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Abstract. In this study, we investigate the fully multivari-
ate state and parameter estimation through idealised simula-
tions of a dynamics-only model that uses the novel Maxwell
elasto-brittle (MEB) sea-ice rheology and in which we es-
timate not only the sea-ice concentration, thickness and ve-
locity, but also its level of damage, internal stress and co-
hesion. Specifically, we estimate the air drag coefficient and
the so-called damage parameter of the MEB model. Mim-
icking the realistic observation network with different com-
binations of observations, we demonstrate that various is-
sues can potentially arise in a complex sea-ice model, es-
pecially in instances for which the external forcing domi-
nates the model forecast error growth. Even though further
investigation will be needed using an operational (a coupled
dynamics–thermodynamics) sea-ice model, we show that,
with the current observation network, it is possible to im-
prove both the observed and the unobserved model state fore-
cast and parameter accuracy.

1 Introduction

An accurate representation of the state of sea ice in the Arc-
tic is important for making both short-term–seasonal and
long-term climate predictions. Recent observations show that
its extent is in decline and, in particular, that it is shifting
from a multi-year ice type to “younger” first-year ice (Meier,
2017). This ongoing shift induces a larger year-to-year and
inter-annual variability in the sea-ice extent, which makes
the short-term and seasonal Arctic sea-ice forecasting even
more challenging, despite its crucial relevance for shipping
routes and fisheries (Mioduszewski et al., 2019). The Arc-
tic sea ice is also a major player of the climate systems via
its feedback to the Earth surface albedo, ocean and atmo-
sphere global circulations. Accurate sea-ice simulations are
therefore essential for better climate projections (Bertino and
Holland, 2017).

As in other areas of environmental prediction, errors in
sea-ice models can be attributed to errors either in the ini-
tial conditions or in the model representation of physical
processes. Due to the low degree of internal instabilities of
the sea-ice evolution on long space scales and timescales
(> seasonal timescales), model error is the main source of
prediction uncertainty, and it is especially detrimental to
long-term forecasts needed for climate simulations. Numeri-
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cal models incorporate parametrisations to represent physical
processes that are not explicitly described or resolved in the
model. The parameters involved can be estimated in different
ways. One way is to base the parameter on values obtained
from laboratory experiments in idealised environments, but
this has the limitation that the selected values may not scale
up for complex realistic simulations. Alternatively, one can
select a value from a range of possible candidates based on
which candidate produces the best fit between the model and
observations (Dansereau, 2011; Miller et al., 2006; Heorton
et al., 2019). Nevertheless, as the number of parameters to
be tuned increases, the latter approach becomes computa-
tionally infeasible. In that case, an optimised version of the
aforementioned process called “data assimilation” must be
pursued.

Data assimilation (DA) combines observations with the
model forecast to provide the most likely estimate for the true
state and/or parameter of the system (see e.g. Carrassi et al.,
2018; Evensen et al., 2022; Park and Zupanski, 2022). It has
been proved to be essential for sea-ice forecasting (Sakov
et al., 2012a; Lea et al., 2015; Zuo et al., 2019). Data assim-
ilation can account for both the forecast and the observation
errors in the state and/or parameter estimation. To this ex-
tent, error statistics need to be specified. In ensemble DA,
the forecast error statistics are obtained from an ensemble of
model runs (Evensen, 2003).

Previous studies have shown that assimilating sea-ice
concentration (SIC) can reduce errors in sea-ice thickness
(SIT) (Massonnet et al., 2015) and that, in coupled sea-ice
and ocean models, sea-ice observations help in initialising
ocean fields such as the ocean and wind forcing (Toyoda
et al., 2016). Model parameters can be made part of the
state, and when it is assumed that they are affected by er-
rors, DA can be used to estimate them. An example of such
an approach in sea-ice models can be found in Massonnet
et al. (2014), who used the ensemble Kalman filter (EnKF;
Evensen, 2003) to estimate the air drag coefficients, ocean
drag coefficients and sea-ice strength parameter by assimi-
lating sea-ice drift data.

Sea-ice models include multiple variables. However, only
three of these are usually observed and assimilated: SIC,
SIT and sea-ice drift. These observations are mostly obtained
from satellites. In situ observations are usually only used for
evaluation purposes (Jakobson et al., 2012). The satellite ob-
servations of SIC show good spatial and temporal coverage
with relatively low uncertainty. Assimilation of SIC shows
tremendous benefits for sea-ice forecasting (Lisæter et al.,
2003; Stark et al., 2007). In the past decades, though less
accurate than SIC, SIT has started to be assimilated, with
further improvements to forecasts (Xie et al., 2018; Blockley
and Peterson, 2018; Fiedler et al., 2022b). The assimilation
of sea-ice drift has been less successful and has motivated
further developments of sea-ice rheological models (Sakov
et al., 2012a). These studies together show the important role
of DA in sea-ice prediction.

In this study, we explore the capability of ensemble DA to
estimate both the state and the key sea-ice parameters in a
model endowed with a Maxwell elasto-brittle (MEB) rheol-
ogy. This rheology is adopted by the neXt-generation Sea Ice
Model (neXtSIM), which runs operationally on a Lagrangian
grid that uses dynamical remeshing (Rampal et al., 2016).
Due to the Lagrangian framework, the advection process
does not require explicit calculations, and the highly multi-
scale sea-ice features, especially localised features such as
the so-called linear kinematic features (LKFs), which con-
centrate sea-ice fracturing and high deformations rates, can
be easily preserved (Bouillon and Rampal, 2015). One down-
side of this framework, however, is that, with the changing
number of model grid points in time, it poses challenges
for ensemble DA. Consequently, DA approaches have been
specifically designed (e.g. Aydoğdu et al., 2019; Sampson
et al., 2021) and implemented in the context of neXtSIM
by Cheng et al. (2023). Another drawback of using a La-
grangian framework in a sea-ice model is that coupling to
existing ocean and atmospheric model components, which
are virtually all Eulerian, requires the use of a coupler on a
fixed exchange grid (Boutin et al., 2023).

Because such a coupling is essential for climate simu-
lations, a new version of neXtSIM based on an Eulerian
framework is being developed under the Scale-Aware Sea Ice
Project (SASIP; https://sasip-climate.github.io/, last access:
7 May 2024). It is in the light of these developments that
this study is inscribed. In particular, the dynamics-only sea-
ice MEB model of Dansereau et al. (2016, 2017) has been
designed following an Eulerian approach and a discontin-
uous Galerkin treatment of advection. With the aid of this
dynamics-only sea-ice MEB model, we study in detail the
capabilities, limitations and adaptations of ensemble DA to
infer state and model parameters based on synthetic observa-
tions of the Arctic sea ice.

We intentionally use a dynamics-only model whereby
thermodynamics processes are missing. Indeed, such a model
is already complex enough and, on short (daily and weekly)
timescales, sufficient to focus on how the mechanical/dy-
namical processes lead to the emergence of complex, poten-
tially nonlinear, relations between model states, model pa-
rameters and the observable quantities. Those are the rela-
tions the DA has to rely on. Thus, although the model does
not capture all of the processes at play in sea ice, we shall
see how our experiments reveal a number of complex interac-
tions. On the other hand, the use of a simpler idealised model
allows us to conduct a fully multivariate estimate where we
infer all model fields with only a handful of available ob-
servations, a realistic situation that has not yet been studied
extensively in sea-ice DA.

The paper is organised as follows. In Sect. 2 we introduce
the iterative ensemble Kalman filter (IEnKF), state-of-the-
art DA approach used in this study. Then we describe the
model and its configurations in Sect. 3. The ensemble DA
setup and twin experiments are given in Sect. 4. Results for
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both multivariate state estimation in a “perfect-model” setup
and parameter estimation in a biased model are reported in
Sect. 5. In Sect. 6 we discuss some of the critical aspects of
ensemble DA in this context together with how to address
them in future works. We finally summarise our findings in
Sect. 7.

2 Data assimilation: the iterative ensemble Kalman
filter

The iterative ensemble Kalman filter (IEnKF; Sakov et al.,
2012b; Bocquet and Sakov, 2012, 2014) is a variant of the
Kalman filter (KF). Like the KF, it is constructed based on
the Bayes theorem under the assumption that the prior (fore-
cast), evidence (observation) and posterior (analysis) follow
a Gaussian distribution. It has successfully been applied to
joint state and model parameter estimation problems (Boc-
quet and Sakov, 2013; Haussaire and Bocquet, 2016; Boc-
quet et al., 2021). In ensemble DA methods, the linear model
assumption of the KF is relaxed and the prior distribution
is estimated from a finite ensemble of model forecasts. A
relevant feature of the IEnKF is that it solves for the anal-
ysis via a nonlinear optimisation aimed at maximising the
a posteriori probability distribution. This key aspect makes
it worth investigating its performance in the context of pre-
dicting Arctic sea ice, which is characterised by strong and
complex nonlinear relations as well as weak nonlinearity in
the observations. The IEnKF is the filter version of the more
general iterative ensemble Kalman smoother (Bocquet and
Sakov, 2014), and it is conceptually a generalisation of the
maximum likelihood ensemble filter by Zupanski (2005).

In an ensemble DA system consisting of Ne ensemble
members with an N -dimensional state vector, the ensem-
ble mean of the posterior analysis xa ∈ RN is given by xa =
xf +Awmin, with xf ∈ RN being the a priori ensemble mean,
A ∈ RN×Ne the matrix of ensemble anomalies with N rows
and Ne columns obtained by removing the ensemble mean
from the full ensemble matrix, and wmin ∈ RNe the minimum
of w obtained from the cost function as

wmin := argminwJ (w), (1a)

with

J (w)=
1
2

(
y−H(xf +Aw)

)T
R−1

(
y−H(xf +Aw)

)
+

1
2
(N − 1)wTw, (1b)

where y ∈ RNo contains No observations whose error covari-
ance is specified by R ∈ RNo×No and H is the observation
operator. Formulating the problem as in Eq. (1) is equiva-
lent to an ensemble-variational method. Note that extensive
reviews of these methods can be found in Chap. 7 of Asch
et al. (2016), Bannister (2017) or Sect. 4 in Carrassi et al.
(2018). In our implementation, the cost function in Eq. (1) is

minimised using a Gauss–Newton method. The stopping cri-
terion in this study comprises a maximum of 40 iterations for
the experiments of state estimation only (Sects. 4.3.2 and 5.1)
plus the constraint of ||wk −wk−1

||< 10−3 when parame-
ters are also estimated (Sect. 5.2–5.4). The latter additional
constraint has been included on the basis of theoretical argu-
ments and numerical experiments. It avoids overfitting at a
single analysis step for parameters without time dependency.
Without the additional stopping criterion, the parameter esti-
mation leads to excessive corrections that do not appear in the
case of state estimation only. The use of early stopping crite-
ria in the context of ensemble-variational methods with do-
main localisation was also originally suggested by Bocquet
(2016) to deal with potential convergence problems. After
minimisation, the posterior analysis error covariance is ap-
proximated, via the ensemble, by the inverse of the Hessian
matrix of J .

