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SUMMARY

The 2015 moment magnitude M,, = 8.3 Illapel earthquake is the largest mega-thrust earthquake
that has been recorded along the Chilean subduction zone since the 2010 M,, = 8.8 Maule
earthquake. Previous studies indicate a rupture propagation from the hypocentre to shallower
parts of the fault, with a maximum slip varying from 10 to 16 m. The amount of shallow slip
differs dramatically between rupture models with some results showing almost no slip at the
trench and other models with significant slip at shallow depth. In this work, we revisit this
event by combining a comprehensive data set including continuous and survey GNSS data
corrected for post-seismic and aftershock signals, ascending and descending InSAR images of
the Sentinel-1A satellite, tsunami data along with high-rate GPS, and doubly integrated strong-
motion waveforms. We follow a Bayesian approach, in which the solution is an ensemble of
models. The kinematic inversion is done using the cascading capability of the AlTar algorithm,
allowing us to first get a static solution before integrating seismic data in a joint model. In
addition, we explore a new approach to account for forward problem uncertainties using a
second-order perturbation approach. Results show a rupture with two main slip patches, with
significant slip at shallow depth. During the rupture propagation, we observe two regions
that are encircled by the rupture, with no significant slip, westward of the hypocentre. These
encircling effects have been previously suggested by back-projection results but have not been
observed in finite-fault slip models. We propose that the encircled regions correspond to zones
where the yield stress largely exceeds the initial stress or where fracture energy is too large to
be ruptured during the Illapel earthquake. These asperities may potentially break in the future
and probably already broke in the past.

Key words: Inverse theory; Probability distributions; Earthquake source observations.

1 INTRODUCTION

Chile is one of the most seismically active regions on Earth, where
the Nazca Plate subducts under the South American Plate with a
convergence rate of approximately 67 mm yr~—! (Angermann et al.
1999; Vigny et al. 2009). This large plate convergence rate is accom-
modated in parts by the occurrence of large megathrust earthquakes,
such as the 1943 moment magnitude M,, = 7.9—8.3 Illapel event,

the 1960 M,, = 9.5 Valdivia earthquake, the 2010 M,, = 8.8 Maule
earthquake, and the 2014 M,, = 8.1 Iquique earthquake (Lomnitz
2004; Ruiz & Madariaga 2018). The latest megathrust earthquake
in Chile is the 2015 M,, = 8.3 Illapel earthquake, which occurred
off the west coast of the Coquimbo region on 16 September 2015,
at 22:54:31 UTC (Centro Sismoldgico Nacional, CSN; Li et al.
2016; Ruiz & Madariaga 2018). The 2015 Illapel earthquake initi-
ated at a depth of 23 km and triggered a trans-pacific tsunami with
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waves reaching more than 4 m high in Chile (An & Meng 2017;
Fernandez ef al. 2019). The thrust focal mechanism is consistent
with the rupture of the megathrust interface (Ekstrom et al. 2012).
Most source inversions suggested that the rupture lasted around
100 s (Heidarzadeh et al. 2016; Melgar et al. 2016; Tilmann et al.
2016) but some studies report much larger rupture durations (e.g.
Lee et al. 2016). The previous earthquake to rupture this section of
the megathrust occurred in 1943, with a smaller magnitude between
M,, = 7.9—8.3, and a duration of approximately 30 s (Beck et al.
1998; Lomnitz 2004; Ruiz & Madariaga 2018). The hypocentral
depth of the 1943 event is unfortunately not well resolved and is
estimated between 10 and 30 km.

Different groups have published kinematic slip rupture mod-
els for the 2015 M,, = 8.3 Illapel earthquake. As discussed by
Satake & Heidarzadeh (2017), even though all of these mod-
els share general features, some properties of the rupture are
still under debate (Heidarzadeh er al. 2016; Li et al. 2016; Ruiz
et al. 2016; Tilmann et al. 2016; Williamson et al. 2017; An &
Meng 2017). For example, An & Meng (2017) suggest the ab-
sence of shallow slip, while other studies indicate that shallow
slip is necessary to explain tsunami records (Lay ez al. 2016; Li
et al. 2016; Tilmann et al. 2016). In fact, Tilmann et al. (2016)
suggested that the 1943 and 2015 events differ in their shallow
slip.

The degree of rupture complexity also varies among previously
published results. In contrast with the relatively simple rupture pro-
cesses suggested by the aforementioned results, other studies sug-
gest a more complex rupture scenario with at least two main slip
asperities (Melgar et al. 2016; Lee et al. 2016). Although the rel-
atively compact model of Melgar et al. (2016) is consistent with
tsunami observations, Lay et al. (2016) show that the model of Lee
et al. (2016) involving a broad area of shallow slip rupturing multi-
ple times cannot reproduce tsunami data. Several back-projections
studies confirm the complexity of the 2015 Illapel rupture (Mel-
gar et al. 2016; Okuwaki ef al. 2016; Yin et al. 2016). A common
result among back-projection studies is that the Illapel earthquake
presents a northwestward migration. For example, An ef al. (2017)
shows a complex frequency dependent rupture propagation with
several branches. The back-projected low-frequency (LF) sources
migrate mainly updip to the west, while the high-frequency (HF)
sources initially move downdip towards the northeast before veer-
ing updip towards the northwest. On the other hand, Meng et al.
(2018) suggest a rupture that splits into two different branches sep-
arated along dip. The analysis of these multiple rupture branches
suggests an encircling rupture that seems to be aligned with re-
gions experiencing a high slip rate and large shallow slip. Un-
fortunately, such a complex pattern has not been confirmed by
kinematic slip inversion models yet. Potentially, such encircling
rupture effect is only constrained by the HF wavefield, hence not
resolvable with slip inversions. In addition, such encircling pat-
tern likely involves abrupt changes in rupture velocities, while
most slip inversions consider fixed rupture velocities and smoothing
constraints.

