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"Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing,
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Abstract The kinematics and deformation pattern along the Altyn Tagh fault (ATF), one of the largest
strike-slip faults on Earth is of great significance for understanding the growth of the Tibetan Plateau. However,
the initial rupture along the ATF remains debated given the limited constraints on the depositional age of
associated Cenozoic syntectonic strata. Here we investigated the syntectonic Cenozoic strata in the Xorkol
Basin, associated with the strike-slip faulting along the ATF. New uranium-lead analyses of the carbonate
deposits in the Paleogene strata yield dates of 58.9 = 1.29 Ma, representing the initial rupture of the ATF. This
first documented radioisotopic age coincides with the ca. 60 Ma onset timing of India-Asia collision,
highlighting its far-field effect at the northern edge of the Tibetan Plateau. We infer that the deformation of the
entire Tibetan Plateau started synchronously with the India-Asia collision.

Plain Language Summary Carbonate U-Pb dating techniques applied to rocks associated with the
Altyn Tagh fault, a major fault in North Tibet, reveal that the fault started slipping about 58.9 million years ago,
coinciding with the time when India collided with Asia. This finding provides new constraints on when and
where this fault formed and suggests that the northern Tibetan Plateau started deformation earlier than
previously thought. This result emphasizes that the entire Tibetan Plateau deformed simultaneously in the early
Cenozoic.

1. Introduction

The formation of the Tibetan Plateau as a result of the Cenozoic India-Asia collision had a profound impact on the
Asian tectonics configuration and climate dynamics (e.g., An et al., 2001; Ding et al., 2022). However, the
geodynamic mechanisms that built the plateau remain disputed. Two main end-member models have been
proposed: (a) The Tibetan Plateau has grown progressively and the northward-propagating deformation reached
its present-day northeastern edge no earlier than the Neogene (e.g., England & Houseman, 1985; Tapponnier
et al., 2001); (b) The northern and southern Tibetan Plateau underwent Paleogene deformation related to the
incipient India-Asia collision (e.g., Dupont-Nivet et al., 2004; Jolivet et al., 2001; Yin et al., 2002). Determining
the onset timing of Cenozoic deformation along the tectonic structures in the northern Tibetan Plateau is critical in
resolving this dispute, as it will provide insights into how the northern Tibetan Plateau responded to the collision.

The Altyn Tagh fault (ATF) is a lithospheric left-lateral strike-slip fault that marks the northwestern boundary of
the Tibetan Plateau (Yin et al., 2002) (Figure 1). Despite a great achievement on the timing of deformation in the
northern Tibetan Plateau, the initiation age and configuration of the ATF remain debated given its long-lasting
growth history. Yin et al. (2002) proposed a ca. 49 Ma initiation of strike-slip faulting along the present ATF
based on field investigation, magnetostratigraphy and subsurface reflection data. However, others have proposed
different initiation timing and configurations. For instance, Tapponnier et al. (2001) proposed that the ATF
gradually propagated from west to east during the Cenozoic. Yue and Liou (1999) proposed an early Oligocene
initiation of strike-slip activity by analyzing the sedimentary basins along the fault. Inspired by the strike-slip
duplex model raised by Cowgill et al. (2000), L. Wu et al. (2019) proposed that the ATF fault system initiated
at ca. 53.5 Ma, featured by a large restraining bend consisting of the North Altyn fault and Jinyanshan fault, with
the central ATF forming in the Miocene.

By far, low-temperature thermochronology on basement rocks that outcrop along the ATF is widely used to date
the initial rupture along the ATF. However, the limited exhumation generated by strike-slip motion makes it
challenging to capture the initiation of such motion through recorded ages. In addition, some published data are
based on single-sample inverse thermal history modeling (e.g., Qi et al., 2016; Shi et al., 2018), the resilience and
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Figure 1. Maps of the study area. (a) Tectonic location of Altyn Tagh fault defining the northern boundary of the Tibetan
Plateau. Major strike-slip faults are shown in black lines. (b) SRTM-based digital topographic map of the northern Tibetan
Plateau and the study area with distribution of the major timing of deformation. References are shown in Table S1 of
Supporting Information S1. Locations of sedimentary sections in Figure 5 are denoted. (c) Simplified geological map of the
North and East Xorkol basins modified from XBGMR (1981) and QBGMR (1986). Unit 1-5 are lithostratigraphic units
corresponding to Paleogene-Eocene, Oligocene, lower Miocene, upper Miocene, and Quaternary strata respectively. CHG:
Caihonggou section. (d) Google Earth satellite image of East Xorkol Basin with sampling locations. Note the serrated basin
boundary and carbonate rock strata. The location of the geological profile in Figure 2f is indicated.

