science Letters*, 502, 262–273.
- 898 https://doi.org/10.1016/j.epsl.2018.08.023
- Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: implications for rheology, melt
- extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1-2), 93-108.
- 901 https://doi.org/10.1016/0012-821X(96)00154-9

- Hirth, G., & Kohlstedf, D. (2003). Rheology of the upper mantle and the mantle wedge: A view from the
- 903 experimentalists. Geophysical Monograph-American Geophysical Union, 138, 83–106.
- 904 https://doi.org/10.1029/138GM06
- Hofmann, A. W., Jochum, K. P., Seufert, M., & White, W. M. (1986). Nb and Pb in oceanic basalts: new
- onstraints on mantle evolution. Earth and Planetary Science Letters, 79(1–2), 33–45.
- 907 https://doi.org/10.1016/0012-821X(86)90038-5
- Iacovino, K., Matthews, S., Wieser, P. E., Moore, G. M., & Bégué, F. (2021). VESIcal Part I: An open-
- source thermodynamic model engine for mixed volatile (H₂O-CO₂) solubility in silicate melts. *Earth and*
- 910 Space Science, 8(11), e2020EA001584. https://doi.org/10.1029/2020EA001584
- Jackson, M. G., & Hart, S. R. (2006). Strontium isotopes in melt inclusions from Samoan basalts:
- 912 Implications for heterogeneity in the Samoan plume. Earth and Planetary Science Letters, 245(1–2),
- 913 260–277. https://doi.org/10.1016/j.epsl.2006.02.040
- Jackson, M. G., & Macdonald, F. A. (2022). Hemispheric geochemical dichotomy of the mantle is a
- 915 legacy of austral supercontinent assembly and onset of deep continental crust subduction. AGU Advances,
- 916 3(6), e2022AV000664. https://doi.org/10.1029/2022AV000664
- 917 Jackson, M. G., Kurz, M. D., Hart, S. R., & Workman, R. K. (2007). New Samoan lavas from Ofu Island
- 918 reveal a hemispherically heterogeneous high ³He/⁴He mantle. *Earth and Planetary Science*
- 919 *Letters*, 264(3–4), 360–374. https://doi.org/10.1016/j.epsl.2007.09.023
- Jackson, M.G., Koga, K.T., Price, A., Konter, J.G., Koppers, A.A., Finlayson, V.A., Konrad, K., Hauri,
- 921 E.H., Kylander-Clark, A., Kelley, K.A., & Kendrick, M.A. (2015). Deeply dredged submarine HIMU
- glasses from the Tuvalu Islands, Polynesia: Implications for volatile budgets of recycled oceanic crust.
- 923 Geochemistry, Geophysics, Geosystems, 16(9), 3210–3234. https://doi.org/10.1002/2015GC005966
- Jackson, M. G., Hart, S. R., Konter, J. G., Kurz, M. D., Blusztajn, J., & Farley, K. A. (2014). Helium and
- lead isotopes reveal the geochemical geometry of the Samoan plume. *Nature*, 514(7522), 355–358.
- 926 https://doi.org/10.1038/nature13794
- 927 Kendrick, M. A., Arculus, R., Burnard, P., & Honda, M. (2013). Quantifying brine assimilation by
- 928 submarine magmas: Examples from the Galápagos Spreading Centre and Lau Basin. Geochimica et
- 929 *Cosmochimica Acta*, 123, 150–165. https://doi.org/10.1016/j.gca.2013.09.012
- 930 Kendrick, M. A., Jackson, M. G., Kent, A. J., Hauri, E. H., Wallace, P. J., & Woodhead, J. (2014).
- Ontrasting behaviours of CO₂, S, H₂O and halogens (F, Cl, Br, and I) in enriched-mantle melts from
- 932 Pitcairn and Society seamounts. *Chemical Geology*, 370, 69–81.
- 933 https://doi.org/10.1016/j.chemgeo.2014.01.019
- Kendrick, M. A., Hémond, C., Kamenetsky, V. S., Danyushevsky, L., Devey, C. W., Rodemann, T.,
- Jackson, M. G., & Perfit, M. R. (2017). Seawater cycled throughout Earth's mantle in partially
- 936 serpentinized lithosphere. *Nature Geoscience*, 10(3), 222–228. https://doi.org/10.1038/ngeo2902