In this work, we revisit the 2015 M,, = 8.3 Illapel earthquake by
combining a comprehensive data set including permanent and sur-
vey GPS stations corrected for post-seismic and aftershock signals,
ascending and descending Sentinel-1A InSAR images along with
high-rate GPS and doubly integrated strong-motion waveforms. We
follow a Bayesian approach using the AlTar code, which allows
us to obtain the posterior probability distribution of slip models
rather than a single optimum solution. We also use a non-linear
parametrization enabling significant variation of rupture velocity
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during the rupture process. We also analyse the impact that pre-
diction error covariance matrices have on coseismic slip inversions
results.

2 DATA

We investigate the complex rupture of the 2015 M,, = 8.3 Illapel
earthquake using multiple data sets that are shown in Fig. 1. This
database includes GPS offsets, Interferometric Synthetic Aperture
Radar (InSAR) images, tsunami data along with high-rate GPS and
strong motion waveforms.

InSAR images are obtained from the Sentinel-1A satellite with
ascending and descending orbits (see text S1). We use 14 tsunami
stations: 6 DART buoys and 6 coast gauges focusing mainly on first
arrivals and open sea sites to minimize coastal effects (see text S2).
We use daily and survey GPS data provided by Klein ez al. (2017).
Both data sets are affected by co-seismic offsets induced by M,, =
7.1 and M,, = 6.8 aftershocks occurring, respectively, 23 min and
5 hr after the main shock. Survey GPS data also includes several
weeks of post-seismic displacement. Details of GPS data processing
can be found in Klein ef al. (2017). To correct both daily and cam-
paign GPS data from aftershocks and post-seismic deformation, we
use high-rate post-seismic time-series from Twardzik ez al. (2021).
These measurements are spatially interpolated using cubic splines
and removed from coseismic GPS offsets. We estimate uncertainty
associated with the corrected data by conducting the aforemen-
tioned correction stochastically (using Gaussian realizations given
uncertainties on daily, survey and post-seismic GPS data sets). A
comparison between corrected and uncorrected GPS data is shown
in Fig. A1. We note that the nominal standard deviations of the GPS
data are unrealistically small (i.e. on the order of 5-10 mm), leading
to overfitting of the GPS coseismic displacements in the inversion
procedure. To mitigate this issue, we scale the resulting standard de-
viations to ensure a unit reduced x?2, a statistical indicator that helps
to correct for over or under estimation of uncertainties (Supporting
Information text S3). As a result, we increase the standard devia-
tion of the GPS static displacements by a factor of 10 for the East
component and 5 for the north and vertical components. Although
this approach is empirical, it allows us to avoid any overfitting of
the GPS observations while keeping a relative weighting between
stations based on the variability of the corrected observations.

For the kinematic data set (i.e. seismic waveforms), we use
records from High Rate GPS (HRGPS) stations and strong mo-
tion data located within 5° from the main shock hypocentre. These
stations are part of the Chilean Seismological Service (CSN) of
the Universidad de Chile (Universidad de Chile 2012). In total, we
have 96 strong motion waveforms that we double integrate into dis-
placement time series and 12 HRGPS components. The integration
of acceleration data is a delicate operation that can easily result
in large drifts in velocity and displacement waveforms. Therefore,
to obtain displacement records, after removing any linear trend in
accelerograms, we remove an additional velocity drift at the end
of the waveforms. This additional coda correction is done by us-
ing a quadratic function to fit displacement waveforms from the
time when 90 per cent of the acceleration energy is reached. Visual
inspection of the corrected displacement records is then done to
ensure the good quality of the data. To further check the corrected
records, we compare the obtained strong motion displacements with
HRGPS displacements (Figs 2 and A2). In total, we were able to
recover 43 displacement components from strong motion with high-
quality displacement waveforms.
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Figure 1. General overview of the studied region with data sets used in this study (a). Green star represents the hypocentre obtained by the Chilean Seismological
Center (CSN). White rectangles represent the fault geometry used in this study. Focal mechanisms correspond to aftershocks Global CMT solutions. Ascending
(b) and descending (c) Sentinel-1A InSAR images. Small black arrows represent the LOS and orbit direction, respectively.

To calculate synthetic static displacements, we use the Classic
Slip Inversion (CSI) package (https://github.com/jolivetr/csi), us-
ing the approach of Zhu & Rivera (2002) for a layered earth model.
We calculate Green’s functions using the 1-D velocity model built
by Duputel ez al. (2015) (see Fig. 3). For the kinematic Green’s func-
tions, we use the wavenumber integration code of the CPS seismol-
ogy package (http://www.eas.slu.edu/eqc/eqecps.html) from Her-
rmann (2013). We filter both the kinematic Green’s function and
data in the 0.01-0.06667 Hz passband.

3 METHODOLOGY

To perform the inversion, we follow a Bayesian approach in which
we obtain an ensemble of models and not a unique solution. The
inversion is done using the cascading capability of the AlTar code
(https://altar.readthedocs.io), allowing us to first get a static solu-
tion, and then to integrate waveform data in a joint model. This
code is based on the Cascading Adaptative Metropolis In Parallel
(CATMIP) algorithm proposed by Minson et al. (2013) that we will
describe below. The AlTar package has been successfully used for
different problems. Jolivet et al. (2015, 2020, 2023) estimated the
interseismic coupling of the San Andreas fault, the Northern Chile

subduction interface and the North Anatolian fault. Studies of indi-
vidual earthquakes have been carried out by Duputel ez al. (2015),
Bletery et al. (2016) and Gombert ef al. (2018a), among others.

Starting from Bayes theorem, we write the a posteriori probabil-
ity density function (PDF) of the parameters m, given the observa-
tions dps:

p(mldeps) = k& p(m) p(deps|m), (D

where p(m) is the a priori probability density function of parame-
ters, p(deps|m) is the data likelihood function and « a normalization
factor. We define the likelihood function as:

1
P(dops|m) = exp <_E(dobs - g(m))TCx_l(dobs - g(m))) 2)

C, is the misfit covariance matrix that is the sum of Cq4 and C,,
which correspond to covariance matrices describing observational
and forward modelling uncertainties, respectively. We sample the
a posteriori PDF using a series of transitional intermediate PDF.
The transitional PDFs are controlled by the tempering parameter 3,
which modulates the information content at each transitional step
such as:

f(m]dgps, Bi) = & p(m) p(daps|m)™, 3)
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Figure 2. Comparison between displacements corrected from strong motion records and HRGPS displacements. Red and black waveforms represent HRGPS
and strong motion, respectively. On the maps, the blue star represents the CSN hypocentre while circles indicate station location (orange for the strong motion
station considered, yellow for the other strong motion stations, and purple for HRGPS stations). ¢, and A represent the azimuth and distance from the epicentre.
The angle « is the component azimuth (0° north, 90° east). Time-shifts between waveforms are due to slight differences in station location (i.e. between HRGPS

and strong motion records). Other examples of comparison are shown in Fig. A2.

where (k= 1, ..., M) and B varies from zero to one, that is 0 = S
<ﬁ1,...,,3M=1.