The forecast error covariance is approximated with the en-
semble anomaly matrix, A, by 1

N−1 AAT. Given that the state
vector contains both observed and unobserved model fields,
the forecast error covariance matrix contains the (ensemble-
based) cross-covariance between these fields that allows for
propagating the data content to all model fields, including
those that are not directly observed. As we shall clarify later,
we use a fully multivariate augmented DA where the state
vector contains all model fields and model parameters that
will be estimated (see for instance Ruiz et al., 2013). The
analysis of the unobserved fields and parameters depends di-
rectly on the cross-correlations between these fields and the
observations.

3 Model setup

In this study, we use a dynamics-only sea-ice model in an
idealised setup. In this section, we provide details about the
model setup used in our numerical experiments. This in-
cludes the model equations, its parameters and the choice of
external forcing fields. The setup described in this section is
used as modelled “truth” in the following DA experiments.

3.1 The dynamics-only sea-ice model

The dynamics-only sea-ice model uses the MEB rheology
proposed by Dansereau et al. (2016). The model itself and
its numerical implementation, based on an Eulerian, discon-
tinuous Galerkin approach, are presented in Dansereau et al.
(2017). In the MEB model, sea ice is treated as a viscous–
elasto-brittle material. This rheology allows for represent-
ing the ice cover as a brittle solid where it is relatively un-
damaged (i.e. unfractured) and highly concentrated relative
to ice-free waters and as an elastic–viscous fluid where it is
intensively fractured and low in concentration. By associat-
ing sea-ice with an elastic solid rather than a highly viscous
fluid and by incorporating a variable (the level of damage,
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d) to represent its degree of fracturing at the sub-grid scale,
this model differs significantly from the widely employed
(elastic–)viscous–plastic rheologies (Hunke et al., 2010).

The dynamics-only MEB sea-ice model describes the
evolution of nine model fields: sea-ice concentration (SIC)
A; sea-ice thickness (SIT) h; sea-ice velocity (SIV) u=
(ux,uy)= (u,v); level of damage d; cohesion C; and

internal stress σ =
(
σxx σxy
σyx σyy

)
, where σyx = σxy (see

Dansereau et al., 2017).
In the MEB rheology, the evolution of SIV, the level of

damage and stress describes the kinematics of the sea ice.
To obtain a physically plausible solution, a stress–velocity–
damage constraint that respects the MEB constitutive equa-
tion (which relates SIV to σ ) must be satisfied. Other model
fields also enter the momentum, constitutive and damage
evolution and mass conservation equations, but these are just
advected by SIV. Here, we highlight the momentum and
stress equations of the sea-ice model. These equations will be
relevant in parameter estimation experiments. The momen-
tum equation is given as

ρh
Du
Dt
=∇ · (hσ)+ ρaCaA|ua|ua, (2)

where ρ and ρa are the sea ice and air density respectively,
ua is the wind field, D

Dt is the material derivative, and Ca is
the air drag coefficient. The stress equation is

λ0dα−1
[
∂σ

∂t
+ (u · ∇)σ +βa(∇u,σ )

]
+d1− deσ = η0d ′α exp

[
−c∗(1−A)

]
K :D(u), (3)

where λ0 is the undamaged relaxation time; βa is a function
that accounts for the effects of rotation and deformation; η0 is
the undamaged apparent viscosity; d ′α = (1− ηmin

η0
)dα+

ηmin
η0

,
with ηmin being the minimum apparent viscosity and α being
a damage-related parameter; K is a stiffness tensor; and D()
is the symmetric part of the velocity gradient.

The model equations are discretised on an unstructured tri-
angular grid using a finite-element, discontinuous Galerkin
method where the sea-ice velocities are defined on triangular
vertices (degree of polynomial approximations of 1) and all
other model fields are defined on the face of the triangular el-
ement (degree of polynomial approximations of 0 or constant
by element; see Dansereau et al., 2017). In particular, be-
cause the constitutive, momentum and level-of-damage evo-
lution is coupled, SIV, the level of damage and sea-ice stress
are solved using a semi-implicit, iterative method. Besides
these dynamical properties, the sea-ice model used in this
study does not include thermodynamics processes. As such,
it is a short-timescale proxy for the dynamic–thermodynamic
sea-ice model currently under construction in the SASIP
project, neXtSIMDG. However, this future model builds on
the MEB rheology and discontinuous Galerkin-based numer-
ical scheme. Therefore, the present model is a reliable surro-

gate of the dynamical components and of the numerical core
of neXtSIMDG.

The evolution of the sea-ice model is controlled by multi-
ple model parameters which define the physical properties of
the sea ice and thereby intrinsically affect the representation
of sea ice in the model. These parameters (see Table A1) fol-
low the choice in Dansereau et al. (2017) with exceptions for
the spatial and temporal resolutions and minimum cohesion.
In our experiments, the model runs at the spatial resolution of
around 15km and a time step of 30 s. This ensures numerical
stability while sufficiently resolving the propagation of dam-
age, the fastest process represented in the model. The model
is solved on a squared model domain of [−L,L]× [−L,L]
with the x and y axes aligned along the perpendicular sides of
the square with L= 100km. This gives us 512 elements and
285 nodes. To enhance internal variability (and thus maintain
ensemble spread in the IEnKF), the minimum sea-ice cohe-
sion, which sets the resistance of the sea-ice cover to fractur-
ing, is lowered to 5000 from 8000 Pa, which has been used
so far in neXtSIM (Rampal et al., 2016).

In this study, the DA’s ability to estimate two model pa-
rameters will be investigated: the air drag coefficient, Ca,
in Eq. (2) and damage parameter, α, in Eq. (3). Ca enters
the model in the momentum equation (see Eq. 2), modulat-
ing the influence of the wind fields on SIV. This parameter
corresponds to the effect of external forcing on the sea-ice
model. α controls the swiftness of the transition between the
elasto-brittle regime at a low level of damage and the vis-
cous regime at a high level of damage. The mechanical be-
haviour of an elasto-brittle solid is less predictable in nature
than that of a viscous fluid (Weiss and Dansereau, 2017).
This means that erroneous α changes the internal property of
sea ice and influences the sea-ice predictability. The choice
of the parameters to be estimated is largely based on pre-
vious studies. Massonnet et al. (2014) showed that a cou-
pled ocean–sea-ice model is sensitive to the drag coefficient,
which is estimated with the ensemble Kalman filter. Using
neXtSIM, a rheology-based model similar to the MEB model
used here, Rabatel et al. (2018) showed the importance of
the wind stress, and thus the air drag coefficient, in deter-
mining the spread of the sea-ice trajectories. Furthermore,
Cheng et al. (2020) demonstrated that the shape and orienta-
tion of the area covered by the sea-ice trajectories depend on
the sea-ice air drag coefficient. Besides the drag coefficient,
the damage parameter is the only other minimal parameter
in a solid-like MEB rheology-based model. Drag coefficient
and damage parameters are the two sole tunable parameters
present in the MEB model used in this study. This is because,
in a dynamics-only MEB model, the air drag coefficient and
the damage parameter are the only two parameters that do not
affect the maximum speed of the fastest-propagating elastic
waves which influence the model stability with given time
steps.

We have performed a numerical sensitivity analysis which
shows that the observations are sensitive to both parame-
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Figure 1. Sensitivity of SIV, SIC and SIT to perturbed Ca or α parameter. The shaded area is the standard deviation, a representation of
uncertainty in the ensemble an indication of the strength of the sensitivity.

ters. Results are shown in Fig. 1, where the same initial and
boundary conditions are used while each ensemble member
has different Ca or α values. The parameter values are sam-
pled from N (2.5×10−3,5×10−4), and N (6,1.5) for Ca and
α respectively. The model parameters are time-independent,
and the ensemble means are 2.5×10−3 and 6.5 respectively.
Figure 1 shows that both Ca and α have a strong impact on
SIC and SIT, while a smaller effect is observed on SIV.

The initial and boundary conditions of the model are
shown in Table 1. The simulations start with a domain cov-
ered by undamaged sea ice at rest with a random cohe-
sion field. The value of the cohesion field for each element
is sampled from a uniform distribution between 5000 and
10000Pa. As shown in Fig. 2e, the initial SIT (h) is a “blob”
defined by a cosine function given in Table 1, which repre-
sents the naturally inhomogeneous distribution of the SIT in
space. We use no-slip boundary conditions at x =−L= L
and Neumann boundary conditions at y =−L= L, where
1m thick undamaged sea ice is transported into the domain
based on SIV. To avoid an influx of sea ice with a uniform co-
hesion field from the domain boundaries, the cohesion field
of the inflowing ice is randomly sampled from a uniform dis-
tribution between 5000 and 10000Pa.

3.2 The external wind field

In the model setup, following Dansereau et al. (2017), the
ocean is assumed to be at rest and the sea-ice variability re-
lies on the wind forcing. We design an external forcing in the

form of a prescribed storm-like wind drag that mimics the
wind field encountered in operational sea-ice DA. Consistent
with reality, the wind is therefore a major source of variabil-
ity in the present simulations (Guemas et al., 2016; Rabatel
et al., 2018).

The storm-like wind field is inspired by the test cases for
linear advection schemes in Lauritzen et al. (2012) generated
by analytical formulae as outlined in Appendix B. We deem
this forcing an adequate representation of the complex hor-
izontal atmospheric flow. The wind field is updated at each
model computational time step such that the sea ice is al-
ways driven by the up-to-date wind field similarly to the case
where the sea-ice model is coupled to an atmospheric model.

