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A B S T R A C T
Volatile organic molecules and a complex organic refractory material were detected on the Moon
and on lunar samples. The Moon’s surface is exposed to a continuous flux of solar UV photons
and fast ions, e.g. galactic cosmic rays (GCRs), solar wind (SW), and solar energetic particles
(SEPs), that modify the physical and chemical properties of surface materials, thus challenging
the survival of organic compounds. With this in mind, the aim of this work is to estimate the
lifetime of organic compounds on the Moon’s surface under processing by energetic particles. We
performed laboratory experiments to measure the destruction cross section of selected organic
compounds, namely methane (CH4), formamide (NH2CHO), and an organic refractory residue,
under simulated Moon conditions. Volatile species were deposited at low temperature (17 - 18
K) and irradiated with energetic ions (200 keV) in an ultra-high vacuum chamber. The organic
refractory residue was produced after warming up of a CO:CH4 ice mixture irradiated with 200
keV H+ at 18 K. All the samples were analyzed in situ by infrared transmission spectroscopy. We
found that destruction cross sections are strongly affected (up to one order of magnitude) by the
dilution of a given organic in an inert matrix. Among the selected samples, organic refractory
residues are the most resistant to radiation. We estimated the lifetime of organic compounds
on the surface of the Moon by calculating the dose rate due to GCRs and SEPs at the Moon’s
orbit and by using the experimental cross section values. Taking into account impact gardening,
we also estimated the fraction of surviving organic material as a function of depth. Our results
are compatible with the detection of CH4 in the LCROSS eject plume originating from layers
deeper than about 0.7 m at the Moon’s South Pole and with the identification of complex organic
material in lunar samples collected by Apollo 17 mission.

roduction
een 1969 and 1972, Apollo missions brought back 382 kg of rocks from the lunar surface; H2O and other

species have been the subject of intense study because they offer important constraints on the Moon’s origin
lution, as well as for evaluating potential future human exploration (e.g. Jones et al., 2020, 2021; McLain et al.,
lendenen et al., 2022). Whether significant amounts of organic compounds were present was one of the most
y researched questions following the gathering of Apollo lunar samples. Interest in the nature of lunar organic
as continued to the present day, with indigenous complex organic material recently identified for the first time
lo 17 samples. Indeed, Thomas-Keprta et al. (2014) has revealed that non-terrestrial, complex organic matter
tely associated with glass beads collected during the mission. C-rich micrometeorites and interplanetary dust

s (IDPs) are described as contributors to the abiotic organic inventory of the early Earth and possibly of the
golith. Any material placed or exposed on the surface of bodies without a substantial atmosphere and a global
c field is subject to weathering by galactic cosmic rays (GCRs), solar wind (SW), and solar energetic particles
(e.g. Glotch et al., 2019). Crites et al. (2013) showed that GCR protons provide enough energy to stimulate
ry over the time available for ices to be retained in lunar cold traps (1–2 Ga); on the one hand, dose rate
ions indicate that organic synthesis is plausible well within the age of the lunar polar cold traps and that organics
at the poles of the Moon may have been produced in situ. On the other hand, several laboratory investigations

that organic matter can be destroyed by exposure to energetic ions (e.g. Gerakines et al., 2012; Gerakines and
responding author
aidal-3@student.ltu.se (G.L. Dalla Pria); maria.palumbo@inaf.it (M.E. Palumbo)
ID(s):
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Radiation-induced destruction of organic compounds on the Moon

, 2013; De Sanctis et al., 2023). In light of this, the focus of this paper is on the survival of organic compounds
etic ions on the Moon’s surface. For our study, we have selected some representative organic samples, namely
(CH4), formamide (NH2CHO) and an organic refractory residue. Many factors have influenced the choice

icals to employ: CH4 is the simplest hydrocarbon and a widely spread molecule along the line of sight to star
regions (e.g. Cruikshank et al., 2000; Grundy and Buie, 2001; Fulvio et al., 2010; Boogert et al., 2015; Barucci