soundness of which remain questionable (Green & Duddy, 2021). Therefore, the exhumation history of the
basement rocks along the ATF remains elusive, highlighting the need for a comprehensive understanding that
integrates various methods.

Cenozoic syntectonic strata are well-developed along the northern and southern sides of the ATF. These terrestrial
strata are associated with the ATF, providing a direct proxy to address the kinematics and timing of faulting.
However, due to the lack of tephra layers and index fossils, the exact depositional age of these strata remains
poorly constrained. Recent advancements in calcite U-Pb dating offer a promising tool to establish the absolute
depositional age of the carbonate strata (e.g., Parrish et al., 2019; Rembe et al., 2022; Roberts et al., 2020). Here
we report the first U-Pb radioisotopic age of lacustrine carbonates in the syntectonic strata that outcrop along the
ATF. The obtained age of ca. 60 Ma suggests that the Cenozoic strike-slip motion along the ATF initiated during
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the Paleocene, highlighting the synchronous deformation at both the northern and southern margins of the Tibetan
Plateau in the early Cenozoic.

2. Methods

Field investigations were conducted in the East Xorkol Basin. The Xorkol Basin is an intermontane basin within
the Altyn Tagh Range. Previous studies have reached an agreement that the formation of the Xorkol Basin has
been governed by the ATF. Evidence includes the narrow and elongated geometry, the finer-grained deposits in
the center compared to the edges, a series of stepped faults at the boundaries, and the presence of syntectonic
conglomerates along the boundaries (e.g., Z. L. Chen et al., 2004; E. Wang et al., 2008).

The Xorkol Basin is subdivided into three parts: the Xorkol Valley Basin covered by Quaternary deposits, the
North Xorkol Basin which accumulates Paleogene-Neogene sediments, and the eastern end named East Xorkol
Basin (Figure 1b). The bedrock surrounding the East Xorkol Basin is attributed to the Ordovician Lapeiquan
Group, which is composed of basaltic-andesitic volcanic rocks, slightly-metamorphosed clastic rocks, and car-
bonate rocks (QBGMR, 1986). Recent studies assigned a meso-Proterozoic depositional age on these carbonate
rocks based on detailed mapping and structural analysis (e.g., B. Chen, 2018).

A total of 25 carbonate samples were collected from these Cenozoic strata, and 19 carbonate thick sections were
dated using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) at the State Key Lab-
oratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing.
We followed the analytical and data processing routine described by S. T. Wu et al. (2022). Specific details of
sampling, sample preparation, and dating are given in Text S1 of Supporting Information S1. A total of 40 laser
ablation spots were analyzed for each sample. Calcite veins, probably indicating late fluid circulations, were
avoided during analysis to minimize potential contamination.

