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A B S T R A C T   

Laboratory measurements of the brightness and linear polarization of the light scattered by clouds of particles are 
necessary to interpret remote sensing measurements of dust in space and in planetary atmospheres. For 30 years, 
such laboratory measurements were conducted by the PROGRA2 project for particles with different natures, sizes 
and shapes. The resulting database contains the brightness and linear polarization curves for 170 samples and at 
4 wavelengths in the visible and near infra-red domains. The samples cover most of the particles that we expect 
to find in space and in planetary atmospheres. The particles can be compact, porous or aggregated, with sizes up 
to hundreds of µm; the monomers of aggregates can have sizes as small as 10 nm. The measurements were 
obtained for clouds of randomly oriented particles levitated on the ground conditions by an air draught tech
nique, and under microgravity conditions during parabolic flights. Complementary measurements were obtained 
for deposited particles in layers to compare the main characteristics of the phase curves using the same sample. 
After a description of the instruments and of the samples under study, we present the database and the main 
results already obtained with PROGRA2. The phase curves often differ for deposited and levitating particles. 
Such phase curves are related to different physical properties of the particles, and can be compared to modelling 
calculations. In case of agregated particles, we discuss the influence of the monomers on the phase curves. 
Finally, the main results obtained for dust analogs of differents object of the solar system are compared to 
observations.   

1. Introduction 

Clouds of solid particles can be found almost everywhere in space, 
and the modifications of the incoming non-polarized light they scatter 
can be studied in the visible and near infra-red domains (such light 
sources are the Sun for solar system bodies and the central star for debris 
or dust disks). A cloud can be defined as an ensemble of particles in 
suspension (or in levitation); in the present study, the particles are 
compact or aggregated solid grains and must also be randomly oriented. 
The measurements of the evolution of the scattered brightness and linear 
polarization with the scattering angle Θ, or the phase angle α (α = 180◦ - 
Θ) by such clouds of particles can provide access to some of their 
physical properties, such as albedo, mean size, refractive index, 
porosity, and main composition. These measurements constitute the 

scattering or phase curves. They require a specific geometry for the 
illumination and the sensors, to be able to cover most of the 0◦− 180◦

range, or at least the 10◦− 110◦ range where information was studied for 
most of the solar system objects [1,2]. In the following, we will use the 
phase angle instead of the scattering angle since it is commonly used by 
the planetary science community. 

The objects forming clouds of solid particles in the solar system for 
which phase curves are well-established are comets [3–6], zodiacal 
cloud [7–9], the Titan atmosphere [10,11], and solid particles in the 
Earth stratosphere [12]. Recently, phase curves have been obtained for 
very distant objects, the debris disks around young stars [13–15]. 

Phase curves are also obtained for asteroids [16–18] or for the sur
face of objects without a thick atmosphere covered by dust, such as the 
Moon [19]. In this case, multiple scattering between the particles may 
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occur and is dependent on the number density of the particles and on 
their absorption. 

To interpret such remote-sensing measurements, laboratory experi
ments with representative particles are necessary for well-documented 
samples and mixtures thereof. These particles should have different 
physical properties and compositions as close as possible to those 
encountered in space and in atmospheres. When the shape of the par
ticles is not symmetrical, their individual scattering properties can 
strongly vary from one particle to another, due to their irregular shape 
and structure, and to the difference between the refractive indices of 
their materials. Thus, individual particles must not be considered for 
laboratory measurements to simulate complex clouds of particles. On 
the other hand, when considering at least a few dozen particles having 
random orientations, and when integrating their individual contribu
tions, one can retrieve the mean scattering properties of the cloud, using 
statistical approaches [20]. 

Different laboratory experiments have been developed to retrieve the 
phase curves of levitating clouds of randomly oriented particles in the 
visible and near infrared domains, and thus to build up databases 
[21–27]. The measurements must be performed for levitated particles, 
since their polarization curves can strongly differ from those for 
deposited particles [25]. Levitation of randomly oriented particles can 
be achieved by different techniques. The first one is by an airflow that 
lifts and carries the particles, although such a method could in some 
particular conditions orient the compact particles larger than several 
tens of µm for some particular set-ups where the air speed is greater than 
about 5 m.s− 1 [28]. Another method consists of lifting the particles by a 
low-speed air draught inside a vial; such a method works for µm-sized 
particles and/or high-porosity aggregates [29,30]. Finally, for large 
compact particles and for aggregates, levitation can be easily obtained 
under microgravity conditions for particles sealed in a vial under vac
uum [31]. 