rlin, 2020). In addition, proof of the presence of CH4 was found on the Moon, during LCROSS mission when
r south pole crater Cabeus was impacted by a spent Centaur rocket which caused debris, dust, and vapor to be
(Colaprete et al., 2010); from spectral fits, the authors derived a relative abundance of 0.65% for CH4 w.r.t. to
ide (NH2CHO) is a molecule that belongs to the amide family and includes a peptide bond. Several studies
that it can act as a precursor in the formation of amino and nucleic acids (Saladino et al., 2005, 2009, 2012; Pino
15), making it one of the possible players in pre-biotic chemistry. NH2CHO has been observed in cometary
nd on the comet 67P/C-G during the Rosetta mission (Bockelée-Morvan et al., 2000; Goesmann et al., 2015).
ular, Goesmann et al. (2015) reported that the abundance of this molecule can be as high as 1.8% w.r.t. water.
ore, Schutte et al. (1999) and Raunier et al. (2004) reported a tentative detection of solid formamide in the

ight of young stellar objects observed with the Infrared Space Observatory-Short Wavelength Spectrometer
S).

nic refractory residue is an organic-rich material left over after irradiation of simple ices containing C-
species (e.g. Palumbo et al., 2004; Baratta et al., 2015; Accolla et al., 2018; Baratta et al., 2019). Analysis by
spectroscopy and mass spectrometry indicate that organic refractory residues contains thousands of organic
nds, including species of relevance for Astrobiology, such as amino acids, sugars, and nucleobases (e.g. Danger
13; Meinert et al., 2016; Materese et al., 2017; Accolla et al., 2018; Nuevo et al., 2018; Urso et al., 2020). As
d by Baratta et al. (2019) organic refractory residues obtained after ion irradiation of simple ices can be

red analogues of organic matter in space. Indeed residues produced in laboratory from ion irradiation of
ce mixtures are good spectral analogue of extraterrestrial organic material detected in micrometeorites
erplanetary dust particles (IDPs) (Baratta et al., 2015; Potapov et al., 2022).

of our experimental investigations is to consider different ice mixtures or organic refractory samples
r to constrain the range of destruction cross section values of relevant compounds. In the experiments
esented, CH4 is mixed with N2. The idea is to mix CH4 in an H-poor matrix to reduce as many backward
s as possible; these would, indeed, reform CH4. On the other hand additional destruction pathways
nclude N could take place to better simulate the presence of CH4 in trace amounts. Similarly, we
ated the case of an organic-rich environment (pure NH2CHO) and the case of NH2CHO diluted in an
atrix. These extreme cases, none of which is realistic, allow us to measure the upper and lower limit of
ruction cross section. Furthermore, N2:CH4 mixtures and the organic residues are irradiated with different
mely H+, He+, and N+, at 200 keV to take into account the most abundant species in SEPs and to investigate
erence due to the impinging projectile.
nuscript is organized as follows: in §2 the experimental set-up and procedures are described, in §3 the
ental results are presented and their relevance is discussed in §4.

terials and Methods
experiments presented here have been conducted in the Laboratory for Experimental Astrophysics (LASp) at
Osservatorio Astrofisico di Catania (Italy). All the experiments are performed in an ultra-high vacuum (UHV)
r (P < 10−9 mbar), shown in Fig. 1. Ice samples are accreted on an infrared transparent substrate (KBr) placed
al contact with the final tail (cold finger) of a closed-cycle helium Cryocooler (CTI) that allows temperatures

between 17 and 300 K. Gas phase species, except than formamide, are admitted in the UHV chamber through
gas inlet shown in Fig. 1. A dedicated mixing chamber is used to prepare the gaseous mixture and to admit it

UHV chamber by means of a needle valve, resulting in a background deposition of ice onto the substrate.
thod has the advantage that the film deposited has an uniform thickness, but has the disadvantage that
se molecules can freeze out onto all cold surfaces inside the chamber. To prevent any deposition on the
e of the substrate, this is protected by a copper tube aligned with the IR beam and with the central hole
old finger (Scirè et al., 2019). During deposition the thickness of the ice sample is monitored by looking at the

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 2 of 14
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Radiation-induced destruction of organic compounds on the Moon

Figure 1: Schematic view of the experimental set-up.