- 937 Kendrick, M. A., Jackson, M. G., Hauri, E. H., & Phillips, D. (2015). The halogen (F, Cl, Br, I) and H₂O
- 938 systematics of Samoan lavas: Assimilated-seawater, EM2 and high-3He/4He components. Earth and
- 939 *Planetary Science Letters*, 410, 197–209. https://doi.org/10.1016/j.epsl.2014.11.026
- 940 Kent, A. J. R., Clague, D. A., Honda, M., Stolper, E. M., Hutcheon, I. D., & Norman, M. D. (1999a).
- Widespread assimilation of a seawater-derived component at Loihi Seamount, Hawaii. Geochimica et
- 942 *Cosmochimica Acta*, 63(18), 2749–2761. https://doi.org/10.1016/S0016-7037(99)00215-X
- 943 Kent, A. J. R., Norman, M. D., Hutcheon, I. D., & Stolper, E. M. (1999b). Assimilation of seawater-
- derived components in an oceanic volcano: evidence from matrix glasses and glass inclusions from Loihi
- 945 seamount, Hawaii. Chemical Geology, 156(1-4), 299-319. https://doi.org/10.1016/S0009-
- 946 2541(98)00188-0
- 947 Kent, A. J. R., Peate, D. W., Newman, S., Stolper, E. M., & Pearce, J. A. (2002). Chlorine in submarine
- 948 glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived
- 949 fluids. Earth and Planetary Science Letters, 202(2), 361–377. https://doi.org/10.1016/S0012-
- 950 821X(02)00786-0
- 951 Koleszar, A. M., Saal, A. E., Hauri, E. H., Nagle, A. N., Liang, Y., & Kurz, M. D. (2009). The volatile
- ontents of the Galapagos plume; evidence for H₂O and F open system behavior in melt inclusions. *Earth*
- 953 and Planetary Science Letters, 287(3–4), 442–452. https://doi.org/10.1016/j.epsl.2009.08.029
- Labidi, J., Cartigny, P., & Jackson, M. G. (2015). Multiple sulfur isotope composition of oxidized
- Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics. Earth and
- 956 *Planetary Science Letters*, 417, 28–39. https://doi.org/10.1016/j.epsl.2015.02.004
- 957 Lassiter, J. C., Hauri, E. H., Nikogosian, I. K., & Barsczus, H. G. (2002). Chlorine–potassium variations
- 958 in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the
- mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters,
- 960 202(3–4), 525–540. https://doi.org/10.1016/S0012-821X(02)00826-9
- Le Roux, P. J., Shirey, S. B., Hauri, E. H., Perfit, M. R., & Bender, J. F. (2006). The effects of variable
- sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N):
- 963 Evidence from volatiles (H₂O, CO₂, S) and halogens (F, Cl). Earth and Planetary Science Letters, 251(3–
- 964 4), 209–231. https://doi.org/10.1016/j.epsl.2006.09.012
- Le Voyer, M., Kelley, K. A., Cottrell, E., & Hauri, E. H. (2017). Heterogeneity in mantle carbon content
- 966 from CO₂-undersaturated basalts. *Nature Communications*, 8(1), 14062.
- 967 https://doi.org/10.1038/ncomms14062
- Le Voyer, M., Hauri, E.H., Cottrell, E., Kelley, K.A., Salters, V.J., Langmuir, C.H., Hilton, D.R., Barry,
- 969 P.H. & Füri, E. (2019). Carbon fluxes and primary magma CO₂ contents along the global mid-ocean ridge
- 970 system. Geochemistry, Geophysics, Geosystems, 20(3), 1387–1424.
- 971 https://doi.org/10.1029/2018GC007630


- Loewen, M. W., Graham, D. W., Bindeman, I. N., Lupton, J. E., & Garcia, M. O. (2019). Hydrogen
- 973 isotopes in high ³He/⁴He submarine basalts: Primordial vs. recycled water and the veil of mantle
- enrichment. Earth and Planetary Science Letters, 508, 62–73. https://doi.org/10.1016/j.epsl.2018.12.012
- 975 Machida, S., Hirano, N., Sumino, H., Hirata, T., Yoneda, S. & Kato, Y. (2015). Petit-spot geology reveals
- melts in upper-most asthenosphere dragged by lithosphere. Earth and Planetary Science Letters, 426,
- 977 267–279. https://doi.org/10.1016/j.epsl.2015.06.018
- 978 Matthews, S., Shorttle, O., Maclennan, J., & Rudge, J. F. (2021). The global melt inclusion C/Ba array:
- 979 Mantle variability, melting process, or degassing?. *Geochimica et Cosmochimica Acta*, 293, 525–543.
- 980 https://doi.org/10.1016/j.gca.2020.09.030
- 981 McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223-
- 982 253. https://doi.org/10.1016/0009-2541(94)00140-4
- 983 Métrich, N., Zanon, V., Créon, L., Hildenbrand, A., Moreira, M., & Marques, F. O. (2014). Is the 'Azores
- hotspot'a wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of Pico basalts.
- 985 *Journal of Petrology*, 55(2), 377–393. https://doi.org/10.1093/petrology/egt071
- 986 Miller, W. G., Maclennan, J., Shorttle, O., Gaetani, G. A., Le Roux, V., & Klein, F. (2019). Estimating
- 987 the carbon content of the deep mantle with Icelandic melt inclusions. Earth and Planetary Science
- 988 *Letters*, *523*, 115699. https://doi.org/10.1016/j.epsl.2019.07.002
- 989 Michael, P. (1995). Regionally distinctive sources of depleted MORB: Evidence from trace elements and
- 990 H₂O. Earth and Planetary Science Letters, 131(3-4), 301–320. https://doi.org/10.1016/0012-
- 991 821X(95)00023-6
- 992 Michael, P. J., & Graham, D. W. (2015). The behavior and concentration of CO₂ in the suboceanic
- 993 mantle: Inferences from undegassed ocean ridge and ocean island basalts. *Lithos*, 236, 338–351.
- 994 https://doi.org/10.1016/j.lithos.2015.08.020
- 995 Moore, L.R., Gazel, E., Tuohy, R., Lloyd, A.S., Esposito, R., Steele-MacInnis, M., Hauri, E.H., Wallace,
- 996 P.J., Plank, T. & Bodnar, R.J. (2015). Bubbles matter: An assessment of the contribution of vapor bubbles
- 997 to melt inclusion volatile budgets. American Mineralogist, 100(4), 806–823. https://doi.org/10.2138/am-
- 998 2015-5036
- 999 Portnyagin, M., Almeev, R., Matveev, S., & Holtz, F. (2008). Experimental evidence for rapid water
- exchange between melt inclusions in olivine and host magma. Earth and Planetary Science Letters,
- 1001 272(3–4), 541–552. https://doi.org/10.1016/j.epsl.2008.05.020
- Portnyagin, M., Hoernle, K., Plechov, P., Mironov, N., & Khubunaya, S. (2007). Constraints on mantle
- melting and composition and nature of slab components in volcanic arcs from volatiles (H₂O, S, Cl, F)
- 1004 and trace elements in melt inclusions from the Kamchatka Arc. Earth and Planetary Science
- 1005 *Letters*, 255(1-2), 53–69. https://doi.org/10.1016/j.epsl.2006.12.005
- 1006 Reinhard, A.A., Jackson, M.G., Koornneef, J.M., Rose-Koga, E.F., Blusztajn, J., Konter, J.G., Koga,
- 1007 K.T., Wallace, P.J. & Harvey, J. (2018). Sr and Nd isotopic compositions of individual olivine-hosted
- 1008 melt inclusions from Hawai'i and Samoa: Implications for the origin of isotopic heterogeneity in melt