These transitional steps will converge to the final solution by
smoothly informing the system (i.e. by increasing §). In addition,
we apply a cascading approach to improve the convergence of the
sampler by first solving for the static problem before sampling the
full joint kinematic slip inversion. More details about the algorithm
can be found in Minson et al. (2013). As mentioned before, the C,
matrix incorporates different uncertainty assessments. The observa-
tional uncertainty is commonly related to errors in measurements.
The details of observational uncertainty estimates can be found in
text S4.

Prediction uncertainties are associated with imperfect forward
modelling that can be caused by different factors, such as imperfect
earth models or fault geometries (Wald & Graves 2001; Beres-
nev 2003; Ide 2015; Williams & Wallace 2015). Several studies
have highlighted the importance of considering forward modelling
uncertainties in slip inversions (Yagi & Fukahata 2011; Duputel
et al. 2012, 2014; Hallo & Gallovic¢ 2016; Ragon et al. 2018). For
example, Duputel et al. (2014) study the uncertainties linked to in-
accuracies in the Earth structure model. On the other side, Ragon
et al. (2018) analyse uncertainties associated with inaccuracies in

fault geometries. Also, Razafindrakoto & Mai (2014) assess the in-
fluence of the employed source time function and elastic structure
on earthquake slip imaging.

In this study, we focus on accounting uncertainties due to Earth
structure modelling. Specifically, we evaluate the impact of inaccu-
racies in the 1-D velocity model employed to compute static and
kinematic predictions. Uncertainties in the elastic parameters ¥ is
assumed to follow a log-normal distribution:

1 - -
p(log &) = Xp (—E(log W — log U)" Cy(log W — log W)) s

“4)

where Cy is the covariance characterizing uncertainty around log ¥
(the logarithm of the elastic parameters used to compute the pre-
dictions shown in Fig. 3). This choice of a log-normal distribution
is motivated by the fact that (1) the elastic parameters are strictly
positive and (2) ¥ values are derived from tomography techniques
based on relative model perturbations (Slog ¥; e.g. Tromp et al.
2005). The earth model uncertainty considered in this study is
shown in Fig. 3. This level of variability is measured by com-
paring different models from the region (following Duputel et al.
2015).

1
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Table 1. Approaches to calculate Cp (for 36 parameters).

Number of forward model

Approach evaluations
Without C,, 0
Empirical 195 (in this study)
1st order forward derivatives 37

Ist order centred derivatives 72

2nd order without cross-terms 73

2nd order 1333

We follow three different schemes to map earth model uncertainty
into prediction uncertainty. The first straightforward approach is to
empirically calculate the prediction uncertainty covariance matrix
C, using predictions computed for a large number of random earth
models W', (i =1, ..., n) drawn from p(log ¥):

1 < ; < ; -
Cp = - D_(a(W', m) = g(F, m)) (g(¥', m) — g(F, m)", (5)
i=1

where g(¥!, m) is the prediction for the earth model W' and the
source model m. In our case, we use a preliminary source model
m derived from a first preliminary slip inversion. g(¥, m) is the
prediction response for the average earth model W. This empirical
approach is computationally expensive because it needs the calcu-
lation of predictions for each randomly generated earth model. To
evaluate the number of models n necessary to calculate an accurate
empirical C, matrix, we compare empirical C, matrices calculated
for an increasing number of random earth models. We observe that
the empirical C, matrix is converging using 195 random Earth
samples (Fig. A3), corresponding to relatively smooth histograms
in Fig. 3.

To test a computationally less expensive approach, we also follow
the first-order approximation approach proposed by Duputel et al.
(2014). Assuming that we can approximate our forward model g(¥,
m) by linearized perturbations, for an a priori earth model we have

then:

g, m)~ g(¥, m)+ Ky(¥, m) - (¥ — D), (6)
where K is the sensitivity kernels of the prediction with respect to
elastic parameters used to compute forward predictions:

g
ov;

(Ky)yy (¥, m) = (¥, m), @)
where W; corresponds to the jth elastic parameter in the earth model
W. We use then K to estimate C,, as:

Cp:K\y'C\y'KI,, (8)

where Cy is the same log-normal covariance that we use for pertur-
bating the random models of the empirical C,, in eq. (4). Although
this approach looks appropriate for static data, it could be problem-
atic for kinematic data as the link between earth model perturbations
and waveform predictions is probably not linear. Indeed, changes in
the velocity model induce both time-shifts and amplitude variations
in the predicted waveforms.

Therefore, we also explore the possibility of using a 2nd order
perturbation approach of the forward model as:

g(V, m) ~ g(¥, m)+ Ky(¥, m)- (& — &)+ % (v —0)
Hy (¥, m)- (¥ - D), ©)

where Hy includes the second order derivative with respect to the
elastic parameters:

9%g;

T (10)

(Hy), (W, m) =
From eq. (9), we can then calculate the C, matrix using eq. (5) by
rapidly generating a large number of forward model predictions.

The derivatives in eq. (9) are computed numerically using finite
differences. We summarize the difference in computational cost
between approaches in table 1. The computational cost of each
approach in terms of forward model evaluation is summarized in
Table 1. In this study, the empirical approach necessitated about 200
forward model evaluations, which is much less than what is neces-
sary when using a 2nd order approach. However, the computational
cost is significantly reduced when considering 1st order derivatives
or 2nd order derivatives without cross-terms. In the following, we
will only consider the empirical, first order and 2nd order without
cross-terms approaches.