We present here the PROGRA2 database that contains linear polar
ization and brightness phase curves in the visible and near infrared 
domain, and for a large variety of samples (transparent to very 
absorbing particles, compact to fluffy particles, and their mixture) to 
simulate different media in the solar system. The measurements of 
levitating particles were obtained at ground by the air draught 

technique or under microgravity conditions, depending on the size and 
density of the particles. Complementary measurements were also car
ried out for deposited particles, to point out the main differences with 
the scattered properties of levitating particles and compare them with 
remote observations of some solar system bodies. 

2. The PROGRA2 instruments 

The project started in 1993 and ended in 2022. Three versions of the 
instrument were developed: PROGRA2-Vis for measurements in the 
visible domain, PROGRA2-IR for measurements in the near infrared 
domain, and PROGRA2-Surf for measurements in the visible domain of 
deposited particles (PROGRA2 is a French acronym for optical proper
ties of astronomical and atmospheric particles). All these instruments 
are transportable and can be used for particles of different kinds (even 
dangerous ones like asbestos, in this case a specific design to prevent 
them from being released in the ambient air must be used). 

PROGRA2-Vis and IR use the same measurement principle (Fig. 1). 
The light sources were initially randomly polarized lasers and, in a later 
version of the instruments, a white lamp combined with a depolarizer 
and spectral filters to select the wavelength. The wavelengths are 540 
nm, 640 nm, 950 nm and 1500 nm. An optical fiber carries the light to 
the vial in which the particles are contained. The particles scatter the 
light when they are lifted and cross the light beam. A polarizing beam 
splitter cube splits the scattered light in its components, parallel and 
perpendicular to the scattering plane. The fluxes are recorded by two 
detectors having the same field of view. The vial is mounted on a rota
tional device; thus the incident light beam and the vial rotate together to 
change the phase angle in the 10◦− 165◦ range. With such a configura
tion, the detection system remains in a fixed position, to minimize the 
optical misalignment that can occur when the experiment is extensively 
used. Before 2000, the detectors for PROGRA2-Vis were photodiodes but 
were replaced by CCD cameras after 2000. A third CCD camera is 
mounted on the rotational device to record the scattered light at a 
constant phase angle of 90◦, which acts as a reference point to normalize 
the flux recorded by the 2 other cameras. This design allows to retrieve 
both polarization and brightness phase curves simultaneously. For 
PROGRA2-IR, only 2 cameras are used (no reference camera is present 

Fig. 1. Optical design and measurements with PROGR2-VIS. For PROGRA2-IR, no reference camera is present.  
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because of some mechanical constraints), thus only the polarization 
curve can be retrieved. Such an imaging system allows rejecting the 
images for which the number density of particles is too large, producing 
therebymultiple scattering that can affect the accuracy of the analysis. 
Tests have been conducted to define an automatic image rejection cri
terion, based on the number of particles that are present in the field of 
view. The system is integrated inside an optical compratment that can be 
sealed to ensure that straylight is does not enter the device. 

Levitation is produced by two different methods. The air draught 
method consists of creating a small airflow along the wall of the vial to 
gently lift the particles (usually smaller than about 20 µm). The particles 
are deposited initially on the bottom of the vial and levitate due to the 
airflow, for at least several seconds. When using submicron-sized par
ticles or aggregates of submicron grains, the levitation can last several 
minutes. For largest particles, typically greater than 20 µm for dense 
grains and several tens of µm for aggregates, the levitation is obtained 
during parabolic flights onboard dedicated planes (Caravelle ZeroG, 
NASA KC-135, A300 ZeroG, A310 ZeroG, see Fig. 2a). These campaigns 
were managed by the Novespace company and were funded by the 
French space agency (CNES) and by the European space agency (ESA). 
During the 30 years of the project, PROGRA2 has participated in 67 
campaigns and has undergone 6050 parabolas. 

Microgravity conditions occur during each parabola, for which 
measurements are obtained at a fixed phase angle. Then, the phase angle 
is changed, typically by steps of 5◦ or 10◦, and a new measurement is 
obtained during the next parabola. A phase curve can be described by 20 
such points; thus 20 series of measurements are necessary per sample 
and per wavelength. Small concentrations of particles are necessary to 
produce optically thin media avoiding multiple scattering. However, a 
minimal number of particles is required to achieve statistically signifi
cant random orientations [20]. 