- inclusions from OIB lavas. *Chemical Geology*, 495, 36–49.
- 1010 https://doi.org/10.1016/j.chemgeo.2018.07.034
- 1011 Roeder, P.L., & Emslie, R. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and
- 1012 *Petrology*, 29(4), 275–289. https://doi.org/10.1007/BF00371276
- 1013 Rose-Koga, E.F., Koga, K.T., Moreira, M., Vlastélic, I., Jackson, M.G., Whitehouse, M.J., Shimizu, N.,
- 4014 & Habib, N. (2017). Geochemical systematics of Pb isotopes, fluorine, and sulfur in melt inclusions from
- 1015 São Miguel, Azores. *Chemical Geology*, 458, 22–37. https://doi.org/10.1016/j.chemgeo.2017.03.024
- 1016 Rose-Koga, E.F., Koga, K.T., Schiano, P., Le Voyer, M., Shimizu, N., Whitehouse, M.J., Clocchiatti, R.,
- 1017 2012. Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen
- contents of olivine-hosted melt inclusions. *Chemical Geology*, 334, 266–279.
- 1019 https://doi.org/10.1016/j.chemgeo.2012.10.033
- 1020 Rowe, M. C., & Lassiter, J. C. (2009). Chlorine enrichment in central Rio Grande Rift basaltic melt
- inclusions: Evidence for subduction modification of the lithospheric mantle. *Geology*, 37(5), 439–442.
- 1022 https://doi.org/10.1130/G25530A.1
- Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A.,
- Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., & Zemsky, R. (2009). Global Multi-Resolution
- Topography synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014.
- 1026 https://doi.org/10.1029/2008GC002332
- 1027 Saal, A. E., Hauri, E. H., Langmuir, C. H., & Perfit, M. R. (2002). Vapour undersaturation in primitive
- mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. *Nature*, 419(6906), 451–455.
- 1029 https://doi.org/10.1038/nature01073
- 1030 Shimizu, K., Saal, A. E., Hauri, E. H., Sinton, J. M., Janney, P. E., Geshi, N., & Hékinian, R. (2023).
- 1031 High-C content and CO₂/Ba ratio of the Earth's enriched upper mantle. Geochimica et Cosmochimica
- 1032 *Acta*. https://doi.org/10.1016/j.gca.2022.10.023
- Shimizu, K., Saal, A.E., Myers, C.E., Nagle, A.N., Hauri, E.H., Forsyth, D.W., Kamenetsky, V.S., & Niu,
- 1034 Y. (2016). Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts:
- 1035 Implications for the volatile content of the Pacific upper mantle. Geochimica et Cosmochimica Acta, 176,
- 1036 44–80. https://doi.org/10.1016/j.gca.2015.10.033
- 1037 Sims, K. W. W., Hart, S.R., Reagan, M.K., Blusztajn, J., Staudigel, H., Sohn, R.A., Layne, G.D., Ball,
- 1038 L.A., & Andrews, J. (2008). 238U-230Th-226Ra-210Pb-210Po, 232Th-228Ra, and 235U-231Pa
- 1039 constraints on the ages and petrogenesis of Vailulu'u and Malumalu Lavas, Samoa. Geochemistry,
- 1040 *Geophysics, Geosystems*, 9, Q04003. https://doi.org/10.1029/2007GC001651.
- 1041 Smythe, D. J., Wood, B. J., & Kiseeva, E. S. (2017). The S content of silicate melts at sulfide saturation:
- new experiments and a model incorporating the effects of sulfide composition. American Mineralogist,
- 1043 102(4), 795–803. https://doi.org/10.2138/am-2017-5800CCBY