3. Results and Discussion
3.1. The Syntectonic Strata in the East Xorkol Basin

Here we provide additional evidence demonstrating that the North and East Xorkol basins are pull-apart basins of
the strike-slip ATF. First, satellite images show that the both North and East Xorkol basins are characterized by
serrated boundaries and rthomb grabens (Figures 1c and 1d); distinct topographic features resulting from the
evolution of a pull-apart basin (Aydin & Nur, 1982). Second, the Paleogene strata in the East Xorkol Basin exhibit
typical syntectonic features associated with the strike-slip faulting in a pull-apart basin (Christie-Blick & Bid-
dle, 1985), as characterized by the following observations. The strata in the basin consist of brownish con-
glomerates along the margins and the carbonate rocks are interlayered with reddish mudstone and greenish
sandstone at the center (Figure 2; Figures Sla and S1b in Supporting Information S1). The strata are in fault
contact with the bedrock on both the northern and southern sides of the basin, evidenced by brecciated sediments
series and fault gouges (Figures 2b, 2c, and 2e). Along the northern boundary, brecciated conglomerates display
the tectonic cleavage that strongly imprints the original bedding (Figure 2c¢). Fault scarps and fault gouges with a
strike of approximately N80° were also observed between the strata and the bedrock. Slickensides on the fault
surface indicated a left-lateral strike-slip movement compatible with that of the ATF (Figure S1c in Supporting
Information S1). The evolution of the depositional environment from alluvial fan to lacustrine carbonate deposits,
coarse lateral sediment inputs, as well as the mirror-like symmetry on both the northern and southern sides of the
basin, indicates syn-strike-slip fault sedimentation in the East Xorkol basin along the ATF.

Therefore, we suggest that the onset of Cenozoic sedimentation in the North and East Xorkol basins was asso-
ciated with the initial tectonic activities of the ATF, and the initial depositional age of strata within the basin
should be coincident with the initiation of strike-slip faulting along the ATF. The carbonate crops are either
adjacent to or interbedded with the clastic rocks (Figure S1 in Supporting Information S1), indicating that the
depositional age of the carbonate rocks might be slightly younger than the initial sedimentation of the strata. It is
worth noting that the timing of deposition of these strata is coincident with the onset of basin formation. This
precluded the possibility of these strata being basement rocks that were re-exposed due to the rejuvenated fault
activities. This inference is further evidenced by the distinct contrast between the basin's strata and the sur-
rounding basement rock, which contains gray phyllite and light gray dolomite.
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Figure 2. Field features of the East Xorkol Basin. (a) Panoramic photograph of the East Xorkol Basin. (b) Strike-slip fault surface with fault gouge and slickensides at the
northern boundary of the basin. (c) Outcropped brecciated conglomerates within which a strong imprint of the tectonic cleavage replaces the original bedding.
(d) Deformed fine-grained strata in the East Xorkol Basin. (e) Thrust fault with fault gouge at the basin's southern boundary. (f) Geological profile of the East Xorkol

Basin.

3.2. Carbonate U-Pb Dating of Syntectonic Strata

The exposed carbonate outcrops in the Cenozoic strata in the East Xorkol Basin are about 60 cm thick at the ANB
site and about 30 m thick at the KS site (Figures 3a and 3b). They are exposed with bedding parallel to the long
axis of the basin. The carbonate is relatively homogeneous in appearance and exhibits a white and pink mottled
coloration. It has been partially broken, most probably by tectonic activity, with tilted sedimentary layers that are
not always clearly visible. The deposits are mainly characterized by primary micritic limestone displaying small-
scale microbialite features. Evidence of alteration on hand specimen is scarce and the absence of post-depositional
re-crystallization is confirmed by cathodoluminescence (CL) analysis (especially marked by evenly colored
micrite) (Figure 3). This feature further affirms that the carbonate belongs to the Cenozoic syntectonic strata
instead of the bedrock. Additional sample photos can be found in Figure S1 of Supporting Information S1.

We collected a total of 19 carbonate samples from two outcrops for U-Pb dating, of which 11 yielded coherent
ages (Table S2 in Supporting Information S1). The complete data is available in Data Set S1, and the Tera-
Wasserburg plots for each sample are present in Figure S2 of Supporting Information S1. These ages span
from 43.0 Ma to 76.6 Ma. This relatively large uncertainty might be attributed to high common-Pb content in the
individual samples. However, the carbonates from these 11 samples display homogeneous features in the mi-
croscope and cathodoluminescence images (Figure 3), thus the entire data set obtained from samples defines a
single age population.
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Figure 3. Outcrop, samples, and dating results of carbonate rocks. (a and b) ANB and KS outcrops of carbonate rocks exhibiting fracturing, with a relatively fresh
appearance and moderate weathering. (¢ and d) Photomicrograph and cathodoluminescence (CL) image of sample KS-14, revealing microbial features and primary
sedimentary structures as a representative example. The uniformity of color observed in the CL image suggests that the sample has undergone little post-depositional
alteration. (e) Weighted mean U-Pb ages of carbonate samples. (f) Tera-Wasserburg plot for the whole 432 data. The red lines are Concordia curves. Ellipses are 95%

confidence level.