The cyclone, shown in Fig. 2a, covers around a quarter
of the domain in space. The wind field is superposed on
a background flow (2ms−1) from the bottom to the top of
the domain. The centre of the storm moves from y = 0 to
y = L with a speed of 0.25ms−1, which is slower than the
background flow. The parameters of the storm can be found
in Table 2. The formulae for the wind field also allow for
a fine control of the generation and dissipation of the cy-
clone. Therefore, as shown in Fig. 2b, the storms (appear-
ing as peaks in the time series) are not persistent but have
time-evolving features. Following the dissipation of a cy-
clone, a “peaceful” period with only the background wind
is used. Hence, during our 90 d experiment period, there are
12 storm occurrences. Moreover, like the duration, strength,
initial centre position and travel speed of the storm are speci-
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Table 1. The initial and boundary condition of the experimental setup in the dynamics-only sea-ice model. Here r =
√
x2+ y2, with (x,y)

being the coordinate of the grid points and r0 = 50km. The boundary condition at y =−L= L is that of the fields transported into the model
domain.

Initial condition
Boundary condition Forcing

x =−L= L y =−L= L Ocean Atmosphere

A= 1

u= 0ms−1

A= 1

at rest

random quasi-periodic storm-liked = 0 d = 0
u= 0ms−1 σ(t) ·n= 0Pa
σ = 0Pa σ = 0Pa

wind field occurrenceh=max(1,1+ cos(π2 r/r0))m h= 1m
C ∼ U(5000,10000)Pa C ∼ U(5000,10000)Pa

Table 2. The parameters of the storm that served as the truth of the wind field.

Period (days) Strength (ms−1) Initial centre (km) Travel speed (ms−1)

Rotational Divergent Background x y

U(2,5) 22 0.1 2 U(−25,25) U(−50,20) 0.25

fied by the analytical formula with storm duration and initial
position sampled from a uniform distribution as shown in Ta-
ble 2. With the given random initial position of the storm, the
variability in the wind field is confined in a limited region
of the domain as shown in Fig. 2c and d. Figure 2e–f show
that the variability in the wind field leads to variability in the
modelled sea ice, mainly in the upper-right region of the do-
main as the sea ice is mostly damaged in these regions.

4 Data assimilation setup

The operational sea-ice DA corrects only the model state
without dealing with model errors explicitly. It is, however,
impossible to obtain a perfect model. Model errors originate
from diverse sources, such as numerical discretisation, the
lack of sufficient resolution as well as errors in the model pa-
rameters. We focus here on the parametric errors, as these are
particularly problematic and dominate the initial conditions’
errors in long-term forecasts.

As introduced in Sect. 2, the IEnKF can infer unobserved
model fields thanks to its ensemble-based cross-correlations
with the observed fields. This feature can also be exploited
for parameter estimations. In the parameter estimation, we
use the augmented approach in which the model parameters
are included as part of the state vector. For example, in the
case of estimating the air drag coefficient Ca, the state vec-
tor is x= (h,u,v, . . .,Ca)

T. Thus their inference is ultimately
related to the capability of the IEnKF to properly describe
the correlation within this new, augmented virtual state com-
posed by the physical variables and the parameters.

The simultaneous state and parameter estimation is more
challenging than state estimation alone, since changes in the

parameters have a direct impact and can substantially modify
the model’s dynamical properties. In the worst-case scenario,
inappropriate parameter values can push the model through
a bifurcation (a tipping point in the case of non-autonomous
systems), leading to qualitatively different model behaviour
than that of the data. Moreover, different parameters can have
aliased uncertainties in the observed model fields, implying
that not all of the parameters can be uniquely identified.

These challenges motivate the investigation of state and
parameter estimation in the idealised dynamics-only sea-ice
model. In this study, a series of twin experiments are con-
ducted whereby a model run is taken to represent the truth.
Synthetic observations are generated from the truth follow-
ing a specified observation error distribution.

To assess DA’s ability, four different scenarios are ex-
plored: (1) a perfect model where the parameters are equal
to their “true” values; (2) a model with a biased air drag co-
efficient, Ca; (3) a model with a biased damage parameter,
α; and (4) a model with biased Ca and α. A summary of the
setup of each experiment is given in Table 3.

4.1 Ensemble generation

The IEnKF belongs to the category of the ensemble-based
DA methods. As such it relies on an ensemble of model tra-
jectories to approximate the forecast uncertainty. The ensem-
ble spread represents the error in the estimate of the model
state and parameters. We will explore four different scenar-
ios, whereby, as we shall clarify later, we will employ a dif-
ferent strategy each time to generate the ensemble. In partic-
ular, in the cases with parametric error, each member of the
ensemble will be given a different set of model parameters.
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Figure 2. An illustration of the wind field and the model response in SIT. (a) A snapshot of the wind field at an arbitrary time; (b) time series
of the spatially averaged wind velocity; (c) standard deviation of the u component and (d) the v component of the wind in time over 90 d;
(e) the initial condition of the SIT; (f) SIT after 42 d of simulation.

Table 3. The experiment setup used in four different scenarios. These experiments use the same truth, where ua is the wind forcing and
u(t = 0) is the initial condition of SIV.

Scenario
Model error Inference vector Perturbations

Background Localisation (km)

Ca α SIC SIT SIV

1 none state u, ua 1.5× 10−3 4 5 200 and 30 30
2 Ca state, Ca u, ua, Ca 2.5× 10−3 4 5 30 30
3 α state, α u, ua, α 1.5× 10−3 6.5 5 30 30
4 Ca and α state, Ca, α u, ua, Ca, α 2.5× 10−3 6.5 5 30 30

Nevertheless, in all of the four scenarios, we will perturb
the wind field (i.e. an external forcing), the initial condi-
tion of the sea-ice velocity and the cohesion flux at model
boundaries. The external atmospheric wind forcing is a major
source of forecast uncertainty in sea-ice models. For exam-
ple, Rabatel et al. (2018) and Cheng et al. (2020) studied the

sensitivity of neXtSIM to the wind forcing and sea-ice co-
hesion. In this study, we generate synthetic perturbed wind
fields around the “true wind” defined in Sect. 3.2 and use
them to form an ensemble. The duration, strength, initial po-
sition and travel speed of each cyclone are perturbed with
noise sampled from Gaussian distributions (see Table 4 for
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details). In addition to these perturbations, we also introduce
a random walk for the centre of the cyclone in the zonal di-
rection as part of the ensemble perturbation. This is generated
as red noise at each time step according to

1xi+1 = e
−1t/τ1xi + ε, (4)

where 1xi is the distance travelled zonally at the ith time
step, τ = 60 is a time decorrelation factor and ε is noise sam-
pled from N (0,4.44×10−5)m. This red noise is not applied
to the true wind. To avoid the cyclone travelling outside of
our model domain, we resample the noise if the centre of the
cyclone goes outside of the region between −40 and 50km
for the x coordinate. The same check and resampling are ap-
plied to the perturbations for the initial centre of the cyclone.

Albeit marginally with respect to variability due to the ex-
ternal forcing, the internal model variability caused by non-
linearities is another source of forecast error. This is ac-
counted for in our ensemble by perturbing the SIV initial
condition, in addition to perturbing the external atmospheric
wind field. SIV perturbations are sampled from the Gaus-
sian distribution, N (0,0.05). Furthermore, as discussed in
Sect. 3.1, the boundary condition of the random cohesion in-
flux, which differs for each ensemble member, adds another
source of uncertainty in our experiments, but as the sea ice
drifts slowly and does not travel long distances across the
domain, the impact of the cohesion perturbation is limited.

In the experiments with parametric error in either Ca or α
or both (experiments 2–4 in Table 3), the prior covariances
of the model parameters need to be specified. As shown in
Table 4, the parameter values used by the ensemble mem-
bers are sampled from zero-mean Gaussian distributions with
standard deviations set to be around 33% of the true parame-
ter value. Given that both Ca and α are bounded from below
due to physical constraints, the sampled values of Ca and α
are ensured to be greater than 10−5 and 2 by rejecting out-
liers.

4.2 Synthetic observations

Synthetic observations in our twin experiments are generated
by sampling from the truth with the aim of mimicking how
observations of the Arctic sea-ice are collected operationally,
i.e. their spatio-temporal density.

Satellite observations of SIC, SIT and sea-ice drift are used
in sea-ice forecasting and reanalysis systems (Sakov et al.,
2012a). Most operational systems assimilate gridded prod-
ucts. However, some recent studies show the possibility of
directly assimilating along-track instead of gridded data for
SIT (Fiedler et al., 2022a), which could allow for a more fre-
quent SIT assimilation than the 7 d averaged gridded prod-
ucts (Ricker et al., 2017) because gridded data require time
for collection and processing. Hence, a star-shaped spatial
distribution mimicking the along-track SIT observations is
used here. For simplicity, we assume that the same star-
shaped spatial distribution is available daily due to the time

Figure 3. Observation distribution of SIT and SIV with the back-
ground triangles being the model grid. The observation distribution
of SIC is not shown because it covers the entire domain.

required for data collection from the polar satellite. Note that
this treatment neglects the temporal variability in the satel-
lite tracks. Following the protocol of gridded data, we gen-
erate synthetic observations of SIC and SIV quasi-uniformly
across the model domain.

Nowadays SIC satellite observations reach a resolution
as high as 10km. Considering that our model has a spatial
resolution of around 15km, we synthetically observe every
grid point for SIC in our experiments. SIV data are sparser,
with a spatial resolution of around 50km. The position of the
along-track SIT data is parametrised by four lines on the do-
main satisfying the condition |yi+ cxi | ≤ r , where (xi,yi) is
the spatial coordinate of the grid points, and the pair (c,r) ∈
{(2.2,16km), (−2.2,16km), (0.5,8km), (−0.5,8km)}. A
graphic distribution of SIC and SIV can be found in Fig. 3.

The synthetic observations are generated by sampling
from the truth and adding an observational error drawn
from Gaussian distributions. The observation error variances
of these Gaussians follow those of realistic DA systems.
For SIC, we adopt the observation error standard deviation
from Sakov et al. (2012a) and Cheng et al. (2023):

σA[m] =

√
0.01+ (0.5− |0.5−A|)2. (5)

The observation error in the along-track SIT follows the for-
mula for the measurement uncertainty for CryoSat-2 used
by Fiedler et al. (2022a):

σh =


8 h < 0.7m

2
(

1− 7e
0.3−he

)
h

100 0.7≤ h < 3m(
5(h− 3)+

(
1− 7e

0.3−3e

))
h

100 h > 3m.