- Staudigel, H., Zindler, A., Hart, S. R., Leslie, T., Chen, C. Y., & Clague, D. (1984). The isotope
- systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount,
- Hawaii. Earth and Planetary Science Letters, 69(1), 13–29. https://doi.org/10.1016/0012-
- 1047 821X(84)90071-2
- Sun, C., & Dasgupta, R. (2020). Thermobarometry of CO₂-rich, silica-undersaturated melts constrains
- 1049 cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth and Planetary
- 1050 *Science Letters*, 550, 116549. https://doi.org/10.1016/j.epsl.2020.116549
- Taracsák, Z., Hartley, M. E., Burgess, R., Edmonds, M., Iddon, F., & Longpré, M. A. (2019). High fluxes
- of deep volatiles from ocean island volcanoes: Insights from El Hierro, Canary Islands. Geochimica et
- 1053 *Cosmochimica Acta*, 258, 19–36. https://doi.org/10.1016/j.gca.2019.05.020
- Wallace, P. J. (2002). Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (ODP
- Site 1140): Implications for source region compositions, magmatic processes, and plateau subsidence.
- Journal of Petrology, 43(7), 1311–1326. https://doi.org/10.1093/petrology/43.7.1311
- Wanless, V. D., & Shaw, A. M. (2012). Lower crustal crystallization and melt evolution at mid-ocean
- 1058 ridges. *Nature Geoscience*, 5(9), 651–655. https://doi.org/10.1038/ngeo1552
- Wanless, V. D., Behn, M. D., Shaw, A. M., & Plank, T. (2014). Variations in melting dynamics and
- mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted
- melt inclusions. Contributions to Mineralogy and Petrology, 167, 1–22. https://doi.org/10.1007/s00410-
- 1062 014-1005-7
- Wanless, V. D., Shaw, A. M., Behn, M. D., Soule, S. A., Escartín, J., & Hamelin, C. (2015). Magmatic
- plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions. *Geochemistry*,
- 1065 Geophysics, Geosystems, 16(1), 126–147. https://doi.org/10.1002/2014GC005517
- White, W. M., & Duncan, R. A. (1996). Geochemistry and geochronology of the Society Islands: New
- evidence for deep mantle recycling. *Geophysical Monograph-American Geophysical Union*, 95, 183–206.
- 1068 White, W. M., & Hofmann, A. W. (1982). Sr and Nd isotope geochemistry of oceanic basalts and mantle
- evolution. *Nature*, *296*(5860), 821–825. https://doi.org/10.1038/296821a0
- 1070 Wieser, P. E., Iacovino, K., Matthews, S., Moore, G., & Allison, C. M. (2022). VESIcal: 2. A Critical
- Approach to Volatile Solubility Modeling Using an Open-Source Python3 Engine. *Earth and Space*
- 1072 *Science*, 9(2), e2021EA001932. https://doi.org/10.1029/2021EA001932
- Workman, R.K., Hart, S.R., Jackson, M., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M. & Staudigel,
- H. (2004). Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-
- member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 5(4).
- 1076 https://doi.org/10.1029/2003GC000623
- Workman, R. K., Hauri, E., Hart, S. R., Wang, J., & Blusztajn, J. (2006). Volatile and trace elements in
- basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth and Planetary
- 1079 Science Letters, 241(3-4), 932-951. https://doi.org/10.1016/j.epsl.2005.10.028

Woodhead, J. D., & Devey, C. W. (1993). Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. *Earth and Planetary Science Letters*, 116(1–4), 81–99. https://doi.org/10.1016/0012-821X(93)90046-C

FIGURES

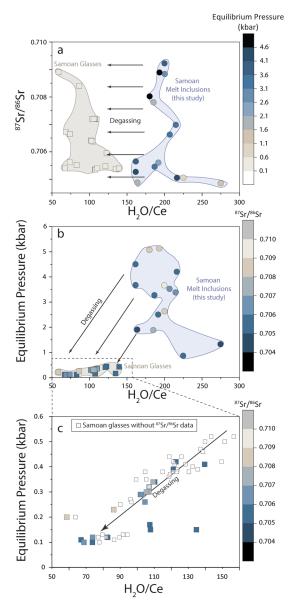


Figure 1. Map of the Samoan Islands. Red dots indicate the location of AVON3 cruise dredge sites 71 and 78, from the flanks of Vailulu'u and Malumalu, respectively. Map created using GeoMapApp (www.geomapapp.org).

Figure 2. (a–b) δD (‰), (c–d) H_2O (wt.%), and (e–f) H_2O /Ce versus melt inclusion volume (μm³). Lefthand side panels focus (zoom in) on the Malumalu melt inclusions and right-hand side panels (zoom out) to show the Vailulu'u melt inclusions. In panel (a) δD errors represent the 2σ in run measurement precision of each analysis, which is generally slightly lower than the reproducibility of the secondary standard ALV1833-1 (i.e., $\pm 16\%$, 2SD; see Table S2). Melt inclusion H_2O compositions are corrected for olivine addition/subtraction to be in equilibrium with the host olivine (olivine correction is as in Section 2 of the main text). Measurement errors for H_2O , and reproducibility of H_2O analyses on ALV1833-1, are smaller than the data symbol (see Table S2). As discussed in Section 3 of the text, we infer that the volatile contents of eleven melt inclusions shown in this figure have been compromised in one of several ways—hydrogen diffusion loss (and resultant elevated δD), breaching, large vapor bubbles, extremely high Cl concentrations, presence of carbonate, and/or missing Raman-based CO_2 data—and are marked with an "x" symbol. With the exception of the high Cl melt inclusion (which is individually identified in