In Figs 4 and A4, we compare the diagonal of the C, matrix
for HRGPS and strong motion stations. The 1st and 2nd order
matrices seem to capture the main features of the empirical C,
matrix. Overall, the diagonal elements of the 2nd order C, are
more similar to the empirical C, matrix. Even if the 2nd order
C, is computed after neglecting 2nd order cross-terms in eq. (9),
Fig. A5 shows that the difference with respect to the empirical C,
matrix is 10-20 per cent smaller than the 1st order C, matrix. Such
differences could impact the inversion results. For this reason, in
the next section, we explore the impact of the type of C, matrix
estimate on the coseismic models of the 2015 M,, = 8.3 Illapel
earthquake.

To model the 2015 M,, = 8.3 Illapel earthquake, we design a
curved fault geometry using the GOCAD® commercial software
package matching local seismicity and aftershock focal mechanisms
(Fig. 1). The focal mechanisms are from Global CMT (Dziewonski
et al. 1981) over a period of one month after the main shock. The
fault surface is divided into 10 patches along-dip and 17 patches
along-strike (170 in total) with 18 km side-length, which in a sense,
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Figure 4. Covariance matrix comparison for HRGPS records (a) and strong motion stations (b). The green line represents the diagonal of the empirical
covariance matrix (i.e. the matrix created from an ensemble of models). The red and blue line represents the diagonal of the matrix calculated using the 1st and

2nd order approximation approach.
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Figure 5. Posterior mean coseismic slip model for the static data set. Arrows
represent the slip directions and the ellipses their associated uncertainties
assuming a 95 per cent confidence interval.

is a spatial regularization. However, we do not impose any smooth-
ing or empirical regularizations in the inverse problem, which could
potentially smooth out rupture complexities. For the static inversion,
we invert for along-strike and along-dip slip components in each
subfault. In the full joint inversion, we invert for both slip compo-
nents along with rise time, rupture velocity, and the hypocentre lo-
cation on the fault (along-strike and along-dip distance). We model
the rupture front by solving the eikonal equation for a candidate
rupture velocity in each subfault. Each subfault is discretized into
10 x 10 point sources that rupture sequentially as the rupture front
passes. During the earthquake, each point on the fault is allowed to
rupture only once [contrary to a multiwindow approach; Hartzell &
Heaton (1983), Li et al. (2016)], adopting a prescribed triangular
slip rate function. Even though multi-window approach is able to re-
cover great complexity in the slip rate functions, the single window
approach works better for recovering rupture velocity and seismic
moment and at the same time, it significantly decreases the number
of inverted parameters (Cohee & Beroza 1994).

In the Bayesian inversion approach, we describe a priori PDFs to
represent our prior knowledge for each of the parameters to invert.
The corresponding a priori distributions of our joint model are
shown in Fig. A6. We use the hypocentre of the CSN as a priori
since it was obtained using regional data. For InNSAR images, we
include a nuisance parameter to correct each image from a constant
offset (i.e. two nuisance parameters in total), and for the GPS data
sets we add translation parameters (i.e. three parameters for each
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Figure 7. Rupture times comparison between different C;, inversion solutions. Comparison between the empirical covariance matrix and the first order (a) and

2nd order (b) approaches.

set). These parameters are used to redefine the reference frame
of each geodetic data set during the inversion process, since both
InSAR and GNSS are relative measurements, and have their own
reference frame.

Since we are working with different data sets, we want to know
how sensitive they are to slip on the fault. Thus, we carry out a
sensitivity analysis for each data set. We follow an approach similar
to Duputel ez al. (2015). The sensitivity of each data set is calculated
as:

S(D) = diag(G'(D) - C; (D) - G(D)). (11)

where G is the corresponding Green functions (in the along-dip
direction), and C, is the covariance matrix described above for
a given data set D. For a given subfault, this measure is equiv-
alent to computing the L, norm of the predictions due to unit
dip-slip in the considered patch. The corresponding sensitivities
are shown in Fig. A7. GPS and InSAR data sets are sensitive to
slip in most fault areas, except for the shallowest region. On the
other hand, tsunami data is not sensitive to slip in the inshore fault
region but to the offshore zone. The kinematic data is globally
sensitive to slip over the entire fault. Finally, if we use the whole
data set, although we still observe a decrease in sensitivity at the
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trench, we have an overall good sensitivity to slip over the entire
fault.

4 RESULTS

According to our cascading approach, we first perform an inversion
of the final slip using static data (that is, InNSAR, GPS and tsunami
data). We thus generate a posterior ensemble of slip models whose
posterior mean and uncertainty is shown in Fig. 5. This model
presents two main slip patches that extend updip to the trench. The
solution obtained using static data only has a peak slip of about 10.9
=+ 16.0 m, while the mean fault slip is about 2.5 &= 1.8 m (assuming
a 95 per cent confidence interval). We observe that uncertainties are
as large as the posterior mean slip amplitude. In addition, we see
that even if tsunami data is employed, slip uncertainty is larger in
the shallow part of the fault, due to the lack of data coverage in that
area.

We then use the a posteriori PDF of the static slip model as a
starting point to make three different joint inversions: (i) a joint

inversion using an empirical C, matrix, (ii) a joint inversion using
a Cp matrix calculated using the first-order perturbation approach
and (iii) a joint inversion using a C, matrix calculated using the
second-order perturbation approach. The posterior mean coseismic
slip models obtained using these different approaches are shown
in Fig. 6. We also compare the posterior distributions of dip-slip
in the online supplement (Fig. A8). The three solutions exhibit
two principal slip regions, one northwestward of the hypocentre
and another at shallow depth reaching the trench. The deeper slip
patch is well constrained for the three solutions, with a mean slip
of 6 to meters for this region. The solution based on 1st order
C, shows a compact slip patch at shallow depth, while shallow
slip is more broadly distributed when considering 2nd order or
empirical C, matrices. This results into a larger peak slip value
for the 1st order C, solution (21.0 & 4.1 m), while solutions ob-
tained with an empirical Cp (15.88 & 5.0 m) and with a 2nd order
C, (17.63 & 6.8 m) display smaller peak slip values. Uncertain-
ties significantly decrease when incorporating the kinematic data
set.
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Figure 9. (a) Observed horizontal GPS (black arrows) and predictions for the posterior mean model (red arrows) using a 2nd order approximation Cp. (b) The
colourmap indicates vertical component displacements for observed GPS (outer circle) and vertical predictions for the posterior mean model (inner circle).