nce pattern produced by a He-Ne laser beam reflected at near normal incidence by the vacuum-film and film-
e interfaces. Laser light enters and leaves the chamber through a fused silica window (labeled "multipurpose
" in Fig. 1) whose surface is parallel to the substrate inside the chamber (Urso et al., 2016; Scirè, 2017). The
f the interference curve confirms that the deposition rate is constant during accretion and, hence that,
position of the mixture is homogeneous in the ice sample. Due to its low vapor pressure, formamide was
in the UHV chamber through an inlet mounted on the multipurpose window. In this case, the thickness of the

is obtained thanks to calibration experiments previously performed (see e.g. Brucato et al., 2006). The UHV
r is directly connected to a 200 kV ion implanter (Danfysik 1080-200). The ion beam is electrostatically swept
e a uniform coverage on the target. In order to avoid a macroscopic heating of the sample, the ion current density
ained between 100 nA cm−2 and a few 𝜇A cm−2. The ion fluence (ions cm−2) is measured by integrating the
ent monitored during irradiation. After deposition, the ice mixtures are irradiated with 200 keV ions (namely

or N+). The energy deposited by incoming ions to the sample (dose, eV/16u) is calculated by multiplying
ce measured during irradiation and the stopping power (eV cm−2 per molecule) given by the SRIM software

, 1977; Ziegler et al., 1996). The thickness of the samples is kept lower than the penetration depth of impinging
order to have a rather uniform energy loss of the ions over the thickness of the ice layer. All the samples are

in situ by a Fourier Transform Infrared (FTIR) spectrometer (Bruker, Vertex 70). Spectra with a resolution
−1 and sampling of 0.25 cm−1 are taken. The substrate forms an angle of 45◦ both with the ion beam and
infrared beam coming from the IR source of the spectrometer. A hole in the cold finger allows the infrared
be transmitted through the infrared transparent substrate so that transmittance IR spectra can be easily taken
ven during ion bombardment, without tilting the sample. A rotatable polarizer placed along the path of the IR
lows to take spectra both with the electric vector parallel (P-polarized) and perpendicular (S-polarized) to the
incidence of the infrared beam. In this work, all the shown spectra are acquired in P-polarization because of
signal-to-noise ratio; indeed, the transmitted signal in P-polarization is higher than the transmitted signal in
zation (e.g. Brucato et al., 2006; Urso et al., 2017).
e mixtures
e N2:CH4=1:1 mixtures are deposited on KBr substrates at 17 K and exposed to 200 keV H+, He+ and

pectively. Pure formamide and a Ar:NH2CHO=25:1 mixture are accreted onto the cold KrB substrate at
After deposition, NH2CHO and the Ar:NH2CHO mixture were irradiated with 200 keV H+. In all cases
mittance spectra are taken at several intermediate steps of irradiation. It is known that, among others, ion
ion causes a removal of surface molecules. This effect, known as sputtering, depends on the mass and
of impinging ions (e.g. Rothard et al., 2017). While sputtering is negligible after ion irradiation with 200
tons (e.g. Loeffler et al., 2005), it is very relevant after irradiation with heavy ions (e.g. Seperuelo Duarte

010). In order to quantitatively study the destruction of original species induced by ion irradiation it is
nt to disentangle the effects of sputtering occurring at the surface from the chemical effects occurring

ulk. With this in mind, prior to irradiation a 300 nm layer of Ar was deposited on each N2:CH4 sample.

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 3 of 14
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Radiation-induced destruction of organic compounds on the Moon

layer was thick enough to avoid that sputtering affected the N2:CH4 sample after irradiation with 200
+ and N+ ions. The Ar layer was not deposited on the NH2CHO and Ar:NH2CHO samples that were
ed only with 200 keV H+ ions.

ixtures were selected to constrain the range of destruction cross section values of relevant compounds.
mixtures are selected as a template of a sample where we do not expect backward reactions (C+H)

have additional destruction pathways which include N. In the case of formamide, we considered two
cases, pure formamide and formamide diluted in Ar, in order to analyze the upper and lower limits of

ruction cross section range.