(6)

This equation parametrises the uncertainty in the observa-
tions based on the measured value of the SIT. The use of
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Table 4. Gaussian distributions of wind fields, SIV and parameter perturbations. The mean of the wind fields is given in Table 2.

Wind field
SIV (ms−1) Ca α

Period (days)
Strength (m s−1) Initial centre (km)

Travel speed (ms−1)
Rotational Background x y

N (0,0.5) N (0,0.5) N (0,
√

0.05) N (0,1.5) N (0,1.5) N (0,0.0045) N (0,0.05) N (0,5× 10−4) N (0,1.5)

Table 5. The time- and space-averaged ensemble standard deviation of each free-run ensemble over 90 d.

Scenario u (ms−1) v (ms−1) A h (m) d C (Pa) σxx (Pa) σxy (Pa) σyy (Pa)

1 7.52× 10−3 0.011 0.072 0.037 0.215 153.128 2584.221 1475.218 1701.683
2 0.030 0.031 0.153 0.089 0.240 289.626 3089.592 1508.822 1925.960
3 7.42× 10−3 0.011 0.074 0.038 0.185 166.199 2657.060 1502.896 1754.829
4 0.033 0.034 0.149 0.093 0.210 295.344 3139.044 1517.597 1951.430

σh = 8m for h < 0.7m effectively eliminates SIT observa-
tions of thin ice from the DA, reflecting the fact that SIT of
thin ice from satellite altimetry is notoriously untrustworthy.
The error in Eq. (6) does not account for the representation
errors. To account for it, we have therefore added an extra
factor of 2.

For the sake of simplicity, synthetic SIV observations are
used as a substitute for the sea-ice drift data. There is no ex-
plicit equation for the observational error variance of SIV,
nor are there prototypical examples due to the lack of in-
vestigation of SIV uncertainties. Hence, for each observa-
tion grid point, we use either 80% of the standard deviation
of a single 90 d model trajectory (in our case, the truth) of
the observation variance or 8× 10−4 ms−1 (∼ 0.21km per
3d), whichever is greater. This leads to a maximum obser-
vational error of around 12km per 3d (13km per 3d) for
the u (v) component and ensures that SIV observations will
contribute to the DA correction. However, the value for the
standard deviation is smaller than the 14km per 3 d value
used in Sakov et al. (2012a): one of the few cases of oper-
ational reanalyses using SIV we are aware of. Since Sakov
et al. (2012a) showed only a faint impact of SIV assimila-
tion, a reduction in the observation error is expected to take
better advantage of the SIV data.

4.3 Inflation and localisation

4.3.1 Inflation

The application of ensemble DA in geosciences is plagued
by sampling errors that arise because of the impossibility of
using sufficiently large ensembles. The huge size of realistic
numerical models of geofluids and the computational con-
straints imply that the number of an affordable ensemble size
is much smaller than the state vector’s dimension, Ne�N .
Inflation and localisation are the two main approaches to al-
leviate sampling errors (and to some extent, model errors, as
discussed in Scheffler et al., 2022, and Grudzien et al., 2018).

Following Cheng et al. (2023), an ensemble size of Ne = 40
is used for the IEnKF. The ensemble size is thus orders of
magnitude smaller than the size of the state vector, which is
O(103).

In our four experimental scenarios, we use the adaptive
inflation method proposed by Bocquet and Sakov (2012).
The IEnKF-N is an extension of the IEnKF that includes an
adaptive inflation method designed to counteract the sam-
pling error by keeping a safe ensemble spread. To achieve
this, the IEnKF-N introduces an uninformative hyperprior in
the EnKF; the formulation has been proved to be equivalent
to the multiplicative inflation. Although the IEnKF-N has a
slightly larger computational cost, it spares us from the very
costly offline tuning of the inflation factor (a procedure that
should ideally be repeated for each experimental setup).

4.3.2 Localisation

We implement domain localisation as described in Bocquet
(2016, his Table 2). In the domain localisation, each model
grid point (local domain) assimilates observations within a
circle centred on the grid point. To gradually reduce the im-
pact of observations away from the central grid point and to
ensure spatially smooth DA corrections, the observation error
is tapered by the Gaspari–Cohn (GC) function with a cutoff
value of 10−5. In this way, each local domain has a differ-
ent cost function based on different observations. Moreover,
the localisation radii are dependent on the observation type
and the spatial correlation scale of the model physics. The
latter is naturally time- and space-dependent. In practice, for
the sake of computational efficiency and for the difficulties
inherent in its adequate assessment, the localisation radius
is often a fixed value (although dependence on the physical
variable is usually accommodated).

We anticipate that the localisation radius for global param-
eters (drag coefficient, damage parameter, etc.) is set to in-
finity. This choice reflects the fact that the parameter does
not have a spatial decorrelation scale and is indeed global.
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This treatment of localisation for global parameters is also
adopted in Aksoy et al. (2006), Ruiz et al. (2013) and Mas-
sonnet et al. (2014). See also Ruckstuhl and Janjić (2018),
Bocquet et al. (2021), and Malartic et al. (2022) for more
recent developments on this topic.

As a trade-off between efficiency and accuracy, we opted
for optimising the localisation radius when only one model
field is observed. Furthermore, we assume that SIV has the
same correlation length scale along both components (i.e. no
preferred direction of movement), which is consistent with
the experimental setup.

For each of the localisation radii explored, we run a 15d
long simulation after a 42d ensemble free run without DA.
Although 15d may appear too short for adequate tuning and
may not include all possible physical regimes, it still covers
multiple storm events (storm passage every 3.5d on average).

The ratio between the root-mean-square error (RMSE) of
the analysis and of the free run, as a function of the locali-
sation radius when assimilating SIT, SIC or SIV, is shown in
Fig. 4. When assimilating SIT (Fig. 4a), the analysis error in
SIT decreases monotonically with the localisation radius un-
til the localisation radius reaches the domain size (200km).
The inset shows that assimilating SIT also leads to a reduc-
tion in SIV’s RMSE (RMSEa /RMSEfree systematically be-
low 1), while it leads to a deterioration in SIC as soon as the
localisation radius is larger than 5km.

As opposed to when SIT is observed, the localisation ra-
dius for SIC observations (Fig. 4b) is very small. After 5km,
the analysis error in SIC increases monotonically with the lo-
calisation radius. Observing SIC improves both SIT and, for
very long radii, SIV (see inset in Fig. 4b).

Finally, from Fig. 4c we see that the lowest analysis RMSE
when assimilating SIV is attained with a localisation radius
of around 30km and that both SIC and SIT will improve in
the multivariate update.

Based on these results, the most effective localisation radii
for the observed model fields are 200km for the SIT obser-
vations, 5km for the SIC observations and 30km for the SIV
observations. These different localisation radii arise from the
physical spatial correlations and the observation density of
these model fields. A summary of the choices for the locali-
sation radii in this study is given in Table 3, and further dis-
cussion will be presented in Sect. 5.1.

4.4 Treatment of bounded physical variables and
model parameters

Of the nine MEB model variables, three are bounded: SIC,
the level of damage and SIT. Inferring them via the IEnKF
is therefore challenging given the Gaussian assumption on
which the IEnKF based. In practice, there is no guarantee that
the update analyses of SIC, damage level or SIT fall within
their bounds.

Hence, the solution to that problem that we adopt in this
study, although sub-optimal, is very pragmatic and straight-

forward. When the analysis of these variables falls outside
of their bounds, they are forcibly set to their nearest bounds.
We are conscious that this approach leads to local ensemble
collapse (whereby some members originally having out-of-
range analysis values are all made equal to the nearest bound-
ary value) and can cause biases in the analysis. Nevertheless,
the results in Sect. 5 will demonstrate that, when the bounds
are not exceeded too often, the approach works well, it does
not cause major ensemble collapse and it is successful in re-
moving nonphysical values.

We follow a similar strategy when performing the estima-
tion of the damage parameter, α. There the analysed value of
α is assumed to be bounded from below by α = 2, the value
at which the analysed α will be taken if lower than 2.

Our pragmatic approach is however insufficient when esti-
mating the drag coefficient Ca. This parameter is bounded to
be strictly positive; therefore ensemble collapse could hap-
pen whenever the ensemble mean of Ca approaches zero.
In that case a potentially large number of members may re-
ceive negative analysis values that would all be restored to
the same small positive values. Hence, we adopt a resam-
pling approach in which, with each negative analysis of Ca,
we sample from N (10−5,10−6) until a positive value is ob-
tained.

5 Results

We evaluate the performance of the IEnKF for state and pa-
rameter estimation in the dynamics-only MEB sea-ice model
under the four different scenarios described in Table 3. We
use the root-mean-square error (RMSE) over both time- and
space as a skill metric.

5.1 Scenario 1: inferring the model’s physical variables
under a perfect-model setup

Here we study in detail the fully multivariate DA using dif-
ferent combinations of observations under a perfect-model
scenario. The RMSE is calculated over 30d long assimilation
experiments that follow a 42d free ensemble run without DA.
In the 30d assimilation, we assimilate observations daily as
mentioned in Sect. 4.2, leading to a total of 31 analyses.

As mentioned in Sect. 4.4, three out of the nine model
fields are bounded quantities: SIC, SIT and the level of dam-
age. Given that respect of those bounds is not automati-
cally guaranteed by the DA procedure, we apply a post-
processing step. Here, we quantify how often nonphysical
values (i.e. values out of the bounds) are produced in the
analysis: Table 6 shows the number of violations during the
30 d DA period.

When only SIC is assimilated, physical bounds for SIC
and for the level of damage are exceeded very occasion-
ally, for below 1.5% of the total analyses and grid points.
On the other hand, when SIC is not observed, the chance of
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Figure 4. RMSEa /RMSEfree as a function of the localisation radius, in experiments with observed SIT (a), SIC (b) or SIV (c). The red star
indicates the lowest analysis error. The insets show the error in two other unobserved model fields out of the three observed model variables,
and the dashed red line indicates the point where RMSEa

=RMSEfree.