PROGRA2-Surf uses a different configuration for measurements 
performed in the laboratory (Fig. 2b). The sample is contained in a cup 
that is deposited on the plane surface. Both light source and detection 
system (cameras + beam splitter) can be rotated manually by steps of 5◦

and 10◦ The measurements are usually obtained with a specular 
configuration, i.e. where the angles between the light source and the 
detectors are symmetrical with respect to the vertical direction. As with 
the other PROGRA2 instruments, the detectors are CCD cameras. 

The flux scattered by the sample is recorded by the detectors at fixed 
phase angles. The polarized components I1 and I2 are the scattered flux 
perpendicular and parallel to the scattering plane, respectively. For 
PROGRA2-Vis, I3 is the flux recorded by the reference camera. For the 3 
versions of the experiment, the linear polarization P is calculated by: 

P(%) = 100 × (I1 − I2)/(I1 + I2) (1) 

For PROGRA2-Vis, the brightness is calculated by: 

B(relativeunits) = (I1 + I2)/I3 (2) 

Such normalization prevents accurate retrieval of the brightness at 
the smallest and largest phase angles. For geometrical reasons, the field 
of view and the spatial resolution of the polarization cameras change 
when reaching extreme angles, while the field of view remains constant 
for the reference camera. 

For PROGRA2-surf, since the particles do not move inside the cup 
during the measurement sessions, the brightness can be calculated by: 

B(relativeunits) = (I1 + I2) (3) 

The error bars are derived by considering the number of particles 
detected and the amplitude of the scattered flux recorded by the po
larization cameras, and standard deviation calculations. They are of the 
order of 1–2 % for measurements in the visible domain and of 5 % in the 
near infrared. 

The size distribution for the levitating particles is established from 
the images, where the field of view was calibrated using a high- 
resolution graduated grid. Here we consider the equivalent diameter, 
which corresponds to the diameter of the particles if they were spherical. 
The observed size distribution can differ from the size distribution ob
tained by electron-microscopy in the laboratory, due to the formation of 
aggregates and agglomerates that can occur when the particles are lif
ted. During parabolic flights, the sample encounters 1.8 g periods before 
and after each parabola that provides microgravity conditions, when the 
plane is in the “pull-up” and “pull-out” phases. These hyper-gravity 
conditions can lead the particles to stick together at the bottom of the 
vial. When using the air draught technique, particles larger than 20 µm 
are also often observed, because of the aggregations processes that occur 
at the beginning of the lifting process. 

Finally, sessions of validation to assess the measurements accuracy 
were performed after each improvement of the electronics and change of 
detectors, using calibrated glass beads of 100 µm [32–34]. 

3. The PROGRA2 database 

The database is available in open access at: https://www.icare.univ- 
lille.fr/progra2/ 

The website is in English and in French. The instruments and the 
method of measurements are presented. 170 samples are available in the 
database, covering a large range of compact and fluffy particles with 
different compositions and with sizes, ranging from 10 nm for the con
stituent grains in aggregates to hundreds of µm for compact grains and 
aggregates. For some samples, the phase curves are given for different 
grain sizes. The samples under study can be grouped in different families 
(Table 1), and a significant part of the database concerns optically 
absorbing particles. 

The database provides, when available, the description of the ma
terial, images by scanning electron or transmission microscopy to 
determine the shape and the size distribution of the particles on the 
ground, the conditions of measurements, the observed size distribution 

Fig. 2. a, PROGRA2-Vis inside the A300 ZeroG plane; b: PROGRA2-Surf.  
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in the clouds, and the polarization and brightness curves at the different 
wavelengths. The experimental results are presented in the form of 
figures and tables that can be downloaded. 

The description of the conditions of measurements indicates if the 
results were obtained for particles levitated during microgravity con
ditions or by an air draught. These different conditions impact the size 
distributions, and thus the polarization and brightness curves, when 
they depend on the particles’ size. 

Fig. 3 presents an example of the results for the Lokon volcanic ashes, 
available at the 4 wavelengths, from measurements carried out in 
microgravity. Fig. 4 presents the results for aggregates of 14 nm 
monomers of carbon black, available in the visible domain, from mea
surements using the air draught method. 