rganic refractory residue
O:CH4=1:1 ice mixture (about 1.2 𝜇m thick) is bombarded by 200 keV H+ ions at 18 K up to a dose of 120
and subsequently warmed up to room temperature to form the organic refractory residue, as shown by Palumbo
004) and Accolla et al. (2018). Earlier measurements by Baratta et al. (2015) show that the thickness of the
typically decreases by 85–90% compared to the thickness of the un-irradiated ice. Here the thickness of the
should be in the range of 0.12-0.18 𝜇m. The residue is then irradiated at 200 K by 200 keV ions; three organic
ry residues are produced and irradiated with H+, He+, and N+ ions, respectively. IR spectra of several organic
ry residues are shown by Accolla et al. (2018). The absorption bands present in the spectra of the residue
on the molecules selected for the initial ice mixtures. If a nitrogen bearing species is present (e.g. N2)
d C-N vibrational modes are observed in the spectrum of the residue. Since the N-H stretching mode

y overlaps with the C-H stretching mode, in the present study we formed the residue starting with a
4 ice mixture (i.e. without any N-bearing species). In this case it is possible to obtain the C-H destruction
ction with higher confidence.

ble 1
mparison of cross sections. The organic materials are listed from the most volatile to the most refractory.

ganic material temperature (K) ion type cross section (16u/eV)

:CH4 17

H+ 0.077 ±0.007
stretching bond (3012 cm−1)He+ 0.079 ±0.006

N+ 0.077 ±0.004
H+ 0.055 ±0.003

bending bond (1301 cm−1)He+ 0.061 ±0.002
N+ 0.063 ±0.002

2CHO 17.5 H+ 0.045 ±0.004
:NH2CHO=25:1 17.5 H+ 0.886 ±0.143

rganic refractory residue 200
H+ 0.002 ±0.0003
He+ 0.008 ±0.0006
N+ 0.024 ±0.002

ur experimental conditions, the organic refractory residue is stable at room temperature (Baratta et al.,
hile N2:CH4 ice mixtures sublimates at about 30 K (e.g. Collings et al., 2004) and pure formamide at
60 K (e.g. Urso et al., 2017). In astrophysical environments, ices are expected to be present in cold regions
fractory organic material can be present both in cold regions and in warm regions. The temperature of
ace of the Moon at the equator varies between 400 K (daytime) and 140 K (at night) while at the poles

as low as 20 K. In this work organic refractory residues have been irradiated at 200 K considering this
an average value for the temperature of organic refractory matter on the lunar surface.

MERE and SRIM software
used the software Outil de Modélisation de l’Environnement Radiatif Externe (OMERE) to evaluate the
f GCRs and SEPs on the Moon. OMERE is a freeware developed by TRAD with support from CNES,

/www.trad.fr/spatial/logiciel-omere/). OMERE computes the space environment in terms of particle
nd, for a given material, the dose rate (rad a−1) as a function of depth. The calculations can be performed
lable orbits or using orbital parameters introduced by the user.
MERE does not account for particles with energy below 10 keV, we estimate the effects of SW ions by

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 4 of 14
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Radiation-induced destruction of organic compounds on the Moon
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N2:CH4 + 200 keV He+

: Evolution of C-H stretching and bending peaks a for N2:CH4 mixture after ion irradiation: the initial stage is
ted in black, and two steps of irradiation in red and blue.

f the software The Stopping and Range of Ions in Matter (SRIM, http://www.srim.org/). It is a group
rams which calculate the stopping and range of ions into matter using a quantum mechanical treatment
tom collisions (Ziegler, 1977; Ziegler et al., 1996).
etration depth of energetic ions depends on its mass and initial energy. For a given ion mass the higher is
al energy the higher is the penetration depth (that is the depth travelled before stopping). As an example,
protons would travel in SiO2 longer than 1 keV protons. SRIM simulations show that H+ and He+ ions

ergy 1-4 keV do not penetrate deeper than about 0.1 𝜇m, while 10 MeV protons penetrate about 600 𝜇m.

ults
:CH4 ice mixtures

ig. 2 the IR spectra of a N2:CH4 ice mixture irradiated at 17 K with 200 keV He+ ions are shown in the spectral
f methane C-H stretching (3012 cm−1) and bending (1301 cm−1) peaks. The related normalized band area
s a function of the irradiation dose are reported in Fig. 3. The experimental data are fitted by the exponential