Fig. 7 compares rupture times between solutions (taking the so-
lution based on empirical C, as reference). Both models obtained
using a first and second order C, result in rupture times simi-
lar to those obtained with an empirical covariance matrix. How-
ever, the second order approach presents an overall smaller dis-
persion (o = 4.75 s) compared to the first order approach (o =
5.97 s). Regardless of the prediction error covariance matrix, we
note that the nuisance parameters associated with GPS data sets
converge to zero, which means they don’t need further correc-
tions (Fig. A9). There is no significant variation in the constant
offset associated with the descending InSAR image, with a pos-
terior mean value of 3.7 cm. On the other hand, there are some
differences in the nuisance parameter of the ascending interfero-
gram, which vary between —2.5 and —1.5 cm between the different
solutions.

Details of the solution obtained using a 2nd order C, are shown in
Fig. 8. Similar figures are presented for the 1st order and empirical
C, in supplementary Figs A10 and All, respectively. Stochastic
rupture propagation fronts in Fig. 8(a) suggest a complex rupture
pattern. It slowly grows close to the hypocentre, and then propa-
gates updip, with a rupture speed from 2 to 4 kms~!. Stochastic
moment rate functions in Fig. 8(b) indicate an overall rupture du-
ration of 120 s approximately. The average scalar seismic moment
is My = 3.20 £ 0.045 x 10*'Nm, that is a moment magnitude of
M, = 827 £ 0.005. We can notice two energy peaks, a small one
at 25 s, and another one at 50 s. As it has been reported before
(Gombert et al. 2018b), we observe a negative correlation of rise
time and initial rupture times (Fig. A12a). However, this correlation
disappears when comparing rise time and slip pulse centroid times
(Fig. A12b). This arises from the fact that observations are more
sensitive to the slip pulse centroid time at each subfault, rather than
the initial rupture time and rise time (see Fig. 7; Gombert et al.
2018Db). The distribution of centroid times in Fig. 8(c) shows a het-
erogenous rupture propagation. In particular, there are regions at

the northwest of the hypocentre that break faster than their corre-
sponding adjacent areas. These complexities are discussed further
in Section 5.2.

We use the posterior coseismic model to calculate synthetic dis-
placements and compare them to GPS observations (Fig. 9). Both
permanent stations and campaign survey stations show an accept-
able fit, including the vertical components. The corresponding resid-
uals are shown in Fig. A13. The residuals are globally small com-
pared with uncertainties. For the horizontal components, the average
residual is approximately 10 cm, while for the vertical component is
5 cm, which is acceptable given the magnitude of the displacements
(up to 2 m). Stochastic predictions of tsunami waveforms display a
good agreement with tsunami observations (Fig. 10). In particular,
we see that later arrivals are often well fitted even if they are not
included in the data set used for the slip inversion. The tide gauges
bucal, papol and taltl, and the DART stations D32411, D43412 and
D51407 present a slight time-shift between observed and predicted
waveforms. This shift could be explained by local site effects, local
bathymetry for the case of tide gauges, and in the case of DART
stations, by path trajectory not accurately modelled by the forward
model. Fig. 11 shows that InSAR data is also well predicted by our
posterior coseismic model, with residuals smaller than 10 per cent
of maximum LOS displacements. The spatial distribution of the
residuals does not correlate with the coseismic displacement pat-
tern. Nevertheless, we notice a spatial pattern in the InSAR residuals
from Fig. 11 (c), with more positive values in the northern region of
the image. This residual could be linked to discrepancies between
different types of geodetic observations in the region. Although the
ascending image shows vertical displacements up to 40 cm, GPS
vertical displacements in the same area are close to zero or even
display negative values. This InSAR residual pattern has also been
observed by Klein et al. (2017). We also use the posterior coseismic
model to calculate kinematic stochastic waveforms. Kinematic data
show a directivity effect with larger amplitudes towards the north
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Figure 10. Comparisons between tsunami observations (black) and stochastic predictions (red) using a 2nd order approximation Cp. The tsunami waveform
signal used in the inversion is shown between blue dots. The map depicts each tsunami station locations.

that is well reproduced by the model (Figs 12 and A14). We can see
that stochastic waveforms reproduce most of the features visible in
the HRGPS and strong motion records, even at large distances (i.e.
distances >2°).

5 DISCUSSION

We compare our slip models with previous models published in
the literature. Our posterior coseismic model presents a maximum
slip of 17.63 £ 6.8 m at shallow depth. This slip magnitude is
larger than the one observed by Klein ef al. (2017) (10 m); Ruiz
et al. (2016), Shrivastava et al. (2016), An & Meng (2017) (8 ms)
and previous kinematic models such as the one of Tilmann et al.
(2016), Heidarzadeh et al. (2016), Li et al. (2016), Melgar et al.
(2016) (6—12 m). Overall, our joint model is more similar to the
slip distribution of Melgar et al. (2016), which exhibits two slip
regions, with a maximum slip of 12 m, which is smaller than our
posterior mean estimate but within uncertainty of our solution. This
difference likely results from the fact that our results rely only on
spatial discretization in square subfaults while the inversion does not
incorporate smoothing constraints, contrary to the aforementioned
studies that incorporate smoothing regularizations. By using such
constraints, the slip distributions are smoother, which penalizes
abrupt changes and locally high slip amplitudes.

Although largest slip amplitudes in our posterior model are lo-
cated at relatively shallow depth, we note that several previously
published models include slip extending to deeper regions of the
fault (i.e. below the coast). In this regard, Klein et al. (2017) sug-
gest that slip at larger depth is necessary to fit vertical GPS obser-
vations. Although the fault slips mostly offshore according to our
solution, we still observe significant slip (2-3 m) at larger depth.
In Fig. AlS5, we investigate the contribution of slip at different
depths to fit the vertical GPS observations. In agreement with our
sensitivity maps in Fig. A7, we see that shallow slip does not gen-
erate much displacement inland. Although we see that a moderate
amount of slip close to the coast generates uplift in our model
predictions, our model still features some misfits on coastal GPS
stations (as shown in Fig. A13), which can explain the difference
in the amount of slip at depth compared to previous models (e.g. at
station EMAT with an observed uplift of 20 cm, Klein et al. (2017)
has a misfit of 5 cm, while our solution corresponds to a misfit of
8 cm).