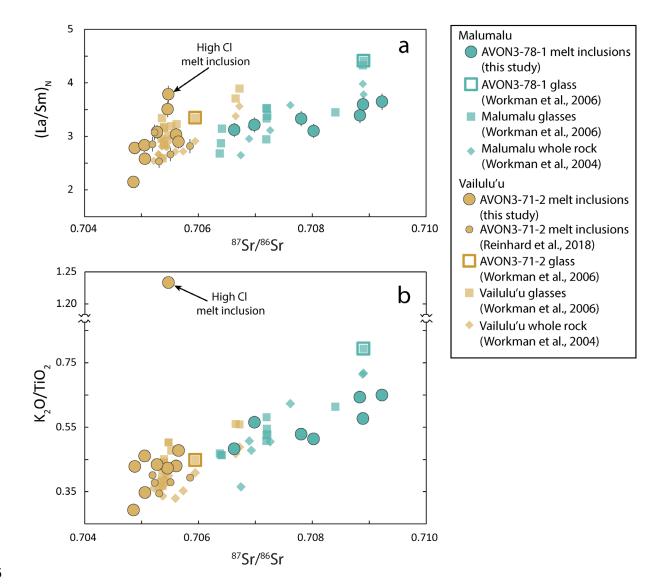
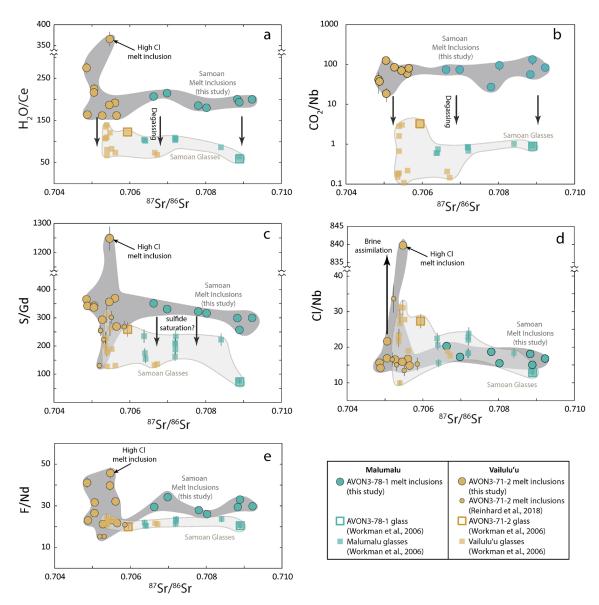
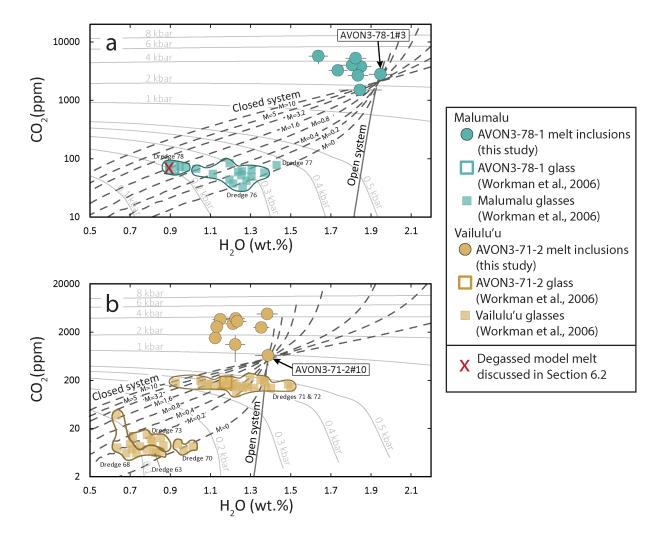
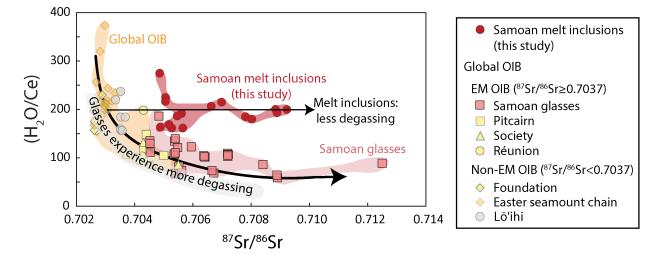

figures throughout the paper), the compromised melt inclusions are not shown in subsequent volatile element figures.

Figure 3. ⁸⁷Sr/⁸⁶Sr, H₂O/Ce, and equilibrium pressure for submarine pillow glasses from Malumalu and Vailulu'u seamounts are compared with melt inclusions from Malumalu sample AVON3-78-1 and Vailulu'u sample AVON3-71-2. (a) ⁸⁷Sr/⁸⁶Sr versus H₂O/Ce for Samoan melt inclusions and glasses with the color bar representing equilibrium pressure (kbar). The pillow glass data show separation in H₂O/Ce from the melt inclusion data, even though both datasets span a similar range in ⁸⁷Sr/⁸⁶Sr. Circles represent melt inclusions and squares represent Samoan pillow glasses from Workman et al. (2006). Melt inclusions in this figure do not include any volatile-compromised melt inclusions (as shown in Figure 2). The equilibrium pressure of pillow glasses and melt inclusions was calculated using VESIcal's MagmaSat model (Iacovino et al., 2021; Wieser et al., 2022) assuming oxygen fugacity (QFM) and temperature (1200°C). Samoan pillow glass data are from Workman et al. (2006), except major elements used to calculate equilibrium pressure for AVON3-71-2 and AVON3-78-1 (which are from Kendrick et al.,


2015). (b) Equilibrium pressure versus H_2O/Ce for Samoan melt inclusions and pillow glasses with the color bar representing $^{87}Sr/^{86}Sr$. (c) Expanded view of panel b that shows equilibrium pressure versus H_2O/Ce for Samoan pillow glasses only. Smaller square data points with black outlines are pillow glasses lacking $^{87}Sr/^{86}Sr$ data. Only samples with CO_2 - H_2O saturation pressures ≥ 0.1 kbar are shown (just one Samoan glass with $^{87}Sr/^{86}Sr$ data has a saturation pressure < 0.1 kbar, sample AVON3-68-03 Rpt, so its removal does not significantly impact the dataset).