The phase curves were obtained by integrating the contribution of all 
levitating particles detected by the cameras. On the other hand, the 
imaging system also allows us to retrieve the individual particles’ 
contribution for measurements in the 40◦− 140◦ range and for particles 
larger than about 50 µm. It is therefore possible to retrieve the evolution 
of the polarization and brightness values with size. Such results are not 
provided in the database since they need specific reprocessing but can be 
processed upon request to the authors. 

4. Main results already obtained from the PROGRA2 database 

4.1. Context 

Light scattering by irregular particles depends on various charac
teristics of the particles: global shape, irregularities (facets, angles), 
materials (transparency, absorption), coating by a second material, size 
of the particle, and size of their constituent grains. The size of each 
particle in the field of view is measured on the polarization images. The 
original size of the grains in the samples are measured on SEM or TEM 
images before the particles are introduced in the vial. 

The main parameters to compare laboratory phase curves to remote 
sensing curves are the maximum polarization Pmax and the minimum 
polarization Pmin, their corresponding phase angles αmax and αmin, the 
inversion angle α0 (where the sign of the polarization changes), and the 
slope at inversion h. Such curves can also be compared to input nu
merical simulations to improve the modelling approach for irregular 
grains. The polarization often provides easier interpretations than the 
brightness since the difference from one sample to another may be made 
more obvious, although the brightness phase curves can provide 

information on the structure of the particles. 

4.2. Differences between lifted and deposited particles in layers 

The first purpose of PROGRA2 was to compare the polarization and 
brightness phase curves for similar samples lifted in clouds and depos
ited in layers on a surface. Different samples were used and the char
acteristics of the curves were compared [35]. To illustrate the 
differences, the maximum amplitude of the polarization curve Pmax at a 
phase angle αmax was often considered. Pmax values can strongly differ 
depending on the materials and their refractive indices, on the size of the 
particles and on the size of their constituent grains in aggregates. Large 
particles are more optically absorbing than smaller ones and Pmax is 
usually higher then. Single scattering should only be considered for 
clouds of particles when the media is optically thin. In case of layers, 
multiple scattering between the particles may occur. When the absorp
tion increases, the multiple scattering decreases and Pmax may be similar 
for lifted small aggregates and large deposited ones [36]. Between lifted 
and deposited particles αmax may also be different, usually closer to 90◦

for lifted particles and larger for layers, mainly when the particles are 
large and transparent (up to hundreds of micrometers). When the media 
is optically thick, as for dense clouds or deposited particles, the value of 
Pmax also depends on the number density of the particles. 

4.3. Relation between the phase curves and the physical properties of the 
particles 

Systematic studies [37–40] were conducted for the evolution of po
larization with size for lifted and deposited particles in the [1–500] µm 
size range. The particles can be almost transparent (like silica and 
quartz), very absorbing (like carbon and coal), compact, or fluffy ag
gregates with porosity as high as 90 % and made of constituent grains in 
the [10–100] nm size range. 

For all kinds of samples, the variation of Pmax as a function of size of 
the grains is similar. When the size of the grains increases from 10 nm up 
to 100 nm, Pmax decreases independently of the absorption. For sizes of 
the grains larger than the wavelength, Pmax increases. The limit between 
the two regimes depends on the absorption (imaginary part of the 
refractive index). 

For compact particles or aggregates, when the size of large particles 
increases, Pmax increases up to a limit when all the light that enters the 
particle is absorbed (sometimes called saturation effect); then only the 
external surface or the external grains reflects the light. If multiple 
scattering occurs, it will be produced by the surface of the particles only. 

Other studies concern mixtures of carbon-black with silica/silicates 
fluffy aggregates in different ratios and for different sizes of the con
stituent grains (with an average size of 40 nm for each mixture). The 
resulting polarization curve mainly depends on the average size of the 
grains and on the albedo of the mixtures [39,40]. The albedo depends on 
the refractive indices, the sizes of the monomers, but also on the struc
ture of the aggregates. Indeed, size and albedo are strongly correlated, 
and disentangling their effect needs experimental works confirmed by 
numerical simulations. Nevertheless, the main parameter remains the 
size of the constituent grains in aggregates, the size of the fluffy particles 
having a smaller effect, independently of the chemical composition. 
When the average size of the grains increases, Pmax decreases. A similar 
effect is observed when compact µm-sized silica particles are added to 
the fluffy mixtures. 