In the next subsections, we will examine individually dif-
ferent aspects of the Illapel earthquake rupture. We first as-
sess the reliability of our model close to the trench by ex-
ploring the importance of shallow slip to fit tsunami records.
We then investigate encircling rupture patterns visible in our
solutions.

¥20Z AeIN Lg uo 1senb Aq /89887//8282/€/GEZ/8101 e IB/woo dno-oiwspese//:sdiy woly pepeojumoq


art/ggad380_f10.eps

Ascending image
(b)

-71°

2838 E. Caballero et al.
(a)

< L R L ST

—29° =29° -29°

-30° o 300 -30°
310 310 31
—32° —320 -3
—33°

=33° -33°

—34° I YO VO

-35¢ . 2 i S 350 _3s5e i :
-74° -73° =72° =1n° =70° -69° —-68° =74 =13° =72

=71°

()
—70° 69" -68° 740 73 720 10 S70° —69° —68°

—29° -29° _2ge

H -30° -30° 4 -30°

Descending image

(d)

=74 =13* -72* -71° -70° -69° -—68° -—67° =74° 73 -72° 7I1°
. 2 T

-26° -26° -26°

_a7e H 270 —27°
_age —28° 280
_29° -29° =29°
_30° -30° -30°
-31° =310 =310
-3 -32° -32°

-33° | 33 -33°

=740 =73° =720 =710 <00 —-69°  -68°  —67° =74° =73 -72°

=71°

(e)

=70

-31° 310 -31°

-32° 320 -32°

-33° -33° -33°

-3 340 -34°

— — 350 -35° - - — == _35°
“70° 690 68 -e T3 ST20 71T 700 690 -68°
-0 690 -68°  -67° S0 -7 -7 ST ST0° 690 -68°  -671°

-26° -26° -26°

-7 27 -27°

-28° -28° (] 28

1

-29° -29° -29°

-30° 307 | -30°

-31° 31 -31°

-3 -3 -32°

-33° -33° b -33°

-69°  -68° -67° =740 =730 =720 710 <100 -69° -68°  -67°

Figure 11. InSAR misfit using the posterior coseismic model using the 2nd order C,, matrix solution. Observed ascending (a) and descending (d) Sentinel-1A
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5.1 Impact of shallow slip

At present, there is no general agreement regarding the amount
of shallow slip during the Illapel earthquake since some studies
indicate the absence of shallow slip (An & Meng 2017), while
others demonstrate that shallow slip is necessary to explain tsunami
observations (Lay ef al. 2016). To analyse the amount of shallow
slip, we evaluate the cumulative posterior PDF of slip in the shallow
region (Fig. 13). We observe that the probability of slip to be greater
than 13 m at shallow depth is about 83.8 per cent.

To further explore the contribution of shallow slip, we perform a
static slip inversion imposing shallow slip to be very small (i.e. in the
two shallowest subfault rows). The aforementioned was performed
by fixing a prior PDF with a narrow Gaussian centred on zero for
the along-dip component of slip (considering a standard deviation
of 0.5 m). The corresponding posterior mean model is shown in
Fig. 14. If we compare the resulting solution in Fig. 14 with the
previous posterior coseismic models in Figs 5 and 8, we can still

find the slip patch close to the hypocentre (longitude —72°, latitude
—31.25°). However, the shallow part of the model is significantly
different due to the new prior. Regarding the data fit, we can notice
that GPS fits remain unchanged between static models (Fig. A16;
i.e. GPS observations are insensitive to shallow slip). The com-
parison of model performance for tsunami observations for both
solutions is shown in Fig. 14(b). We notice that the RMS misfit for
tsunami data are smaller when including shallow slip (Fig. A17).
However, such comparison can be misleading: the model with shal-
low slip will naturally better fit the observations as it includes more
free parameters than the one for which shallow slip is proscribed.
To evaluate if the decrease in tsunami misfit is significant, we eval-
uate two different information criteria: The Bayesian Information
Criterion (BIC) and the Akaike Information Criterion (AIC; Bishop
2006) (Supporting Information text S5). In Table 2 we show the
differences ABIC and A AIC, with respect to our solution including
shallow slip. Both criteria tend to favor occurrence of shallow slip
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Figure 12. Examples of comparisons between data (black) and stochastic predictions (red) for HRGPS and Strong Motion stations using a 2nd order
approximation Cy. On the maps, the blue star represents the hypocentre while circles indicate station location (orange for the station depicted and yellow for
the other stations). ¢ and A represent the azimuth and distance from the epicentre. The angle « is the horizontal component azimuth (0° north, 90° east).

rather than the solution without slip at shallow depth (i.e. the model
with shallow slip is associated with smaller BIC and AIC values).
In other words, the difference in RMS misfit is sufficient to justify
the existence of slip at shallow depth. It is worth mentioning that
tsunami data is the only data set controlling the slip at shallow depth
since is the most sensitivity data to this feature (as shown in the sen-
sitivities in Fig. A7. The differences with previous back-projection
studies come from the fact that such shallow features are difficult to
resolve only using seismic information [as pointed out by Lay et al.
(2016)].

Finally, we compare the posterior mean joint coseismic slip distri-
bution with aftershocks locations (Fig. 15). We observe aftershocks
in the outer-trench zone, distributed along the shallow slip region re-
vealed by our solution. As suggested by Sladen & Trevisan (2018),
the occurrence of outer-rise aftershocks can be used as a proxy to
estimate the occurrence of slip at shallow depth along the subduc-
tion interface. The distribution of aftershocks is therefore consistent
with the occurrence of shallow slip during the Illapel earthquake.