Figure 4. Incompatible trace element ratios versus 87 Sr/ 86 Sr are shown for Samoan pillow glasses from Malumalu and Vailulu'u seamounts and new melt inclusion data from Malumalu sample AVON3-78-1 and Vailulu'u sample AVON3-71-2. The melt inclusions have incompatible trace element ratios and 87 Sr/ 86 Sr compositions that fall within the range identified in Samoan pillow glasses, indicating that the Samoan melt inclusions sample melts represented by the pillow glass dataset. (a) $(La/Sm)_N$ versus 87 Sr/ 86 Sr, where N signifies normalization to primitive mantle (McDonough & Sun, 1995). (b) K_2 O/TiO₂

versus 87 Sr/ 86 Sr. Data for Samoan pillow glasses are from Workman et al. (2006) and Kendrick et al. (2015). Error bars for La/Sm (4.2%) are shown for the melt inclusions and are calculated as ((La error)²+(Sm error)²)0.5, where the 2RSD of the secondary standard BCR-2 is used for La error (1.9%) and Sm error (3.8%) (see Table S2). Error bars on K_2O/TiO_2 are smaller than the data symbols. Melt inclusions that are compromised with respect to their volatile contents are not shown, except for the high Cl melt inclusion.


Figure 5. Element ratios (volatile/incompatible trace element) are plotted against ⁸⁷Sr/⁸⁶Sr for Samoan pillow glasses from Malumalu and Vailulu'u seamounts and the new melt inclusion data from Malumalu sample AVON3-78-1 and Vailulu'u sample AVON3-71-2. See Supplementary Text section S1.6 for a discussion on the calculation of the errors associated with the element ratios presented here; the error bars for the ⁸⁷Sr/⁸⁶Sr of Samoan glasses and melt inclusions are smaller than the symbol size. Melt inclusions that are compromised with respect to their volatile contents (as shown in Figure 2) are not

shown. Only samples with CO_2 - H_2O saturation pressures ≥ 0.1 kbar are shown (just one Samoan glass with 87 Sr/ 86 Sr data has a saturation pressure <0.1 kbar, sample AVON3-68-03 Rpt, so its removal does not significantly impact the dataset).

Figure 6. CO₂ versus H₂O for (a) melt inclusions from Malumalu sample AVON3-78-1 and all glasses from Malumalu seamount and (b) melt inclusions from Vailulu'u sample AVON3-71-2 and all glasses from Vailulu'u seamount. Melt inclusion data are from this study and Samoan glass data are from Workman et al. (2006) and the data are shown in fields separated by the dredge number (which is provided next to the relevant field). Isobars are calculated using MagmaSat for an average melt inclusion composition of each sample at 1200°C. Closed system degassing curves are calculated with varying values for M (where "M" represents mass fraction of equilibrium fluid in the magma; e.g., M=1.6 means there was 1.6 wt.% of fluid in the magma before degassing). Degassing trends assume an oxygen fugacity (QFM) and temperature (1200°C) and are calculated in rhyolite-MELTS v1.2 using H₂O and CO₂ compositions that match the highest H₂O melt inclusions in the respective panels (i.e., Malumalu melt inclusion AVON3-78-

1#3 in the upper panel, and Vailulu'u melt inclusion AVON3-71-2#10 in the lower panel); other compositions used in the degassing calculation are in Table S9. Melt inclusion CO₂ and H₂O concentrations shown are values that have been corrected to be in equilibrium with the host olivine. Volatile-compromised melt inclusions (as shown in Figure 2) are not included in this figure.