= 𝐴𝑒−𝜎𝐷 + 𝑦0, (1)
re 𝐷 is the dose (eV/16u), 𝜎 is the cross section (16u/eV), y0 is the asymptotic value and 𝐴 + y0 = 1. The cross
values obtained by the fit are reported in Table 1. The fit results are really good with all the coefficients of

ion above 0.99. The good quality of the exponential fit indicates that the destruction of original molecules
n irradiation is a first order process. Figure 3 shows that the band area rapidly decreases at the beginning
iation and then reaches a saturation value. We notice that the initial decrease follows the same trend for the
periments while the saturation value is about 0.1 in the case of irradiation with 200 keV H+ and He+ ions, and
ut 0.2 in the case of irradiation with 200 keV N+ ions. We speculate that this difference is due to the lower
ion depth of N+ ions in the target ice, as estimated by means of SRIM software (Ziegler et al., 1996). In fact
assage through a solid target energetic ions lose energy both to electronic excitations and to momentum

to target nuclei (e.g. Johnson, 1990; Rothard et al., 2017). As a consequence the energy loss per unit
gth, often referred to as stopping power, determines the penetration depth of impinging ions. In turns,

en energy, ions with higher stopping power values travel a shorter distance in matter. As given by SRIM
e (Ziegler et al., 1996) the stopping power of N+ ions in a N2:CH4 ice sample is about 26 eV/Å that is
than the stopping power of H+ and He+ ions, about 6.5 eV/Å and 16 eV/Å respectively. Similar values of
ctions, under the irradiation with the three different ions, are found. It can be concluded that the destruction
ction of C-H bonds in N2:CH4 ice mixture does not depend on the ions that irradiate the material.

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 5 of 14
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: Normalized C-H bending and C-H stretching band area of N2:CH4 mixtures after ion bombardment plotted vs.
n dose. The graphs show data resulting from the irradiation with H+, He+ and N+ 200 keV ions and the fit
using Eq. 1.

re and diluted NH2CHO
ig. 4 the IR spectra of pure NH2CHO and a Ar:NH2CHO=25:1 mixture are shown; following Brucato et al.
and Urso et al. (2017), the main vibrational features are labelled. The profile of the infrared bands shows
nt differences: in general, formamide diluted in an Ar matrix has narrower bands. A similar result is obtained
:NH2CHO mixture (e.g. Urso et al., 2017). In Fig. 5 there is a detail of the spectra in the C-H bending (1388
nd C-N stretching (1328 cm−1) peak regions: the initial (black line) and two steps (red and blue lines) of
on are reported. In Fig. 6 the values of the normalized band area for the two ice samples are plotted. In the
ure formamide, we considered the area of the double peak feature due to the superposition of the C-H bending
stretching modes; instead, for Ar:NH2CHO mixture, the area of the C-H bending mode band was evaluated.
ental data are fitted with an exponential equation (Eq. 1). The fit gives the cross section values (𝜎)

d in Table 1. The normalized band area is the area of the band at each step of irradiation divided by the
alue before irradiation. We notice that after the first step of irradiation the area of the band increases
normalized value is greater than 1. This effect has been observed also after ion irradiation of other ice
(e.g. Loeffler et al., 2005; Garozzo et al., 2011) and is ascribed to a modification of the structure of the

which in turn causes a variation of the band strength value.

rganic refractory residue
ig. 7, the IR spectra of an organic refractory residue in the 3150-2650 cm−1 region are shown; the three peaks
each other (2960, 2927 and 2870 cm−1) are characteristic of the aliphatic -CH2 and -CH3 bonds. Three
have been irradiated with 200 keV H+, He+, and N+, respectively. For each sample the normalized band area
d as a function of the irradiation dose in Fig. 8. Experimental data points are fitted by an exponential curve
The destruction cross section values obtained by the fit are reported in Table 1. All the fittings are very good,
fficients of correlation R2 around 0.99.; the choice of the decreasing exponential fitting is then accurate. It was
at the value of cross section depends on the irradiating ion. Indeed, for 200 keV N+ a cross section ten times

han for 200 keV H+ and three times higher for 200 keV He+ was found.