Table 6. The total percentage of local analyses that violate the physical bounds in the 30 d multivariate DA experiments. “SIC+SIT30+SIV”
is an experiment where SIT uses a 30 km localisation radius, whereas “SIC+SIT+SIV” uses a localisation radius of 200 km for SIT.

Assimilated observations
Physical bounds’ violation

SIC< 0 SIC> 1 d < 0 d > 1

SIC 0.01% 0.01% 0.02% 1.41%
SIT 0.25% 6.95% 0.34% 18.66%
SIV 0.23% 1.36% 0.19% 11.80%
SIC+SIT 0.01% 3.45% 0.09% 20.93%
SIC+SIV 0.01% 0.85% 0.17% 12.09%
SIT+SIV 0.22% 5.17% 0.24% 18.87%
SIC+SIT+SIV 0.01% 3.75% 0.17% 20.64%
SIC+SIT30+SIV 0.01% 0.98% 0.14% 12.97%

The bound SIT> 0 is never violated because SIT is always larger than 1 m in our experiments.

getting nonphysical SIC analyses increases by 2 orders of
magnitude, although it remains below 5.2%. Similarly, the
SIC observations lower the chance of there being nonphysi-
cal damage analyses. Notably, when SIT is observed, it leads
to analyses that more often violate the physical bounds, par-
ticularly the upper bound for the level of damage. The dam-
age bound violations are more severe than those in SIC, since
most of the time the sea ice is undamaged and thus very close
to the potentially violable bounds of the model fields. With-
out the possibility of observing the damage field, the cross-
correlations may amplify the analysis increments. This effect
can be mitigated by limiting the localisation radius of SIT to
30km as shown in the row of SIC+SIT30+SIV. The vio-
lation of the physical bounds is efficiently addressed by the
post-processing step that brings them within their physical
limits as described in Sect. 4.4, and it does not lead to an in-
creased RMSE afterwards. As shown in Fig. 5, the SIC anal-
ysis is improved compared to the free run in all cases and
the sea-ice damage is the only model field that can be less
accurate than the free run.

Figure 5 shows the ratios of analysis / free-run (a) and
forecast / free-run (b) RMSE (averaged in space and time)

for different types of observations (y axis) and variables
(x axis). Values smaller than 1.0 indicate that DA brings
about, in general, an improvement in the state estimate com-
pared to the free run. Comparing panels (a) and (b), we can
evaluate how much of the DA update is effective in reducing
the forecast error (recall that the analysis cycle is 1d long).
From the figure we immediately notice that when only one
observation field is assimilated, that same field is the area
where most of the improvement in the analysis occurs. This
is consistent with our results in Sect. 4.3.2. Figure 5 also
shows almost no changes/slight improvements in SIV anal-
ysis when SIC alone is assimilated and conversely for the
SIC analysis when SIT is assimilated. This appears to be in
contrast to Fig. 4, which indicates that SIT observations have
a negative impact on the SIC analysis and that SIC obser-
vations can cause SIV analysis to deteriorate at certain lo-
calisation radii (see Fig. 4a and b insets). Nevertheless, the
longer experiments of Fig. 5 suggest that the ensemble has
acquired dynamical consistency and therefore better repro-
duces the cross-variable correlations.

In the MEB rheology, the level of damage, cohesion and
stress have a close relationship. Without assimilating SIT,
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Figure 5. RMSE in the state estimate for scenario 1. (a) RMSEa /RMSEfree. (b) RMSEf /RMSEfree. Columns display the individual
physical model fields; rows refer to the (combination of) observations that are assimilated.

Figure 6. A histogram of the ensemble correlation between model
variables when all observations are assimilated over the period of
assimilation. The legend indicates the standard deviation of the his-
togram. A larger spread/standard deviation represents an overall
higher correlation between variables.

the IEnKF-N leads to improvements in sea-ice cohesion and
stress and some improvements in the level of damage too.
However, the assimilation of SIT tends to result in overly
damaged sea ice. This is also evident from Table 6, where
it can be seen that the assimilation of SIT leads to higher
chances of breaking the bounds of the level of damage. This
adverse effect on the damage and stress persists when SIT is
assimilated together with SIV. Interestingly, however, when
SIT is assimilated together with SIC, the boundedness of the
level of damage is improved for undamaged sea ice (d < 0)
but is not for completely damaged sea ice (d > 1). However,
it is sufficient to improve the overall RMSE of the level of
damage (see Fig. 5). One possible reason for this is that, with-
out the thermodynamics, the forecast error mainly comes
from the damaged sea ice and the overestimation of undam-

aged sea ice makes little contribution to the RMSE after the
post-processing. An ad hoc remedy is to use a shorter lo-
calisation radius for SIT (experiment SIC+SIT30+SIV in
Fig. 5), although it also reduces the improvements in SIT and
cohesion. Moreover, as a result of better cross-correlations,
the use of small localisation mitigates the violations of phys-
ical bounds, as shown in Table 6. Another approach to avoid-
ing the negative impact of SIT consists in artificially setting
the covariance matrix entries between SIT and SIC and be-
tween SIT and damage to zero. This is achieved in practice
by assimilating only SIC and SIV for the SIT and damage
variables while all observations are assimilated for the rest
of the state vector. The experiment “var loc” shows improved
results in Fig. 5.

We show the strength of the cross-correlations between
different model variables in Fig. 6. The values are taken from
the experiment where all observations are assimilated, from
all spatial points and all analyses. As expected, the distribu-
tions all peak around zero: this is because beyond a certain
distance, the correlations are all very small (a fact that is at
the basis of the use of localisation), with the larger values
concentrated in proximity to the analysis point and populat-
ing mainly the tails of the distributions in Fig. 6. The width
of the distributions indicates that in many instances the cor-
relations are (in absolute values) as high as 0.5. To provide a
quantitative comparison among the distributions’ width, we
also show the standard deviations. These cross-correlations
can be understood from a physical point of view. The cross-
correlations between SIV and stress are the strongest as SIV
is mainly driven by the external wind field. In addition, SIV,
stress and the level of damage are closely coupled processes,
so the level of damage and SIV also show strong cross-
correlation. The weak cross-correlation between SIV and
SIC and between SIV and SIT is a result of the small mag-
nitude of SIV, which transports SIC, SIT and cohesion. Nev-
ertheless, this gives rise to a strong correlation between SIC
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and SIT because they are both controlled by the advection
processes.

A physical interpretation can also be invoked to explain
why the improvements in SIV analysis do not necessarily
translate into improvements in the forecast, as shown in
Fig. 5. We argue that this is due to the instant injection of er-
ror from the wind field after the assimilation of observations.
The correction from the assimilation acts as a perturbation to
the model, which induces a model adjustment. In contrast to
SIV, the increased error in the analysis of the level of dam-
age, when assimilating SIT, is mitigated by the further dam-
age caused by the wind field. On the other hand, the longer
timescale of the variability in SIC, SIT and cohesion makes
them less sensitive to the model adjustments, and thus better
analysis generally yields better sea-ice forecasts (see Fig. 5).

In summary, our experiments show that the IEnKF can im-
prove both the analysis and the forecast of the MEB sea-ice
model. We confirm, in line with previous studies, the neces-
sity of controlling the main source of the uncertainty from the
external forcing in the sea-ice model. We argue that a correct
wind field can counteract the deterioration of the inaccurate
SIV forecast. Furthermore, the results also demonstrate the
positive impact of a variable-dependent localisation radius in
combating both sampling error and nonlinearities. Moreover,
even if the IEnKF suffers from sampling error with a large lo-
calisation radius, the deterioration of some of the unobserved
fields is marginal, with the RMSE being only 6% larger than
the free run. With a reduced localisation radius, the IEnKF
improves all the unobserved fields.

5.2 Scenario 2: inferring the model’s physical variables
and the drag coefficient Ca

We achieved satisfactory performance in the state estimation
of the MEB model using the IEnKF-N under the perfect-
model assumption. In the experiments described in this sec-
tion, we assume that Ca is incorrectly specified and attempt
to recover the true value using DA, while all other parameters
are perfectly known.

The air drag coefficient, Ca, controls the degree to which
momentum from the wind is transferred to the sea-ice cover.
In our model, similarly to most sea-ice models, it is a con-
stant scalar value that modulates the wind drag; see Eq. (2).
Equation (2) shows two main sources of uncertainties in the
same term: the wind field, ua, and the drag coefficient, Ca.
The multiplicative role of Ca makes it an amplification factor
for the uncertainty that originates from uncertain wind fields.
Given that the wind field is the main source of uncertainties
in the sea-ice dynamics, the incorrect specification of Ca also
affects the predictability of the sea ice. To see this, note the
larger free-run ensemble spread in this scenario compared to
the perfect-model scenario in Table 5. Note that the differ-
ence in the Ca between scenarios 1 and 2 is as small as 10−3

(see Table 3).

Similarly to the state estimation experiments, the assimi-
lation starts after a 42 d free ensemble run. Figure 7a shows
the time series of the analysis of Ca, while Fig. 7b shows
the analysis spread in Ca as a function of time. We see that
after the drastic correction of the initial bias, the ensemble
spread stabilises for all experiments. The ensemble spread
converges and stabilises to slightly above zero except for the
case where only SIT/SIV is assimilated. In those cases, the
ensemble spread is larger, which might be a consequence of
the sparser observation density. Due to SIV being sensitive
to Ca, the estimation of Ca is affected by changes in SIV ob-
servations. These changes are captured by the adaptive infla-
tion scheme leading to an increased ensemble spread of Ca
toward the end of the experiment period. Another remark-
able feature is that in all experiments, Ca drops significantly
over the first time steps, thereby approaching (but not nec-
essarily converging to) the true value (red line). This is a
clear consequence of a strong correlation between the ob-
served fields and the parameter. Besides this, we then ob-
serve different converging values and performance depend-
ing on the type of observations assimilated. Except for the
case where only SIC is assimilated, the analyses underesti-
mate Ca at the end of our experiment time. The smaller in-
crements ofCa, when assimilating SIC, are a result of smaller
cross-correlation between SIC and Ca in comparison to SIT
and Ca as shown in Fig. 8a and c. Similarly to the increments
of Ca, the SIT experiment also shows increased increments
of the observed fields compared to the SIC observation, as
in Fig. 8b and d. This suggests that the ensemble spread in
SIT is larger than in SIC. Moreover, the cross-correlation of
the ensemble anomaly between SIC/SIT and Ca is spatially
inhomogeneous (see Fig. 7a and c). This implies that the er-
ror is controlled not solely by the global parameter but also
by other spatially dependent processes. One possible expla-
nation is the error in the wind fields. As the ensemble error
is primarily driven by the error in the wind field scaled by
Ca acting as wind forcing, the cross-correlation between the
Ca and the observations may be affected by the error in the
wind fields. This suggests that while the IEnKF successfully
corrects large biases in Ca, it may not be able to correct er-
rors of smaller magnitude equally well as the errors can be
aliased with the error in the wind field. In the latter case, the
estimation of Ca does not necessarily converge to the “true”
Ca.