The existence of large slip at shallow depth supports the fact
that the 2015 event is not a simple repeat of the earthquake that
affected the region in 1943 (Tilmann ez al. 2016). This is consistent
with historical reports indicating that the tsunami generated in 1943
was much smaller than what was observed in 2015. In addition,
the differences in the duration of teleseismic body-wave arrivals for
both events suggest that the 1943 rupture did not involves shallow
slip (Tilmann et al. 2016). The reason why the 2015 event involves

shallow slip contrarily to the 1943 event is unclear. One possibility
is that shallow slip deficit was larger in 2015 than in 1943. This is
consistent with coupling models from Métois ez al. (2016) showing
that the fault is not creeping at plate rate at shallow depth. However,
this remains speculative as fault coupling close to the trench is
poorly resolved by land-based geodetic data and could potentially
be biased when ignoring stress shadowing effects (Lindsey et al.
2021).

5.2 Encircling rupture pattern during the 2015 Illapel
earthquake

Back-projection results from Meng ef al. (2018) show an encircling
rupture during the 2015 Illapel earthquake. However, this encir-
cling effect has not been reported by any previous kinematic slip
inversion model. Results in Figs 8(a) and (c) show a possible encir-
cling behaviour northwestward from the hypocentre location. We
use the posterior coseismic mean model to investigate the slip and
slip rate evolution. Snapshots from the slip rate history (Supple-
mentary Movie 1) and slip history (Supplementary Movie 2) are
shown in Figs 16 and A18, respectively. The rupture slowly grows
propagating up-dip for 38 s. During this first stage of the rupture,
we observe two different slip rate patches in Supplementary Movie
2, a main region in the updip fault area, and at 32 s, a secondary
slip rate patch in the downdip region. This secondary patch rapidly
vanishes after a few seconds, without producing significant slip.
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corresponding subfault is shown in the inset figure on the left. Colours represent the posterior mean coseismic slip model using the 2nd order approximation
approach. Arrows and ellipses represent the slip directions and their corresponding uncertainties, respectively.

Different back-projection studies show a downdip HF source, that
radiates energy for at least 60 s (An et al. 2017; Melgar et al. 2016).
Even though the downdip slip rate in our model is only active for 30
s, the location of this patch is similar to the aforementioned back-
projection sources. This difference in the duration is probably due to
our single window parameterization, since a subfault cannot break
several times in our model. However, if we compare the moment
rate function of the slip model proposed by An et al. (2017) for the
updip and downdip regions with the results of Fig. 8(b), we see that
we have similar moment rate functions.

Around 40 s after origin time, the rupture separates in three
pulses depicting a first encircling pattern updip from the hypocentre
and then another encircling pattern above the first one, also updip
from the hypocentre (Fig. 16 and Supplementary Movie 2). These
encircling slip pulses contour fault areas with smaller slip rates. This
is illustrated in Fig. 17 showing the posterior mean peak-slip rates
for every point on the fault. All rupture branches finally join together
generating a large slip-rate pulse around 60 s, continuing towards the
north along the trench until the end of the earthquake. To investigate
the reliability of these encircling rupture patterns, we examine the
variability of model samples drawn from the posterior PDFE. This is
shown in the Supplementary Movie 3, which shows the variability
of subfault peak slip rates for different samples of our solution. We
clearly see that the two encircled regions are consistently surrounded
by areas of larger slip rates. This suggests that the two encircling
patterns are robust features of our solution.

To identify which part of the waveform is related to the en-
circled region, we calculate theoretical S wave traveltimes before

and after the first encircled region (Fig. A19). Between these ar-
rival times, we identify a very sharp positive pulse on the east
components of stations, in both HRGPS and strong motion, at
the north of the hypocentre. This observation is quite consistent
with simulations provided by Page et al. (2005), which showed that
such encircled barriers are associated with sharp secondary pulses
in the seismograms. This sharp phase is less visible on southern
stations, even if a longer period pulse is visible. This difference
probably results from directivity effects, which lead to larger and
sharper signals at the northern stations compared to the southern
stations.

The rupture complexity of the 2015 Illapel earthake is high-
lighted by the heterogeneity in rupture times and local centroid
times shown in Fig. 8. To further analyse such complex rupture,
we examine two sets of stochastic slip rate functions correspond-
ing to two different regions that present significant slip rate at 45
and 60 s (shown in Fig. A20). Both slip rate functions exhibit
maximums that reach more than 1.0 ms~!. The stochastic slip rate
functions with a maximum at 45 s correspond to a region in the
middle of the fault with a rise-time of about 5 s, while the ones
with a maximum at 60 s are for a subfault located at shallow
depth with a local rupture duration of 25 s. Some samples of the
stochastic slip rate functions at shallow depth begin at the same
time and even before the onset of slip in the middle of the fault.
Although the peak slip-rates is similar in both fault regions, the
longer rise-time at shallow depth results into significant slip close
to the trench. Despite such long rupture duration at shallow depth,
our model indicate that the rupture follows a pulse-like behaviour
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Table 2. BIC and AIC values with and without shallow slip. Bayesian (BIC)
and Akaike (AIC) information criteria are defined in supplementary text S5.
ABIC and AAIC are the difference in BIC and AIC values with respect to
the slip model including shallow slip. The values suggest that the shallow
slip should be included to properly explain the observations.

Model ABIC AAIC
Shallow slip (348 parameters) 0 0
No shallow slip (314 parameters) 1001 1096

since the maximum rise-time is around 30 s, which is consider-
ably shorter than the total rupture time (around 100 s, Heaton
1990).

The encircled slip pulses visible in our solution between 30 and
60 s are consistent with previous back-projection results that suggest
such complexities in the rupture (e.g. Ruiz er al. 2016; Meng et al.
2018). Ruiz et al. (2016) show an early stage bilateral rupture that
later merged and propagated updip. Meng et al. (2018) report two
episodes of splitting of rupture fronts, occurring both before reach-
ing 60 s [an effect known as ‘double encircling pincer movement’
(Das & Kostrov 1983)]. The first episode reported by Meng et al.
(2018) is between 15 and 35 s, and the second, around 45 and 60 s.
The first encircling is colocated with the static coseismic model of
An & Meng (2017). Consequently, Meng et al. (2018) suggest that
the encircled region is an asperity. However, this static coseismic
model could miss rupture features retrieved by our joint inversion
that incorporates additional static and kinematic data. As previously
pointed out (Ishii ef al. 2007; Tilmann et al. 2016), back-projection
sources trace the progression and changes of the rupture but are
not proportional to slip. Our solution is more heterogenous, pre-
senting multiple slip areas with both encircling episodes contouring