1166

1167

1168

1169

11701171

1172

11731174

1175

11761177

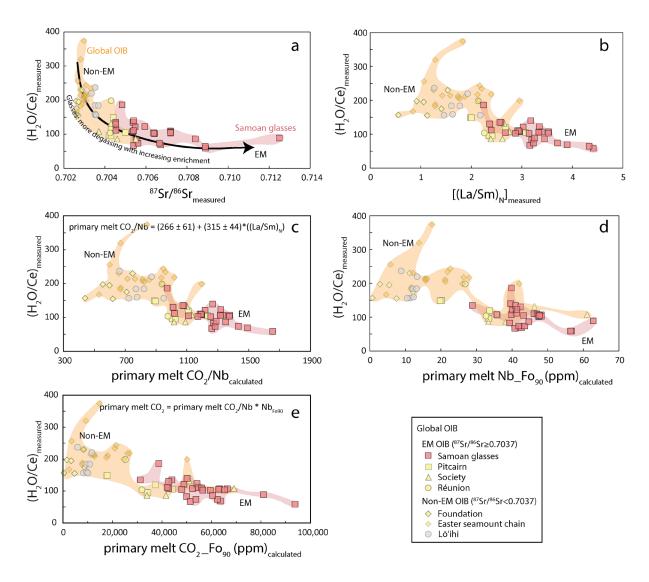
1178

1179

1180

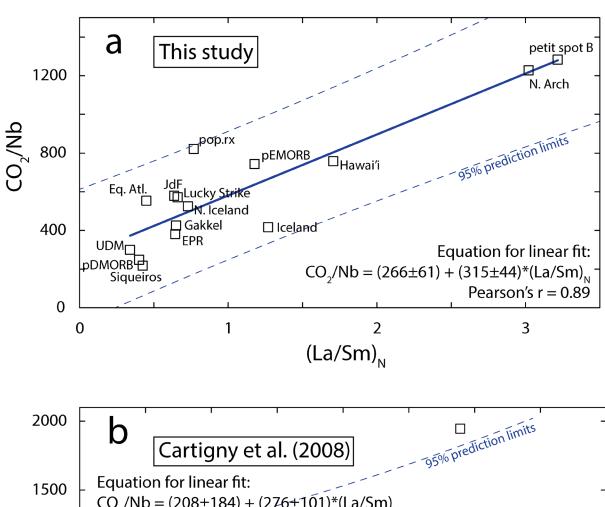
1181

11821183


1184

1162

1163


1164

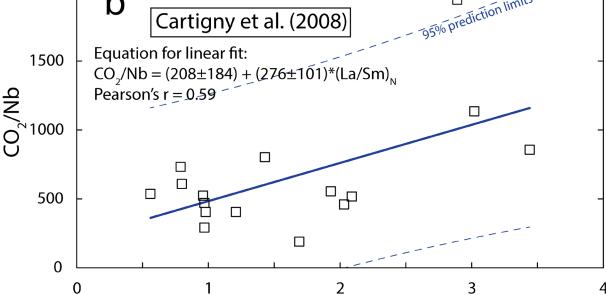
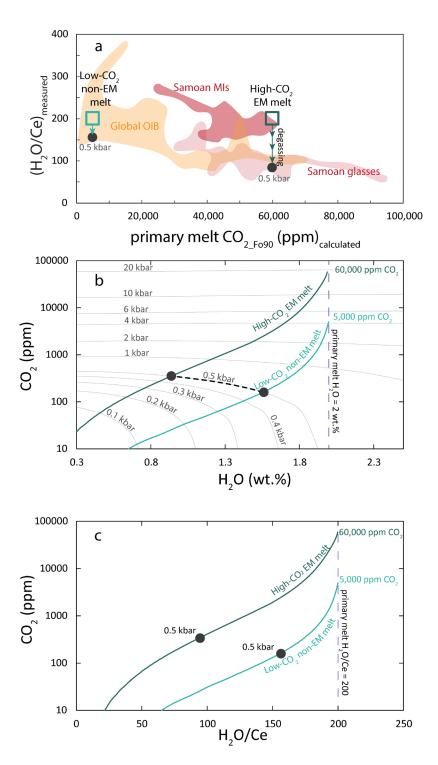

Figure 7. Samoan melt inclusions and pillow glasses compared to a global dataset of submarine OIB glasses. Samoan melt inclusions—protected from the extensive degassing experienced by Samoan glasses—have higher H₂O/Ce than Samoan pillow glasses, and thus fall off of the global submarine OIB pillow glass trend that shows decreasing H₂O/Ce with increasing ⁸⁷Sr/⁸⁶Sr. Only OIB glasses with ⁸⁷Sr/⁸⁶Sr (to establish the level of source enrichment) and MgO > 4.5 wt.% (to minimize the impact of fractional crystallization) are shown. Sources of data (see Table S11): Pitcairn (Kendrick et al., 2014; Woodhead & Devey, 1993), Society (Devey et al., 1990; Kendrick et al., 2014), Réunion (Kendrick et al., 2017; Fretzdorf & Haase, 2002), Foundation (Kendrick et al., 2017), Easter seamount chain (Dixon et al., 2002), Lō'ihi (Dixon & Clague, 2001; Staudigel et al., 1984). Samples from Pitcairn, Society, Réunion, and Foundation can be found in a data compilation by Kendrick et al. (2017). Samples marked as having experienced assimilation of seawater Cl in Kendrick et al. (2017) are excluded. However, unlike Dixon et al. (2002), we do not use H₂O/Ce as a filter for assimilation. Samoan pillow glasses include submarine glasses characterized for 87 Sr/86 Sr from Vailulu'u, Malumalu, Tupito (formerly known as Muli), Taumatau, and Ta'u (Kendrick et al., 2015; Workman et al., 2006). Volatile-compromised melt inclusions (as shown in Figure 2) are not shown. Melt inclusions from other OIB localities are not shown because there are no other OIB melt inclusions characterized for both 87Sr/86Sr and H₂O/Ce. Only samples with CO₂-H₂O saturation pressures ≥0.1 kbar are shown (just one Samoan glass with ⁸⁷Sr/⁸⁶Sr data has a saturation pressure <0.1 kbar, sample AVON3-68-03 Rpt, so its removal does not significantly impact the dataset).