The correction of Ca is also effective in the state estima-
tion as shown in Fig. 9. The IEnKF efficiently controls the
RMSE for nearly all model fields regardless of the combina-
tion of observations compared to the free run that is instead
affected by a large bias in Ca. Notably, compared to the free
run, SIV is improved not only in the analysis, but also in
the forecast. This is different from the multivariate update in
Sect. 5.1 because the positively biased Ca amplifies the un-
certainties from the wind field, which is then reduced by the
corrected Ca. The time series in Fig. 10c–d show that the cor-
rected Ca significantly reduces the bias in SIV, but the tran-
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Figure 7. Time series of (a) the analysis of Ca using different combinations of observations and (b) the analysis ensemble spread of Ca.

Figure 8. Cross-correlation between the observation and Ca: (a) correlation between SIC and Ca at the last analysis; (b) SIC increment. In
both cases it refers to the experiment where only SIC is assimilated; panels (c) and (d) are the same as panels (a) and (b) but with SIT in
place of SIC in the experiment where only SIT is assimilated.

sient error in the wind forcing still impacts the accuracy of
the SIV forecast.

In Fig. 7a, the best skill in estimating Ca is achieved when
assimilating SIC alone due to its higher observation density.
However, even with fewer observations, SIV achieves good
performance due to a close relationship with the wind field
and Ca in Eq. (2). Notably, assimilating only SIV greatly re-

duces the RMSE across all model fields except for the sea-ice
stress (see the third row in Fig. 9a). The increased RMSE in
the sea-ice stress arises because the DA update of the stress
sometimes severely violates the constitutive equation. This
can potentially lead to unstable model solutions and model
crashes. Model crashes can be avoided by using a large num-
ber of iterations for the MEB solver during an extended pe-
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Figure 9. RMSE in the state estimate for scenario 2. (a) RMSEa /RMSEfree. (b) RMSEf /RMSEfree. Columns display the individual
physical model fields; rows refer to the (combination of) observations that are assimilated.

Figure 10. Time series of (a) sea-ice stress in the x direction when only SIV is assimilated, (b) sea-ice stress in the x direction when all
observed fields are assimilated, and SIV in the (c) u and (d) v component when all observed fields are assimilated. The black points in the
time series are the spatially averaged analysis.

riod after the DA step, but the unphysical update still leads
to inaccurate forecasts of the sea-ice stress (see the third row
in Fig. 9a). The inaccurate stress forecast can be observed in
Fig. 10a, which shows a significant underestimation in the
stress time series around day 17. Such underestimation does
not occur when all observations are assimilated, as shown
in Fig. 10b. We found that the erroneous stress underesti-
mation in the time series occurs when the local element of
SIC is reduced by the assimilation (not shown) to the point

that it creates a large SIC gradient and increases the elastic
behaviour of the sea ice (see the right-hand side of Eq. 3).
Since the temporal variation in SIC is small, this issue per-
sists, and a continued decrease in the sea-ice stress along with
the model integration is maintained. This incorrect SIC esti-
mate is remedied in the next DA step, where the multivariate
DA restores SIC. Hence, assimilating SIC mitigates the un-
physical DA update. Arguably, it is unlikely that only SIV is
assimilated in real scenarios, yet our results suggest that it is
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wise to restrict the multivariate update of the sea-ice concen-
tration in this case.

Our experiments show that the IEnKF is able to reduce
the bias in Ca based on available sea-ice observations. The
improved Ca estimation significantly reduces the error in
the model fields. From the momentum equation, Eq. (2), we
know that SIV is directly linked to Ca. However, our results
show that, although assimilating SIV is crucial for estimat-
ing Ca, SIC and SIT still improve the estimate of Ca and the
state. Importantly, when assimilated in conjunction with SIV,
SIC and/or SIT mitigates the imbalance of the constitutive
equations.

5.3 Scenario 3: inferring the model’s physical variables
and its erroneous damage parameter α

While the drag coefficient, Ca, is linked to the external forc-
ing, the internal property of the sea ice is largely controlled
by the damage parameter α. The damage enters the model in
the stress equation, Eq. (3). Although α is added to the model
in an ad hoc manner, it plays an essential role in the MEB
rheology as it sets the rate at which viscosity decreases with
increasing level of damage and thereby controls the transi-
tion between the elasto-brittle regime at low damage levels
and the viscous regime at high damage levels.

Model sensitivity studies by Dansereau (2016) and Weiss
and Dansereau (2017) showed that the value of α is criti-
cal in determining the macroscopic mechanical behaviour of
the model and that a value of α ≥ 4 leads to complex, sea-
ice-compatible, behaviours. In fact, in our experiments, the
truth, i.e. the un-biased model, is set to α = 4 (see Table 3).
In the DA experiments with the estimate of α, we mimic an
initial biased estimation of the parameter that is in the same
range of sea-ice-compatible behaviour: we choose α = 6.5
(see Table 3). Our strategy is realistic as the initial “guess”
does not cause the model to behave qualitatively differently
from the observations when α ≥ 4. Drastic changes in the
dynamical regimes are also challenging for DA, and they in-
fluence the error dynamics between the model parameter and
the observed fields. Given that the IEnKF updates (in both the
state fields and the parameters) are unbounded, we apply the
same post-processing to keep the analyses within physically
acceptable bounds, as described in Sect. 4.4.

One of the fundamental challenges in estimating α arises
from the nonlinear relationship between α and the observed
fields. In particular, the parameter is directly related to the
stress field, which is not observable. The complex, nonlinear
and indirect nature of these relations can lead to inaccurate
(finite-)ensemble-based cross-correlations. Another potential
challenge comes from the low sensitivity of the model fields
to α compared to the wind field andCa (see Fig. 1). As shown
in Table 5, in a 90 d free run, the ensemble spread of observed
model fields is only marginally larger than that in the perfect-
model scenario.

Despite these obstacles, the IEnKF shows encouraging re-
sults in estimating α, as shown in Fig. 11a. Assimilating SIC
or SIT alone leads to under- and overestimation of α after
30d. From Fig. 11b, we see that the ensemble spread in SIT
is still relatively large at the end of the experiment. This sug-
gests not only that it is only slightly reduced at the analysis
steps but also that further adjustment of α beyond the 30th
day is still a possibility. The simultaneous assimilation of SIT
and SIC leads to a good approximation of the true value of
α = 4. Similar results are attained whenever SIC is assimi-
lated (see experiment SIC+SIV or SIC+SIT+SIV). This
suggests the crucial relationship between α and SIC, which
appears to be the key observation for inferring the damage
parameter.

Our results also suggest that observations of SIV cannot
be used to retrieve α effectively. In all the experiments with
SIV observations, the estimated α gradually approaches the
truth until day 18, when it then abruptly diverges away from
it. An insight into the reasons behind this sudden change is
provided in Fig. 12, which shows the spatial distribution (on
the model domain) of the cross-correlation between α and
either u or v, on days 17 and 18. The cross-correlations be-
tween SIV and α flip their signs spatially from day 17 to 18.
This is related to the uncertainties in the wind field, which
dominate the forecast uncertainty in SIV.

Let us illustrate this issue with simple mathematical ar-
guments. We assume that the nonlinear sea-ice model, M,
can be approximated by its linearisation M within the fore-
cast interval between two successive analyses. The forecast
ensemble anomaly (error) of SIV at time step k can be ap-
proximated as

δuk =Mα
k δαk−1+Mua

k δuak−1+Mx
kδxk−1+O(2), (7)

where δ· represents the deviation from the ensemble mean
and x is the state vector except the damage parameter; the
superscript means the model sensitivity to the correspond-
ing variables in which Mα

k ∈ R
n×1, Mua

k ∈ R
n×m and Mx

k ∈

Rn×l , with n being the number of SIV values in the con-
trolled vector, m being the number of elements in the wind
field vector and l being the number of elements of model
state in the controlled vector. O(2) represents the high-
order terms that are greater than second order. In the EnKF
(and thus in the IEnKF), the cross-covariance is estimated
from the ensemble anomaly of SIV and the perturbations
of α, which approximate E[δuTk δαk]. This cross-covariance
between SIV and α is related to the perturbation (error)
from the model state, wind and α. In our case, whenever
||Mua

k δua�Mα
k δα||, the SIV uncertainty is mainly driven

by the wind. This can falsely give a strong cross-correlation
between SIV and α, producing an incorrect α estimate when
it is only based on SIV observations. A similar issue was en-
countered in Simon and Bertino (2012), where the authors
found the parameter estimation challenging when the uncer-
tainty in the parameters showed relatively low uncertainties
in the observed fields.
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Figure 11. Time series of (a) the analysis of α and (b) its ensemble spread.

Figure 12. Cross-correlation between the (a, b) u and (c, d) v component of SIV and α on day 17 and 18 when only SIV is assimilated.

Based on this argument, we can show that the sign flip of
cross-correlations in Fig. 12 is a result of the change in wind
field. In Fig. 13, the cross-correlation between the wind field
and α shows the periodic northward travel of the storm on
the y axis (see Fig. 13a and b) and the rotation of the storm
(see Fig. 13c and d). This matches the changes in cross-
correlations in Fig. 12. The incorrect estimate of α highlights
the challenges when the primary sources of the uncertainties
are external instead of being the model parameters. We ob-

serve that this effect also influences the α estimate when SIV
is assimilated with the SIT.

Figure 14 shows the improvements in the state estimate.
As expected, the analyses of the observed fields are in gen-
eral more accurate than the free run. Moreover, compared
to the perfect-model scenario, the damage field is now im-
proved relative to the free run in all experiments. The stress
field is only moderately improved even though it has a direct
relationship with α in Eq. (3).
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Figure 13. Same as Fig. 12 but for the components of the wind forcing in place of those of SIV.