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 6 of 14
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timation of the radiation dose on the Moon
olar Energetic Particles and Galactic Cosmic Rays
r the experiments, the OMERE software was utilized to evaluate the effects of GCRs and SEPs on the Moon. A
bit simulation was used to make the assessment. Figure 9 shows the dose rate as a function of depth calculated
RE. The dose is given in units of rad, where 1 rad = 10−2 Gy = 1.7 × 10−9 eV/16u (Baratta et al., 2019). The
n environment on the Moon has been the subject of several investigations. Both simulations and real
ements in situ have been performed (e.g. de Angelis et al., 2008; Schwadron et al., 2012; Crites et al.,
n particular, Schwadron et al. (2012) report the dose rate measured at the surface of the Moon by the
R instrument on board the Lunar Reconnaissance Orbiter (LRO) mission as well as dose rate values
d by ACE (Advanced Composition Explorer) spacecraft. The values obtained by OMERE software,
n Fig. 9, are comparable to the values reported by Schwadron et al. (2012) that are in the range of 5-10
the Moon surface. Using the destruction cross section values reported in Table 1 and the dose rate given by
, we have evaluated the lifetime of organic species on the Moon as a function of depth, i.e. the time required
oncentration of a chemical species to decrease to 1/e of its original value. Results are reported in Fig. 10.
olar wind
dition to GCRs and SEPs, solar system objects are also exposed to SW, a supersonic flux of ions and electrons
from the solar corona. The ion flux is on the order of 2 × 108 ions cm−2 s−1 (Schwenn, 2001) at 1 au

mical unit, 1.495 × 1011 m), with an energy of 1 keV per atomic mass unit. The SW ions consist of H+

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 7 of 14
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nd He2+ (4%), heavier elements having abundances <0.1%. The flux decays as 1/r2, where r is the distance
Sun (e.g. Baratta et al., 2004). Since OMERE does not account for particles with energy below 10 keV, we
the effects of SW ions by means of SRIM. Table 2 displays SRIM input parameters and outcomes. Calculation
de considering a layer of SiO2 (thickness = 1000 Å). The different abundance of hydrogen and helium ions
taken into account. We considered three cross section values among those reported in Table 1, i.e. the smallest

.002 16u/eV), an intermediate one (𝜎2 = 0.045 16u/eV) and the highest (𝜎3 = 0.886 16u/eV) to estimate the
of organic species; the results show that SW ions affect the uppermost 100 nm surface layers and that the
ranges between a fraction of year and 103 a.
timation of impact gardening effects
act gardening is known to affect the surface of airless solar system bodies (e.g. Costello et al., 2020, 2021): this
enon stir and mix the outermost crust provoking resurfacing. As a consequence, impact gardening and space
ing processes compete with each other. As shown by Costello et al. (2021), impact gardening is a fast process
rface while it is slower as depth increases. Taking into account the rate at which gardening proceeds to greater
ith time reported by Costello et al. (2021), we estimated the fraction of surviving organic matter for the Moon
ction of depth over its age.
en the dose rate 𝑑(𝑥) shown in Fig.9 and the gardening time 𝑡𝐺(𝑥) reported in Costello et al. (2021), the
𝑥) in eV/16u, is given by

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 8 of 14
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re 9: Dose rate vs. depth as calculated by OMERE software (https://www.trad.fr/spatial/logiciel-omere/).

ble 2
IM calculation parameters and results. The input layer thickness is 1000 Å for each measurement. The

etime under SW irradiation has been estimated using the cross sections 𝜎1, 𝜎2 and 𝜎3, which refer respectively
the organic residue, NH2CHO and Ar:NH2CHO mixture.

er density ion stopping dose rate penetration lifetime (a*)
mposition (g cm−3) (energy) power (eV/Å) (10−6 eV/16u s) depth (Å) 𝜎1 𝜎2 𝜎3
O2 2.7 H+ (1 keV) 2.5 0.48 292 67 3.5 0.2
O2 2.7 He2+ (4 keV) 4 0.03 573 1000 50 2.3
a is the IUPAC symbol for year