We calculated two ages to describe the carbonate: a weighted mean age of 55.7 £ 1.96 Ma (based on 11 samples),
and a regressed lower intercept age of 58.9 £ 1.29 Ma (based on a total of 432 spot analysis). The regressed age is
slightly older than the weighted mean age, which is sensitive to large error margins carried by some of the data.
We thus consider the lower intercept U-Pb age of 58.9 + 1.29 Ma as a robust estimate of the age of the carbonate
deposits in the East Xorkol Basin.

3.3. Paleocene Deformation Along the ATF

We report a new radioisotopic time constraint of 58.9 &+ 1.29 Ma for the depositional age of carbonate strata in the
East Xorkol Basin. This depositional age demonstrates that the sedimentation in the East Xorkol Basin initiated
during the late Paleocene. Given the direct correlation between basin formation and ATF deformation, and
considering the syntectonic nature of the strata, we propose that the initiation of strike-slip motion along the ATF
occurred no later than 58.9 Ma, leading to the formation of the East Xorkol Basin as a composite pull-apart basin
(Figure 4).

This result further contributes to our understanding of the initiation timing and configuration of the ATF. First, we
provide the first direct dating of syn-tectonic strata along the ATF, yielding the earliest deformation time, slightly
predating previous research based on stratigraphy and thermochronology (Cheng et al., 2015, 2016; H. Xie
et al., 2022; Yin et al., 2002). Second, we reveal that the initial rupture along the ATF occurred in its central
segment of the modern ATF system. This challenges the notion of a gradual northeastward propagation of the
ATF (Jiao et al., 2023; Tapponnier et al., 2001) or the proposal that the ATF system initiated at the North Altyn
fault (Gao et al., 2022; L. Wu et al., 2019) (Figure 1). Instead, our results show that the modern configuration of
the ATF might have already been established since its initial stage in the early Cenozoic.

YI ET AL.

Sof 11

858017 SUOWIWOD BAeaID 3|eo!dde 8Ly Aq peusenob aJe sl O ‘88N JO S9InJ 10} A%Iq1T8UIIUO A8]1M UO (SUORIPUOO-PUe-SWIB} W00 A8 | M AReiq 1 Buluo//Sdny) SUORpUOD pue swie | 8u18es *[120z/70/.T] uo ArigiTauluo A8 |1 ‘seuuey 8@ e¥sieAIuN Aq 9T.20T 19€202/620T OT/I0P/W00" A8 1M Areiq 1 put|uo'sgndnBe/:sdny wouy papeojumoq ‘g ‘+20z ‘L0087Y6T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2023GL107716

a ca. 59 Ma North and East Xorkol Basin

Conglomerate
Mudstone
Sandstone
55 carbonate

[_IBasement rocks

Jinyanshan

Figure 4. Block diagram illustrating the formation of the North and East Xorkol basins. The left-lateral motion of the Altyn
Tagh fault formed en-enchelon, pull-apart basins and led to the early Cenozoic syntectonic sedimentation, no later than

59 Ma. (b) Model showing formation of a composite pull-apart basin associated with en enchelon strike-slip faults, modified
after Aydin and Nur (1982). Note that the left-lateral faulting would induce the development of small grabens, then
coalescing into composite structures, and finally forming a large basin with a serrated basin boundary.

3.4. Insights on Paleocene-Eocene Strata and Deformation in the Northern Tibetan Plateau

The fine-grained deposits in the East Xorkol Basin exhibit similarities with the red clay layers in the North Xorkol
Basin (Figure 5c), whose depositional age has been constrained to >51 Ma by recent magnetostratigraphy studies
(Li et al., 2018). Furthermore, the deposits share a similar deposition pattern with the strata in the south of the
ATF, including (a) distal fine-grained facies exhibiting massive reddish mudstone interbedded with greenish-gray
sandstone that contains high levels of carbonate and gypsum and (b) proximal syntectonic conglomerate facies,
mostly composed of poorly sorted matrix-supported pebbles-boulders (e.g., Lu et al., 2019) (Figures 5b and 5g).
Therefore, we further suggest that the onset of deposition in the northern Tibetan Plateau is earlier than or equal to
ca. 58.9 Ma.