Figure 14. RMSE in the state estimate for scenario 3. (a) RMSEa /RMSEfree. (b) RMSEf /RMSEfree. Columns display the individual
physical model fields; rows refer to the (combination of) observations that are assimilated.
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Interestingly, without observing SIV, the assimilation of
SIC shows a negative impact on the analysis of SIV. This
may be a result of the underestimated α in these experi-
ments. With a low value of α, the sea ice has a more elas-
tic behaviour. The elastic motion has a short timescale and is
sensitive to the perturbation of the sea-ice variables, making
the slowly changed SIC observations unreliable. This is con-
sistent with the finding from Weiss and Dansereau (2017)
such that, with high α values and the sea ice transitioned
from elastic to viscous behaviour, the system becomes more
predictable. When SIV is assimilated, the overestimated α
leads to only slight error increases in the SIC analysis with-
out hampering the state estimation of other model variables.
This suggests that the model state and parameter are adjusted
based on the primary source of error, the wind forcing.

Our results demonstrate the possibility of estimating α

successfully using as many as possible of the available ob-
servations. It is notable that no single type of observation
alone can infer α accurately. We also demonstrate that the
IEnKF cannot always identify the correct source of error in
a complex environment. In our case, the error from the wind
field negatively impacts the estimation of α. Interestingly, a
deteriorated α analysis does not necessarily lead to a dete-
riorated state estimation. In contrast, the overestimation of
α still moderately improves the sea-ice forecast due to im-
proved predictability.

5.4 Scenario 4: inferring the model’s physical variables
and its erroneous Ca and α

In the previous sections we demonstrated that, with sufficient
observations, the IEnKF can estimate Ca and α when only
one of them is erroneous. Considering that both Ca and α are
in the closely related equations for SIV and stress (see Eqs. 2
and 3), it is of interest to investigate the possibility of esti-
mating both model parameters simultaneously.

Figure 15b shows the estimated Ca after 30d of assim-
ilation. All experiments approach the true value of Ca (al-
though starting from an overestimated value). When SIC and
SIV are assimilated together, the IEnKF gives the best esti-
mate of Ca, while it underestimates Ca when only SIT and
SIV are assimilated. The IEnKF also gives an increase in the
estimate of α as shown in Fig. 15a. Although this demon-
strates the difficulty in estimating both parameters, it is re-
markable that it still leads to an improved forecast of model
fields as shown in Fig. 16. This is known as a compensating
effect (Bocquet, 2012). This apparent contradiction is related
to the non-identifiability of the problem whereby the param-
eter estimation cannot fully reconstruct the true parameters.
In practice, this implies that more than one set of parame-
ters can produce the same observed fields. The identifiabil-
ity issue can also be viewed from a physical standpoint: Ca
determines the motion of the sea ice via the wind forcing.
With overestimated a priori Ca, the wind can cause fast sea-
ice motions. α influences the rate at which sea ice transitions

from an elasto-brittle solid behaviour to a viscous fluid be-
haviour with an increasing level of damage. As discussed
in Sect. 5.3, the increased α leads to more viscous sea ice
that is more easily subjected to permanent deformations in-
stead of fast transient elastic deformations. In this situation,
the IEnKF controls the fast sea-ice motions by removing the
elastic sea-ice deformations.

The identifiability issue can also be associated with in-
correct cross-correlations between model fields and model
parameters from different sources of errors as described in
Eq. (7). We observe that assimilation correctly decreases Ca,
showing a relatively accurate cross-correlation between the
observations and Ca. This controls the impact of the external
wind forcing, as a positively biased Ca can amplify the un-
certainty in the wind field, which increases the term Muaδua
in Eq. (7). As discussed in Sect. 5.3, the outstanding external
wind forcing could lead to erroneous estimation of α. Hence,
after the external uncertainties are controlled, the ensemble
should be able to develop reasonable cross-correlations be-
tween α and the observations. To test this, we adopt the fol-
lowing strategy in the 30 d assimilation experiments: (1) con-
straining the external uncertainty by estimating Ca only for
10 d, (2) developing uncertainty from α by model forecasting
without assimilation for 10 d and (3) estimating α for the last
10 d. This is labelled “seq” in Fig. 15. Although Ca is still
underestimated, we observe a reduction of error in α. Also,
as other experiments do not show a decreased α after an un-
derestimated Ca, this may suggest the importance of step (2),
where the uncertainty arising from α developed. We stress
here that the 10 d is simply chosen for convenience and is
not tuned.

To further consolidate our findings on the performance of
the IEnKF in the simultaneous parameter estimations of Ca
and α, extensive, and computationally demanding, investi-
gations with different model states, forcings and parameters
would be ideal. In fact, even though the model is a simplifi-
cation of a full pan-Arctic sea-ice model, the computational
power quickly scales up to beyond our resources.

With the aforementioned computational constraints in
mind, we performed three additional experiments using
different truths. In addition to the existing experiment
(EXPαLCLa ) where we assimilate all observations to estimate
α and Ca, we implemented three other experiments where
the truth uses (1) α = 4 and Ca = 3.5× 10−3 (EXPαLCHa ),
(2) α = 7 and Ca = 1.5× 10−3 (EXPαHCLa ), and (3) α = 7
and Ca = 3.5× 10−3 (EXPαHCHa ). Here, the superscript L
and H denote that the truth is lower and higher respectively
than the initial guess. We investigate relevant scenarios (e.g.
under- or overestimation of the real values) in which the
model’s qualitative behaviour is of the same sort. The lat-
ter specifically concerns the model structural stability, that is
to say the fact that the model is not subject to bifurcation of
its general behaviour.

When the truth of model parameters is higher than the ini-
tial guess, the air drag coefficient is 2σ above the initial guess

https://doi.org/10.5194/tc-18-2381-2024 The Cryosphere, 18, 2381–2406, 2024



2400 Y. Chen et al.: State and parameter estimation for MEB sea-ice models

Figure 15. The analysis of the α (a) and Ca (b) parameter estimate based on a variety of combinations of observations.

Figure 16. RMSE in the state estimate for scenario 4. (a) RMSEa /RMSEfree. (b) RMSEf /RMSEfree. Columns display the individual
physical model fields; rows refer to the (combination of) observations that are assimilated.

while α is 1σ above the initial guess. Keeping the value up
to 1σ higher than the initial guess of α is due to the changes
in the dynamical regime of the model that occur beyond 1σ .
As discussed in Dansereau (2016), when α increases, the sea
ice loses memory of the previous damage events, leading to
increasing elasto-plastic behaviour. This implies that a dif-
ferent set of initial guesses might be needed for these dy-
namical regimes as we do not expect that the IEnKF to be
able to provide reliable estimation when a change in dynami-
cal regime occurs. Meanwhile, based on physical arguments,
such a high α parameter is less likely to occur in reality where
the true value is likely to be between 4 and 7. As shown in
Fig. 17, EXPαHCLa gives improvements in the air drag co-
efficient, and, though overestimated, the α parameter is in-
creased as prescribed by the truth. In EXPαLCHa , improved
Ca estimation is obtained at the start of the estimation but de-
teriorates after 20 d. In EXPαHCHa , though the Ca parameter
is improved, the estimation of α is approximately 17, which
is 1 order of magnitude larger than the truth. The deteriorated
results occur when the true Ca is higher than the initial guess,
which corresponds to a strong wind forcing in the truth. One

possible explanation for this is that the correlations between
α and the observed fields are not truthfully reflected due to
the strong wind forcing. Nevertheless, if we first estimate the
air drag coefficient, followed by a free forecast phase, and
estimate α afterwards, the parameter estimation is improved.
This shows that even if the same prior distribution is used,
different dynamical regimes of the modelled truth can lead
to different results in the experiments.

Our results suggest that the augmented state vector can
have identifiability issues when both Ca and α are biased.
As shown in Table 5, the perturbation of α cannot provide
greater forecast uncertainty compared to the positively biased
Ca. We have proposed a strategy to overcome the issue with
some discussions on alternative approaches. For example, a
larger ensemble spread of α may increase the uncertainty in
the forecast ensemble, which avoids a single dominant source
of forecast uncertainty. We note that, based on our reasoning,
the identifiability issue may not exist when Ca is negatively
biased. Nevertheless, this demonstrates a potential issue with
the parameter estimation in MEB-type sea-ice models.
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Figure 17. Simultaneous parameter estimation of Ca and α with different sets of truths of these parameters. The horizontal red lines represent
the truth values when they are either lower or higher than the initial guess. The inset in (a) is the estimated α in the experiment EXPαHCHa .

5.5 Impact of parameter estimation on long-term
prediction

It is worth studying the impact of the parameter estimation
on the long-term performance of the model. To this end, we
performed a 90 d long free run whereby the model parame-
ters are “frozen” to the values obtained at the end of the DA
period. The experiment is carried out for the case when both
Ca and α are estimated during the DA period using the con-
figuration “seq” of Sect. 5.4. Results are displayed in Fig. 18.

Figure 18 shows that the RMSE of all observed model
variables is smaller using the corrected model parameters
compared to the free run that uses the initial guess. The im-
provement is persistent (in time) in SIV, while it increases for
SIC and SIT due to the long timescale of these model vari-
ables. These results demonstrate the importance of correctly
specified model parameters in long-term sea-ice forecasting.

6 Discussion

In this study, we investigate joint state and parameter es-
timation of an MEB sea-ice model using the IEnKF. This
study focuses on the cross-covariance between model fields,
which is crucial for correct parameter estimation. Given that
the IEnKF is also a variational method, it minimises the cost

function in Eq. (1), and thus it adjusts the model parameter
at each Gauss–Newton iteration. The adjusted, data-informed
model parameters allow for a natural treatment of the nonlin-
earity thanks to the execution of the model within one analy-
sis step or, had we used the IEnKF, within the entire assimi-
lation window. The variational formulation also has other ad-
ditional advantages over the traditional EnKF. For example,
one can impose constraint optimisation and regularisation on
the cost function to avoid numerical problems or to append
physical constraints.

One important ingredient of the IEnKF is the use of an en-
semble. The forecast ensemble of the IEnKF can suffer from
ensemble collapse as discussed in Sect. 4.3, where inflation
is used as an effective modification to the forecast ensemble.
We adopt an adaptive inflation method, the IEnKF-N (Boc-
quet and Sakov, 2012). The adaptive inflation approach is
shown to be applicable to complex models for joint state-
parameter estimations with reasonable stopping criteria.