regions with small slip rates (and moderate slip), generating par-
ticularly high slip rates where the rupture focuses in the final stage
of the earthquake (see time=60s, in Figure 16). In this sense, our
observations suggest rather the contouring of two regions that do
not slip during the rupture. Such strong changes in the rupture prop-
agation associated with high slip rates explain the back-projection
results of Meng et al. (2018). The small slip amplitude inside the
contoured regions can be caused by different factors: (i) these ar-
eas could correspond to coupled regions (preventing seismic slip
to occur), (ii) complexities at the subduction interface (e.g. due to
fracture zones or seamounts) could prevent slip to propagate in these
areas or (iii) the contoured regions could be far from the rupture
(i.e. initial and dynamic stresses smaller than the fault strength). Re-
garding the coupling at the subduction interface, the model of the
region proposed by Vigny ez al. (2009) and updated by Métois et al.
(2012) and Métois et al. (2016) shows a relatively high coupling
coefficient in the Illapel earthquake area, except in the shallowest
region, where the coefficient can be as low as 0.2. However, cou-
pling close to the trench is usually poorly constrained by land-based
geodetic data. The Illapel earthquake occurred in the Metropolitan
segment defined by Métois et al. (2016), and is bounded in the
north by the La Serena Low-Coupling Zone (LCZ). This LCZ can
be related to tectonic structures, such as the Challenger Fracture
Zone (CFZ) (Contreras-Reyes et al. 2015; Maksymowicz 2015).
Poli et al. (2017) investigated the different fracture zones in the
Illapel region (the CFZ, and the Juan Fernandez Ridge, along with
secondary structures), and suggested that these structures prevented
the rupture to propagate further north and south. Consistently, we
observe that the northern end of our coseismic slip zone correlates
well with the CFZ. However, we do not find any correlation between
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Figure 16. Five seconds snapshots of slip rate evolution. Slip rate is calculated using the posterior mean coseismic model considering the 2nd order C,
solution. The red star is the inverted hypocentre location. Arrow lines represent the possible encircling locations.

fault zone structures reported by Poli ez al. (2017) and the encircled To further investigate these encircled areas, we compare their
areas in our model. The small slip amplitudes in the contoured re- locations with aftershocks distribution shown in Fig. 15. During
gions are thus likely not caused by such structures in the subducting the first 12 hr, we do not observe any aftershocks overlying the

plate. encircled regions. For the southern region, aftershocks depict a half
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Figure 17. Posterior mean peak-slip rates. Slip rate is calculated using the
posterior mean coseismic model using the 2nd order Cp, solution. Arrows
represent the slip directions with their corresponding uncertainty. The red
star is the inverted hypocentre location. Black contours show the posterior
mean final slip model.

semi-circle pattern that correlates well with our results. One week
after the main shock, we note that both encircled regions remain
with no significant aftershock activity. This is also shown in the
two cross sections of Fig. A21, showing the absence of aftershocks
in the encircled regions (shown as circles in Fig. A21). Several
studies have linked aftershock occurrence with afterslip expansion
over time (Kato 2007; Lengliné et al. 2012; Perfettini e al. 2018),
often surrounding moderate/large coseismic slip areas (Mendoza &
Hartzell 1988). Some fault areas around the Illapel rupture follow
this behaviour, with an increase in the aftershocks rate, probably
accompanying post-seismic slip in regions surrounding high co-
seismic slip (¢f. downdip slip region in Fig. 15a). However, the
encircled areas remain seismically inactive after the main shock.
The absence of aftershocks thus suggests that afterslip does not
penetrate through these regions. Furthermore, according to the re-
sults of Frank et al. (2017), these two regions do not present any
significant activity 9 months before, and 1 yr after the main shock.
This suggests that the region would constitute a high-strength zone
(i.e. with a high yield stress) compared with its surroundings (which
could potentially break in the future), a region with a low slip deficit
that broke recently (i.e. low initial stress), or with a larger fracture
energy (Gallovic ef al. 2020). The presence of high strength barri-
ers has been observed for other megathrust earthquakes such as the
2001 My, = 8.1 Peru earthquake (Robinson et al. 2006), which was
also associated with a low aftershock seismicity rate in the barrier
region. On the other hand, if we consider the 1943 earthquake that
occurred in the same region, and consider a fully coupled fault with
a convergence rate of 67 mmyr~', the slip deficit would be 4.9 m,
which is small compared to adjacent areas that experienced slip up
to 20 m (cf. Fig. 6). If we take this slip deficit and calculate the
corresponding scalar moment, we obtain a My = 4.98 x 10 N - m
(M,, = 7.06) if they break individually, and M, = 4.48 x 10*° N -
m (M,, = 7.7) if they break together.

Revisiting the 2015 Mw=38.3 Illapel ~ 2843

6 CONCLUSION

Using extensive geodetic, seismic and tsunami data sets and a realis-
tic uncertainty model, we obtain fully Bayesian finite-fault solutions
ofthe 2015 M,, = 8.3 Illapel earthquake. We employ a fixed subfault
geometry and a non-linear parametrization (inverting for slip, rup-
ture velocity, rise time and hypocentre location), which allows us to
resolve the complexity of the rupture. We also propose a 2nd order
perturbation approach to better account for prediction uncertainty
in seismic waveforms.

Our kinematic slip models indicate two main slip asperities : a
first asperity close to the hypocentre and another one at a shallow
depth. Our analysis shows that shallow slip is required to fit tsunami
observations and is consistent with the distribution of outer-rise
aftershock seismicity. Historical records suggest that such shallow
slip did not occur during the 1943 earthquake that affected the same
region of the Chilean megathrust.

Our results also highlight encircling behaviours that occur when
the rupture propagates towards the trench. Such rupture complexi-
ties have been previously suggested by back-projection studies. We
suggest that these encircled regions are linked to areas associated
with initial and dynamic stresses smaller than the fault yield stress.
Further investigations are necessary to understand whether these
areas correspond to low slip deficit regions or to fault areas with
high strength that could be hosting future large earthquakes.
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