While sedimentation onset has been considered to be closely associated with the initial deformation (e.g., W.
Wang et al., 2017; Yin et al., 2002), we suggest that the relief building in the northern Tibetan Plateau
initiated in the early Cenozoic. While mountain building in the Neogene, especially Miocene, is better
recorded by the low-temperature thermochronology studies, rapid exhumation from Paleocene to Oligocene
has also been observed in the Altyn Tagh Range, Qilian Shan and Kunlun Shan (e.g., He et al., 2021; Jolivet
et al., 2001; Sobel et al., 2001) (Figure 1b). By comparing the timing of rapid basement exhumation with the
onset timing of growth strata, Cheng et al. (2023) further indicates Paleogene tectonic activity in the northern
Tibetan Plateau.

The initial continental collision between India and Asia plates is indicated to be 65-60 Ma ago (e.g., Cai
etal.,2011; Ding et al., 2022; Hu et al., 2015; Yin & Harrison, 2000). We demonstrate that the deformation of the
northern Tibetan Plateau initiated near-simultaneously with the collision. This implies that the collision-
originated stress swiftly transferred to the north and instigated the tectonics activity along the ATF and in the
northern Tibetan Plateau, even far into the Tian Shan (e.g., Jolivet et al., 2010). Several numerical simulations of
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Figure 5. Paleogene strata surrounding the Altyn Tagh fault (ATF). (a) Compiled chronostratigraphic studies of the Paleogene strata Unit 1 and 2, modified from Hu
et al. (2022). Section locations are indicated in Figure 1b, and references are supplied in Table S3 of Supporting Information S1. (b) Fine-grained strata in the East
Xorkol Basin. (c and d) Fine-grained Unit 1 from the Caihonggou section (section CHG in Figure 1c) in the North Xorkol Basin and the Hongsanhan section (section E
in Figure 1b) in the south of the ATF. (e) Syntectonic conglomerate in the East Xorkol Basin. (f and g) Syntectonic conglomerate in Unit 1 from the Lulehe and
Hongshan sections (sections A and B in Figure 1b) in the south of the ATF. The strata exhibit similar characteristics across the described sections.

the tectonic growth of the Tibetan Plateau have been established to explain this instant far-field deformation,
highlighting the importance of the strong Tarim basement (e.g., Dayem et al., 2009; Xu et al., 2021), the relatively
strong Qaidam basement (Cheng et al., 2017; Huangfu et al., 2022; R. Xie et al., 2023), and the lithospheric
sutures zones forming pre-existing weaknesses (Cheng et al., 2021; Kelly et al., 2020; Kong et al., 1997;
Mouthereau et al., 2013; Zuza et al., 2020) during this process. The contrast in lithospheric strength between the
strong Tarim block and the weaker Tibet is a prerequisite for the instant distal orogenesis (Yin & Harrison, 2000).
Meanwhile, the Qaidam crust is relatively strong and has the capacity to resist internal deformation (Cheng
et al., 2017). Thus, the crustal deformation is concentrated on the pre-existing weaknesses such as sutures and
faults, including the ATF (e.g., L. Chen et al., 2017; Cheng et al., 2021).

4. Conclusion

In this study, we provide the first carbonate U-Pb dating, which yields 58.9 + 1.29 Ma from the syntectonic
sediments in the pull apart East Xorkol Basin. This result provides compelling evidence that the ATF initiated its
strike-slip motion during the Paleocene-early Eocene. This age estimate is also indicative of the depositional age
of the syntectonic strata in the adjacent area, suggesting that the syntectonic sedimentation in the northern Tibetan
Plateau initiated during the Paleogene. This result highlights the synchronized onset of deformation of the entire
Tibetan Plateau with the initial India-Asia collision.
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