Figure 8. Samoan pillow glasses compared to a global dataset of submarine OIB glasses, which show a trend of decreasing 12 O/Ce with increasing 12 Sr/ 12 Sr. The exact same OIB dataset is shown in all panels: only OIB with 12 Sr/ 12 Sr data (to establish the level of source enrichment) and MgO > 4.5 wt.% (to minimize the impact of fractional crystallization) are shown. (a) 12 O/Ce versus 12 Sr/ 12 Sr. (b) 12 O/Ce versus primary melt 12 CO₂Nb, where 12 CO₂Nb is calculated from the measured (La/Sm)N ratios using a linear fit between 12 CO₂Nb and (La/Sm)N (see equation shown in panel c) that is produced from a global data compilation of least degassed glasses and melt inclusions from OIB and MORB in Figure 9. (d) 12 CO/Ce versus calculated primary melt Nb for each sample, where primary melt Nb is calculated by olivine addition (or subtraction) from melt—following methods in text—until the melt is in equilibrium with 12 PO/Ce versus calculated primary melt CO₂, where the CO₂ is calculated for each lava by multiplying the calculated 12 CO (panel c) with the calculated primary melt Nb (panel d) (see equation in panel e). The same sources of data and data treatment as that described in the Figure 7 caption are used here. The calculated primary melt 12 CO₂Nb and 12 CO₂-Fo₉₀ (ppm) values for the global OIB data set presented here are given in Table S11. Only samples with CO₂-H₂O saturation

pressures \geq 0.1 kbar are shown (just one Samoan glass with 87 Sr/ 86 Sr data has a saturation pressure <0.1 kbar, sample AVON3-68-03 Rpt, so its removal does not significantly impact the dataset).



(La/Sm)_N

1204 Figure 9. (a) Linear fit (blue line) of global MORB and OIB glasses and melt inclusions with respect to 1205 CO₂/Nb and (La/Sm)_N. Data compilation is the same as what is presented in Figure 1 of Hirschmann 1206 (2018). The values for CO₂/Nb and (La/Sm)_N in panel (a) are given in Table S10. The blue dashed lines 1207 represent the 95% prediction interval. The 95% confidence interval of the linear fit is given with the 1208 equation of the linear fit. The linear relationship calculated in panel a is used to estimate the CO₂/Nb 1209 values for glasses and melt inclusions in Figure 8. (b) Linear fit (blue line) to the Mid-Atlantic Ridge 1210 CO₂/Nb versus (La/Sm)_N data from Cartigny et al. (2008). The blue dashed lines are the 95% prediction 1211 bands for the linear fit using Cartigny et al. (2008) data. Sources of data for panel a: L. Strike (Lucky 1212 Strike): Wanless et al. (2015); JdF, EPR (Juan de Fuca, East Pacific Rise): Wanless and Shaw (2012); 1213 Gakkel: Wanless et al. (2014); Siqueiros: Saal et al. (2002); pEMORB and pDMORB (Pacific enriched and depleted MORB): Shimizu et al. (2016); UDM (ultra-depleted MORB): Michael and Graham (2015); 1214 1215 pop.rx (North Atlantic popping rocks): Cartigny et al. (2008); Eq. Atl. (Equatorial Atlantic): Le Voyer et al. 1216 (2017); Iceland: Hartley et al. (2014), Neave et al. (2014); N. Iceland (Borgarhraun): Hauri et al. (2018); N. 1217 Arch (North Arch, Hawai'i): Dixon et al. (1997), Frey et al. (2000); Hawai'i (Kīlauea): Anderson and Poland 1218 (2017); Petit Spot B (Western Pacific seamounts): Machida et al. (2015).

1219

Figure 10. Figure illustrating how submarine glasses from enriched mantle (EM) sources acquire low H_2O/Ce relative to glasses from non-EM sources. We test two melt compositions that are identical in every way (major and trace element compositions are identical and H_2O is 2 wt.%) except for CO_2 , where one melt starts with 60,000 ppm CO_2 (meant to represent an EM melt) and the other melt starts with 5000 ppm CO_2 (meant to represent the non-EM melt). (a) H_2O/Ce versus primary melt CO_2 , reproduced in cartoon form from Figure 8e. The black circle indicates the H_2O/Ce value for melts at 0.5 kbar after

1227	degassing. (b) In a plot of CO ₂ versus H ₂ O, modeled closed system degassing paths show the impact of
1228	varying initial CO ₂ on a melt that has the same initial H ₂ O content of 2 wt.%. While both melts start with
1229	the same initial H ₂ O, those with higher initial CO ₂ degas more H ₂ O and have lower H ₂ O at a given isobar
1230	compared to a melt that has lower initial CO ₂ , demonstrating how higher initial CO ₂ results in lower H ₂ O
1231	(and lower H ₂ O/Ce) in the erupted lavas. Degassing trends assume oxygen fugacity (QFM) and
1232	temperature (1200°C) and are calculated in rhyolite-MELTS v1.2 using AVON3-78-1#3 major element
1233	melt inclusion composition. Bottom panel shows the same degassing paths as the upper panels but
1234	shows H ₂ O/Ce instead of H ₂ O. Calculation of H ₂ O/Ce along the degassing paths assumes 1) an initial
1235	H ₂ O/Ce value of 200 (similar to the average H ₂ O/Ce value of Samoan melt inclusions examined here) and
1236	2) a constant melt Ce concentration (100 ppm) that is calculated using the initial H ₂ O/Ce ratio (i.e., 200)
1237	and the initial H ₂ O (2 wt.%). Similar to the relationship between CO ₂ and H ₂ O for high and low CO ₂ melts,
1238	at a given isobar the melt with high initial CO ₂ has significantly lower H ₂ O/Ce compared to the melt with
1239	lower initial CO ₂ . Isobars are calculated using MagmaSat for the average Malumalu melt inclusion
1240	composition at 1200°C. We consider only the case of M=0 to highlight the role of initial CO ₂ and
1241	saturation pressure on the H₂O content of a glass, and non-zero M values would result in even more
1242	rapid H₂O loss.
1243	
1244	