The mixture of carbon black with Mg-SiO and Fe-SiO samples [39, 
40] having different shapes for the grains and the structure of the ag
gregates can be used to study the influence of the wavelength on the 
Pmax values. Except for Fe-SiO, the spectral gradient is positive for all 
single materials and for their mixtures. If 50 % of C-black is added to 50 
% of Fe-SiO, the spectral gradient is again positive, showing the influ
ence of carbonaceous materials. Also, the negative branch (P < 0) of the 
phase curves exists for all the mixtures, probably because of different 

Table 1 
The different families of grains in the PROGRA2 database.  

Families Material 

Analogs Comets, interplanetary dust, Mars, Moon, Titan 
Asbestos Actinolite, amosite, antigorite, chrysotile, crocidolite 
Ashes Industrial, volcano (Eyjafjallajökull, Etna, Lokon,) 
Beads and 

cubes 
Glass, silica, rounded cubes 

Carbonaceous Carbon black, coal (anthracite, charcoal, kerite, lignite), diamond, 
graphite 

Dusty plasmas Spheres, tholins (spherical grains and needles) 
Iron 

compounds 
Iron-silica, Iron-sulfide 

Meteorites Allegan, Allende, Aubrite, Orgueil, North West Africa 6352 and 
6445 

Minerals Alumina, basalt, boron carbide, cement, clay, loess, pyrrhotite, 
pumice stone, silica, silicates, silicon carbide, titanium oxide 

Pollens Grass: barley, corn, couch grass, fescue orchard grass, timothy 
grass, velvet grass, vernal grass, wheat 
Weed: mugwort, plantain, ragweed, wall pellitory 
Tree: alder, ash, birch, cypress, fir, hazel olive tree, plane tree 

Sand Grains from different locations, quartz 
Salts Potassium bromide, potassium chloride, sodium chloride 
Silicates AlSiOx, MgSiOx, FeSiOx, enstatite, forsterite, garnet, olivine, 

pyroxene, quartz 
Soot Ethylene, kerosene, PMMA, propane, toluene  
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size distributions of the grains and different albedo. All these studies can 
be used to choose samples that are considered as representative of 
cometary particles. 

Some intriguing results are found between the polarization for layers 
and clouds of partly transparent sands with large grains of different 
colors. Pmax for layers is systematically higher for large deposited par
ticles than for clouds independently of the materials. Conversely, for 
layers of small particles in the [5–10] µm range, the usual trend is found, 
with a decrease of Pmax by multiple scattering for the layers. Both large 
and small particles were detected when lifted, although the surface of 
the layers seem to be mainly formed by the largest grains hiding the 
smaller ones, phenomenon known as Brazil nuts effect [41], thus pro
ducing higher polarization values. 

The scattering properties of the particles depend on their size relative 

to the wavelength, thus the size parameter of the particles must be 
considered (the size parameter is equal to 2πR/λ where R is the radius of 
the particles and λ wavelength of the observation). If the refractive index 
is constant at the studied wavelengths, the differences between the po
larization phase curves are due only to the differences in the size 
parameter. If the refractive index changes with the wavelength, then the 
differences between the phase curves have to be analyzed in detail to 
interpret them (an example is given below for tholins). For aggregated 
particles composed of submicron monomers, the size parameter of the 
monomer must also be considered. Fig. 5a presents the wavelength ef
fect for the carbon black. When considering the size parameter of the 
monomers, the evolution of maximum polarization with size becomes 
almost similar in the visible domain (Fig. 5b), although some differences 
remain in the near-infrared domain, where the effect of the refractive 

Fig. 3. Figures for the Lokon (volcanic ashes) sample; the measurements were obtained in microgravity during parabolic flights. a: scanning electron microscope 
image, b: size distribution for levitating particles; c: linear polarization curve at 540 nm; d: linear polarization curve at 640 nm; e: linear polarization curve at 950 nm; 
f: linear polarization curve at 1500 nm; g: brightness curve at 540 nm; h: brightness curve at 640 nm. 
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index variability should occur. 
The variation of polarization as a function of wavelength for 

powdered meteorite Allende with compact grain’s size in the [42-500] 
µm range is of interest when compared to cometary observations. Pmax 
increases from green to red to a maximum value for a wavelength of 
1000 nm and finally decreases at 1500 nm (Fig. 6). This variation is the 
same as that observed for some comets like Hale-Bopp [5]. This varia
tion of polarization could be attributed to variations of refractive index 
related to the chemical composition of the sample and its spectroscopy 
properties. 