In addition to the constant ensemble spread, we also ex-
plored the use of an autoregressive model (NEA, 2007; Xie
et al., 2017), instead of persistence, for the model parameters.
However, the results (not shown) are elusive. We speculate
that, as the autoregressive model resamples the ensemble un-
certainty in the parameter at each time step, this introduces
additional sampling error and the results may be subject to
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Figure 18. RMSE and ensemble spread of the free run using prior parameters and parameters corrected by the DA when both Ca and α are
erroneous.

the signal-to-noise ratio from the choice of the standard de-
viation of the autoregressive model. This may suggest the
need for careful tuning for the autoregressive processes.

We also shed light on potential issues when the forecast
uncertainty is driven mainly by the external wind field. In
this case, the cross-covariance matrix reflects the error from
the wind fields and the model fields. This is undesirable for
the parameter estimations where we expect the error in the
observed fields to be related to the parameter perturbations.
This is particularly relevant for sea-ice DA where the wind
field contributes to most of the uncertainties in the forecast
ensemble. Meanwhile, we have also shown that the effect of
external uncertainty depends on the model fields. The incor-
rect cross-correlations is more detrimental when the model
fields are directly linked to the source of the uncertainty.
For example, when only α is biased, assimilating only SIV
shows severely problematic analysis. This may also suggest
that coupled DA controlling the uncertainty in external forc-
ing could improve the sea-ice parameter estimation.

7 Conclusions

We investigated the state and parameter estimation in a
dynamics-only MEB sea-ice model under an idealised setup
using the IEnKF (and the IEnKF-N). We mimicked the ob-
servation error and its spatial distribution with the forecast
uncertainty driven primarily by the uncertainties in the wind
field.

We adopted a fully multivariate approach whereby all
model fields are estimated by DA utilising the cross-
correlations between observations and model fields. Our re-
sults show that different combinations of the sea-ice observa-
tion fields can lead to different effects on the model state and
parameter estimates. In general, it is useful to assimilate as
many observations as possible. Potential issues with multi-
variate state and parameter estimation due to both the limita-
tions of the DA method and the features of the sea-ice model
dynamics are highlighted. We also demonstrate that these is-
sues are surmountable and that successful multivariate state
and parameter estimation using state-of-the-art ensemble DA
approaches is possible.

Experiments in the perfect-model scenario show that, even
if the sea-ice model is perfect, the limited ensemble size and
uncertainties in the external forcing, e.g. the atmospheric
wind, still limit the capability of DA to improve the sea-
ice forecast especially for the unobserved model fields. We
show that the forecast of SIV cannot be improved because
it is strictly constrained by the wind field while other model
fields with longer timescales show improved forecasts. This
suggests that coupled DA that estimates the external forcing
could improve the sea-ice forecast of model fields like SIV. In
addition, the linear Gaussian assumption of DA methods can
violate the bounds of various model fields in the sea-ice mod-
els, requiring post-processing of these fields. One potential
treatment of the bound problem is anamorphosis, which can
be applied analytically to the IEnKF as well as to other EnKF
variants (e.g. Bocquet and Sakov, 2013; Simon and Bertino,
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2009). We did not explore this avenue here, but it may con-
stitute an interesting follow-up work; note however that the
majority of sea-ice DA does not use anamorphosis, since it
can cause numerical imbalances (Bocquet and Sakov, 2013).
Nevertheless, with suitable localisation and sufficient obser-
vations, we show improvements for all model fields, both ob-
served and unobserved fields (e.g. stress, cohesion and dam-
age).

We choose two global parameters to be estimated, the air
drag coefficient, Ca, and the damage parameter, α. The air
drag coefficient is closely related to the external uncertain-
ties from the wind field, while α affects the mechanical and
dynamical regime of the sea ice. In this study, we choose
one specific setup of the model parameters as the truth based
on experiments in Dansereau (2016). With our chosen model
setup, in a model with only one biased parameter, the DA
can reduce the parameter bias and improve the model fore-
cast. However, in the case where only SIV is assimilated, our
results show that it can lead to model imbalance. Also, as
it is closely related to the external uncertainties, the cross-
correlation between SIV and α can be incorrectly specified.
This shows the importance of assimilating multiple sea-ice
observations and the potential difficulty in sea-ice DA when
the ensemble uncertainties are primarily driven by the exter-
nal uncertainties (wind field).

When both model parameters are biased, an identifiabil-
ity problem arises. This highlights the caveat that the en-
semble spread can come from different sources of uncertain-
ties rather than purely from uncertainties in the parameters.
When one source of uncertainty dominates the ensemble un-
certainty, the estimated model parameters can deviate from
the truth even if a better forecast is achieved for those ob-
served fields. We proposed a strategy that can mitigate such
an issue in our specific test case by first controlling the dom-
inating error from the external forcing and later estimating
the sea-ice internal parameters.

A number of open questions are still at stake. For exam-
ple, the MEB model contains multiple dynamical regimes
as the sea ice can be viewed as different materials based on
the state of sea ice. It is of theoretical interest to investigate
the parameter estimations under different dynamical regimes
of the MEB model. We observed improvements in the fully
multivariate update, but it is still unclear whether these im-
provements can be observed in the full Arctic sea-ice predic-
tions compared to a state-of-the-art operational setup. An-
other point that should be addressed in future work is the
development of a rigorous approach to handle bounded vari-
ables like concentration and damage.

On the side of the ensemble generation, in this study, the
wind forcing serves as the sole source of uncertainty. Never-
theless, in operational sea-ice models, multiple potential un-
certain external forcing sources are present. A study of MEB-
like models’ sensitivity to different external forcing appears
to be another avenue worth pursuing, along the lines of the

analysis of sensitivity to external wind and cohesion param-
eters in Cheng et al. (2020).

We finally mention the current development of data assim-
ilation approaches specifically adapted to models using a dis-
continuous Galerkin dynamical core, as in the sea-ice model
used in this study (Pasmans et al., 2023). These novel meth-
ods may pave the way to solving some of the aforementioned
issues, and the authors are currently investigating their use in
the present context.

Appendix A: Model parameters

Here we present the model parameters used in the modelled
truth in Table A1.

Table A1. The default model parameters used in the modelled truth.

Parameter Notation Value

Poisson’s ratio ν 0.3
Internal friction coefficient µ 0.7
Ice density ρ 900 kg m−3

Elastic (shear) wave propagation speed c 500 m s−1

Damage parameter α 4.0
Undamaged elastic modulus E0 2c2(1+ ν)ρ

Undamaged relaxation time
(
η0

E0

)
λ0 107 s

Undamaged apparent viscosity η0 λ0E0

Minimum apparent viscosity ηmin 104 Pa s
Minimum cohesion Cmin 5000 Pa
Model time step 1t 30 s
Mean model resolution 1x 15 km
Characteristic time for damage td 1t

Characteristic time for healing th 5× 105 s
Air density ρa 1.3 kg m−3

Air drag coefficient Cda 1.5× 10−3

Water density ρw 1027 kg m−3

Water drag coefficient Cdw 5.5× 10−3

Parameter used in coupling E and η to A c∗ 20

Appendix B: Wind field

The wind field is prescribed as a series of passing cyclonic
storms combined with a constant background wind. To have
control over the vorticity and divergence of the wind field,
we use the Helmholtz decomposition:

ua =∇8+k×∇9, (B1)

where ua = (ua, va), 8 is the velocity potential, and 9 is
the streamfunction with the solenoidal wind component usa =
∇8 and the divergent wind component ud

a = k×∇9. The
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equations for the wind field are

us
a(x̂, ŷ, t)= Ussin2 (2πx̂)sin

(
4πŷ

)
· γ (t) ·Umask, (B2)

vs
a(x̂, ŷ, t)=−Ussin2 (2πŷ)sin

(
4πx̂

)
· γ (t) ·Umask+U

b, (B3)
ud

a(x̂, ŷ, t)= Udsin2 (2πŷ)sin
(
4πx̂

)
· γ (t) ·Umask, (B4)

vd
a (x̂, ŷ, t)= Udsin2 (2πx̂)sin

(
4πŷ

)
· γ (t) ·Umask, (B5)

with Ud = 0.1ms−1 as the magnitude of the divergent wind,
Us = 22ms−1 as the maximum solenoidal wind speed and
Ub
= 2ms−1 as the background wind field. To simulate a

sequence of storms generating and dissipating, we introduce
the time-dependent term, γ (t), that controls the strength of
the storm:

γ (t)= 1− exp

(
−a

∣∣∣∣sin
(
π
t

T

)∣∣∣∣b
)
, (B6)

where T is the period of the storm and a = 10 and b = 2 are
parameters that control the shape of the curve and in turn
the rate at which the storm is generated, maintains its max-
imum strength and then dissipates. In Eqs. (B2)–(B5), the
spatial coordinate, (x̂t , ŷt ), is time-dependent. This simulates
the passing of the storm across the domain.

x̂t = x̂t−1+1x̂t , (B7)
ŷt = ŷt−1− vc1t/L, (B8)

where 1t is the forcing frequency, vc is the speed at which
the storm passes across the domain (from the bottom to top),
L= Lmax−Lmin and 1x̂t is a random perturbation that al-
lows us to send the storm on a random walk. The initial po-
sition of each storm is given by

x̂0 =
(x− xc)−Lmin

L
−

1
4
, (B9)

ŷ0 =
(y− yc)−Lmin

L
−

1
4
, (B10)

where (xc, yc) is the initial position of the storm centre. The
choice of T ; vc; and xc,yc is given in Table 2, and the 1x̂t
related to the random walk is specified in Eq. (4).

With these setups, each storm is approximately half the
width of the domain. The sine and cosine equations can gen-
erate four storms in the domain, and Umask is used to ensure
only one storm is in the domain at any time:

Umask = (1−bxc− 2
[
bxc

2

]
)H(sin(2πx)H(sin(2πy), (B11)

where [] is the integral part function andH(x) is a Heaviside
step function.

Code and data availability. The code for the data assim-
ilation scheme and experiment setup can be found at
https://doi.org/10.5281/zenodo.8224997 (Chen, 2023). The
dynamics-only sea-ice model is available upon request.
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