(𝑥) = 1.7 × 10−9 × 𝑑(𝑥) × 𝑡𝐺(𝑥). (2)
n the fraction of surviving organic matter is obtained by
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1: Estimated fraction of surviving organic matter on the Moon as a function of depth. Three different values of
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𝑥) = 𝑁(𝑥)
𝑁0

= 𝑒−𝜎𝐷(𝑥), (3)

re 𝜎 (16u/eV) is the cross section obtained experimentally.
ig. 11 the results for three different values of destruction cross section (namely 𝜎1 = 0.002 16u/eV, 𝜎2
16u/eV, and 𝜎3 = 0.886 16u/eV) and for two different values of lunar regolith porosity are reported.
n by Costello et al. (2021), impact gardening is a fast process at the surface while it is slower as depth

es. This means that at the surface the material is irradiated (space weathering) for a short time and a
nt fraction of organic matter, if present, would survive. As we move inward, the gardening process is
nd the material is irradiated for longer time; this means that the fraction of organic matter that survives

er. As depth increases further the gardening process is even slower and in principle organic matter could
iated for longer time however at greater depth the dose rate decreases significantly (see Fig. 9) and as

quence the fraction of present organic matter that survive is high. Porosity is a measure of voids in the
matter. The dose rate values reported in Fig. 9 refer to a compact solid. If voids were present, the dose

a given depth would be higher. In turns this means that at a given depth space weathering effects would
er and the surviving fraction of organic material would be smaller.
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cussion
obtained the destruction cross section under ion irradiation of compounds that simulate organics at the Moon’s
Our work extends previous investigations on the survival of organic substances irradiated by fast ions (e.g.
es et al., 2012; Gerakines and Hudson, 2013; Urso et al., 2022) and UV photons (e.g. Fornaro et al., 2018;
et al., 2019; Corazzi et al., 2020; Suhasaria and Mennella, 2022). We found that (1) for a given species (e.g.
O) the destruction cross section depends on the matrix it is embedded in with; in fact, if NH2CHO is highly
in an inert matrix, the destruction cross section is more than one order of magnitude higher than the value

in the case of pure NH2CHO; This result has already been reported in the case of ion irradiation of
2O ice and H2O-rich ice mixtures (e.g. Gomis et al., 2004; Garozzo et al., 2011) and H2O trapped in a
(Fulvio et al., 2010). In fact when energetic ions travel through the target the energy they release causes
ak of chemical bonds which in turn causes the formation of radicals and fragments. These radicals and
nts might react to each other and form molecular species not originally present in the target. In the case
get made of a single molecular species the probability of chemical reactions which re-form the original
(backward reactions) is very high. When a given molecular species is highly diluted in a matrix the
ility of backward reactions is very low and the species is rapidly destroyed. (2) in the case of the organic
ry residue, the destruction cross section is more than one order of magnitude lower than the value obtained
tile species. Furthermore, we used different ions at 200 keV energy (namely H+, He+, and N+) and we found
destruction cross section value for an ice mixture is independent of the projectile (see Table 1). This result is
ment with the recent work by De Sanctis et al. (2023): they found the same value of destruction cross section
irradiation of an aliphatic organic compound (undecanoic acid, C10H21COOH) mixed with minerals.

anic refractory residue is a carbon-rich material with several functional groups embedded in a complex
e (e.g. Palumbo et al., 2004; Accolla et al., 2018; Urso et al., 2020). The destruction cross section value of
exposed to ion bombardment varies by nearly an order of magnitude when different projectiles are taken into
(see Table 1). This is the first time that such a result is reported for organic refractory residues. The
hension of the physico-chemical mechanisms which give this result is beyond the scope of this work. We
nning further experiments to shed light on the processes at the origin of the differences we observed.
more, we plan to perform new experiments considering different organic refractory residues and other
ry organic compounds to verify the generality of this result.

ic charged particles of all energies can strike the lunar surface since there is neither a magnetic shield nor an
ere. We estimated the dose rate due to GCRs and SEPs at the Moon (see Fig. 9) and, with the cross section
easured experimentally, we obtained the expected lifetime of organic compounds on the surface of the Moon