Dusty plasmas (tholins) can be given as an example of the link 

between physical properties of the particles and the phase curves for 
particles in the same family. Tholins can be produced from different 
ratios of CH4/N2 [43]. As the CH4/N2 ratio decreases, the color becomes 
clearer (the absorption is decreasing), the diameter of the grains in
creases, and the composition changes with an increasing content of 
amine. Such changes significantly affect the phase curves: Pmax de
creases when the size of the constituent grains in the aggregates in
creases (but remains smaller than the wavelength), Pmin increases when 
the absorption decreases, and the value of the α0 angle increases for 
decreasing CH4/N2 ratios. 

Fig. 4. Figures for the aggregates of 14-nm monomers of carbon black sample; the measurements were obtained using the air draught technique. a: transmission 
electron microscope image; b: linear polarization curve at 540 nm; c: linear polarization curve at 640 nm; d: brightness curve at 540 nm; e: brightness curve at 
640 nm. 
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4.4. Experimental and numerical models for particles with different 
shapes and structures 

Several modelling approaches have been developed to successfully 
reproduce some of the polarization curves of the PROGRA2 database. 
SiO2 µm-sized spheres were used to study the evolution of the scattering 
properties from individual spherical monomers to high porosity aggre
gates and to densely packed layers [30,44]. 

The presence of coating on glass and silica spheres shows that a thin 
layer of optically-absorbing mantle can significantly change the polari
zation curves [45]. On the opposite a transparent coating, such as ice 
mantles on the particles, appears to be very difficult to detect. 

Finally, ray-tracing methods were used to model the optical prop
erties of rounded salt cubes of several hundred of µm [46] and for B4C 
compact grains of several tens of µm having sharp edges. The experiment 
allowed estimating the complex refractive index of the material [47]. 

4.5. Analogs of dust in some objects of the solar system 

The 4 main parameters previously mentioned, Pmax, αmax, α0 and h, 
are used for the comparison of remote sensing measurements with lab
oratory analogs of dust in the solar system. The α0 angle and the zone 
where the polarization values are negative (at small phase angles), 
indicate a change in the direction of polarization [48–50]. However, 
such values are not always considered when the PROGRA2 accuracy is of 
the order of the polarization values. 

The main results for some analogs of solar system dust are given 
below. 

4.5.1. Lunar, Martian and asteroids analogs 
The NASA JSC1 analogs of materials for the Lunar or Martian sur

faces yield phase curves that are close to those obtained from remote 
sensing measurements, giving confidence on the quality of the analog 
for the main composition and size distribution [35]. 

Analogs for asteroids are tested by using powdered meteorites that 
are supposed to be fragments from the asteroids. The samples are 
currently firt sifted in the laboratory to control the size distribution. 
Compared to phase curves for asteroids, the laboratory measurements 
give some indication on the size and the composition and albedo of the 
particles. Considering both lifted particles with very high porosity and 
very absorbing materials that have similar phase curves in levitation and 
in layers, the Orgueil meteorite low density aggregates formed in 
microgravity can be considered as a good analog to confirm the presence 
of the mm-sized to cm-sized particles at the surface of the dark Near- 
Earth asteroids [42]. 

4.5.2. Analogs for cometary dust in the coma 
Some questions for the properties of dust particles in comets remain 

open. The in-situ observations (as obtained by Rosetta on comet 67P) 
give some important answers but space missions are rare and are at 
present limited to periodic comets. Remote observations are necessary to 
study a large number of comets with different dust properties and the 

Fig. 5. Linear polarization curves for black carbon. a: Polarization curves at 3 wavelengths for aggregates of carbon black with monomers of 95 nm. b: Evolution of 
the maximum polarization with the size parameter of the monomers and the wavelength. `. 

Fig. 6. Evolution of the polarization with wavelength for powered meteorite Allende; a: phase curves; b: evolution of Pmax with wavelength.  
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inhomogeneous optical properties in their coma. Discrepancies are 
noticed on the polarization phase curves mainly in the Pmax region [5, 
51]. The composition of the dust from Rosetta measurements gives a 
ratio of minerals on C-compounds of about 50 %, with a mixture of 
aggregates of different compactions, from very fluffy fractal types to 
compact ones. Irregular particles 100 µm-sized were observed with 
constituent grains having size down to 10 nm [52]. 

