Simulations of the hydrogen and deuterium thermal and non-thermal escape at Mars at Spring Equinox - INSU - Institut national des sciences de l'Univers
Article Dans Une Revue Icarus Année : 2024

Simulations of the hydrogen and deuterium thermal and non-thermal escape at Mars at Spring Equinox

Jean-Yves Chaufray
Connectez-vous pour contacter l'auteur
François Leblanc
Ronan Modolo
Margaux Vals
  • Fonction : Auteur
  • PersonId : 1107216
Franck Montmessin
Franck Lefèvre

Résumé

We present simulations of the thermal and nonthermal escape processes for H and D, under atomic, molecular and ion forms at Mars during spring equinox. These processes include Jeans escape, several photochemical reactions and the escape associated to the solar wind interaction with Mars. While the hydrogen escape is dominated by the atomic Jeans escape, we find that the deuterium escape is dominated by the photochemical atomic escape. Ions escape represent only 10% of the total escape for both species and is mostly due to charge exchange between neutral and solar wind protons. Including all the processes, we find a D/H fractionation factor (D/H escape ratio divided by the D/H atmospheric ratio) f = 0.04, with a main uncertainty associated to the elastic collisional cross sections needed to accurately derive the photochemical escape rate. Using this fractionation factor and considering a 30 m exchangeable reservoir of water, the average hydrogen escape rate needed to fractionate the Martian water from its primordial value to its current D/H value during the last 4.5 Gyr is ~1.0 × 1028 s−1 which is larger than the current average escape rate (~ 2 × 1026 s−1).
Fichier principal
Vignette du fichier
1-s2.0-S0019103524002124-main.pdf (2.7 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

insu-04591622 , version 1 (31-05-2024)

Licence

Identifiants

Citer

Jean-Yves Chaufray, F. Gonzalez-Galindo, François Leblanc, Ronan Modolo, Margaux Vals, et al.. Simulations of the hydrogen and deuterium thermal and non-thermal escape at Mars at Spring Equinox. Icarus, 2024, 418, pp.116152. ⟨10.1016/j.icarus.2024.116152⟩. ⟨insu-04591622⟩
90 Consultations
27 Téléchargements

Altmetric

Partager

More