. 10). As shown in Figs. 9 and 10, SEPs and GCRs effects prevail over each other based on depth; in the
ost layers the action of SEPs is dominant, while below about 2 cm from the surface, the dose rate and hence
ime of organic compounds depend on GCRs. Moreover, running SRIM software we estimated the lifetime
ring the contribution by SW ions that is relevant in the topmost 100 nm of the surface (see Table 2).
ig. 11 we plot the fraction of surviving organic material assuming the impact gardening model by Costello et al.
nd the dose rate and destruction cross section presented in this work. The trend shown in Fig. 11 describes the

d fraction of surviving organic materials in those regions exposed to energetic radiation (i.e. both SEPs and
ffects are present).
description of the fate of organic species in permanently shadowed regions (PSRs) at the lunar poles is not
orward. In fact, in those regions the evolution of volatile species is driven also by diffusion and sublimation.
egions are characterized by low surface temperatures (T < 100 K), which allow the presence of water ice
tson et al., 1961; Gläser et al., 2021). Other volatile species are expected to be trapped in it and, indeed,

en detected in the LCROSS ejecta plume (Colaprete et al., 2010) and by the observations obtained with the
e Lyman Alpha Mapping Project (LAMP) UV spectrograph onboard the LRO (Magaña et al., 2023). However,

ence of super volatile species (such as CH4, N2, and CO) requires temperature values as low as 20-30 K (e.g.
and Byrne, 2022, and references therein). Laboratory experiments have shown that, at temperatures lower than

imation temperature, volatiles species such as CH4, N2, and CO diffuse in water ice (Palumbo, 2006; Raut
07; Fulvio et al., 2010). It is expected that molecules that diffuse toward the surface would rapidly sublimate
olecules that diffuse inward would remain trapped in cold icy layers. This is consistent with the detection
in the LCROSS ejecta plume originating from layers deeper than about 0.7 m (Colaprete et al., 2010). Less
species, such as NH2CHO, and the organic refractory residue are not expected to be affected by diffusion and

ia, Sohier, Scirè, Urso, Baratta, Palumbo: Preprint submitted to Elsevier Page 11 of 14
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tion. In permanently shadowed regions the flux of energetic ions is expected to be lower than the flux
ons fully exposed to solar radiation. As a consequence also the dose rate is expected to be lower while
act gardening is not expected to vary significantly with solar irradiation. Then the fraction of surviving
l reported in Fig. 11 would be underestimated because it has been obtained considering both SEPs and
ffects. As a consequence, the values of the surviving fraction reported in Fig. 11 can be regarded as a lower
nally, the fraction of surviving organic refractory residue is close to 1 even in regions exposed to solar radiation.
ch materials were detected on the surface of black pyroclastic beads collected in the Shorty crater during the
7 mission. Thomas-Keprta et al. (2014) explained their presence considering the delivery of exogenous C-rich

rom micrometeorite impacts. This C-rich material is on average more disordered than the C-rich material in
llected on Earth. Our experiments show that the exposure of organic residues to 200 keV ions causes the
ion of the C-H bonds with increasing the dose. Previous experiments (Strazzulla and Baratta, 1992; Ferini
004; Palumbo et al., 2004; Urso et al., 2020) showed that increasing irradiation dose causes the loss of the
nt of organic materials and their progressive conversion into amorphous carbon. Such material presents a
ss IR spectrum but shows characteristic bands in Raman spectra (G and D lines at 1560 and 1360 cm−1,

vely). As discussed above, organic refractory residues obtained after ion irradiation of simple ices can
idered analogues of organic matter in space. Indeed they are good spectral analogues of extraterrestrial
material detected in micrometeorites and interplanetary dust particles (IDPs) (Baratta et al., 2015;
et al., 2022).

esults are compatible with the hypothesis that refractory carbonaceous matter detected on the Moon has
enous origin and its high disorder level is a consequence of the exposure to energetic radiation.
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hlights 

▪ Formamide, methane, and a refractory organic residue as lunar organic matter 

analogue 

▪ Measurements of radiation-induced destruction cross section of organic compounds 

▪ Estimation of organic compounds lifetime on the Moon 

▪ Effects of solar wind, energetic particles, and gardening on lunar organic compounds 
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