The analogs used in the PROGRA2 experiment are composed of 
different mixtures of silicates with various structures (fluffy and 
compact), compositions and colors, and of carbon black and coal par
ticles. Such mixtures are necessary to reproduce the different polariza
tion phase curves obtained from remote sensing observations and 
Rosetta measurements, and the typical “U-shape” brightness phase 
curve obtained for 67P/Rosetta observations [53]. 

4.5.3. Interplanetary dust analogs in the symmetry plane 
For the interplanetary dust, the decrease of the maximum polariza

tion with decreasing distance to the Sun can be explained by a decrease 
of the percentage of organic materials compared to silicate materials, as 
proposed from numerical simulations [8]. The various samples studied 
with PROGRA2, where such percentages varied, successfully reproduced 
the results of the polarization change with distance to the Sun [54]. 

4.5.4. Titan’s aerosols analogs 
The aerosols of the Titan atmosphere can be reproduced in labora

tory by tholins particles produced by the PAMPRE experiment [55]. The 
variation of the methane-nitrogen mixture composition and the duration 
of radio frequency discharge change the color and the size of the 
monomers and their composition. Aggregates of monomers smaller than 
90 nm reproduce very well the remote sensing measurements from 
spacecraft [43]. 

4.6. Solid particles in the Earth atmosphere 

Although liquid sulfate particles are the main component of aerosols 
in the Earth stratosphere, some solid particles coming from space, from 
volcanos, from biomass burning and from anthropogenic pollution, were 
detected [56]. The in-situ brightness curves obtained from 
balloon-borne measurements compared to the laboratory measurements 
of carbonaceous particles indicate that mixtures of soot and liquid sul
fate are present up to the middle stratosphere, and that soot could the 
main component of submicron particles [12] at some altitudes. 

The specific optical properties of some families of atmospheric par
ticles were studied with PROGRA2 to develop new instruments. The 
brightness curves of pollens often differ from those of non-biological 
particles [57]. Thus, specific scattering angles have been chosen to 
determine the particle concentrations and to be able to discriminate the 
various pollens families in ambient air. This is the purpose of the Bee
nose instrument [58] now produced by the Lify-Air Company. Also, 
some of the asbestos particles exhibit specific brightness phase curves; in 
particular, the chrysotile brightness curve presents a decreasing ampli
tude close to 3 orders between 15◦ and 90◦ scattering angle, because of 
the tubular shape of the particles that can act as a light trap [59]. A 
possible new instrument is still in development for the detection of 
asbestos in a container from crushed building materials. 

5. Conclusions 

The large number of studied samples at 4 wavelengths for levitated 
and deposited particles, covering the main natures and families of par
ticles that can be found in space and in planetary atmospheres, can be 
used as a reference database to interpret remote sensing scattering 
measurements by clouds and surfaces of irregular particles. The tech
niques of levitation ensure that the particles are randomly oriented, to 
be able to use the statistical approach that is necessary to retrieve the 
mean brightness and linear polarization curves. 

Numerous applications were already conducted to better determine 
some physical properties of dust in comets, in interplanetary medium, 
on asteroids’ surface, in Titan atmospheres, and for some particles in the 
Earth atmosphere. Another application of the PROGRA2 heritage is 
involved in the ICAPS project, funded by ESA, dedicated to the study of 
the agglomeration process in microgravity conditions [60,61]. As part of 
the instrumentation, the Light Scattering Unit has been developed to 
perform measurements at 3 different phase angles to follow the evolu
tion of the brightness and polarization curves during the aggregation 
processes. A flight under a ballistic Texus rocket successfully occurred in 
April 2023. 

All these results and projects plead for future space-borne instru
mentation for in situ measurements to retrieve locally on board a 
descending probe, a ballon or a drone, the phase curves of the particles 
in space and in planetary atmospheres to better characterize them [62]. 
Although the PROGRA2 project ended in 2022, meaning that no new 
measurements will be obtained with these instruments, new generations 
of instruments are in development and start to be used, as the laboratory 
spectro-gonio radiometer SHADOWS instrument that can perform 
measurements between 350 nm to 4800 nm [63]. The measurements are 
obatined at present for deposited particles, but a new version will 
measure in the near future levitating particles, using the air draught 
technique. Such instrumentation can also be used to better evaluate the 
wavelength dependance of the refractive index of the particles. 

In addition to spectroscopic measurements that provide information 
on the composition of the solid particles, the analysis of the scattered 
light can provide useful information on the size, the shape and the 
refractive index of such particles in clouds, and the PROGRA2 project 
has made a significant contribution on this topic. 
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