
HAL Id: insu-04608135
https://insu.hal.science/insu-04608135v1

Submitted on 11 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Star formation across cosmic time
Jonathan Freundlich

To cite this version:
Jonathan Freundlich. Star formation across cosmic time. Fundamental Plasma Physics, 2024, 11,
�10.1016/j.fpp.2024.100059�. �insu-04608135�

https://insu.hal.science/insu-04608135v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Fundamental Plasma Physics 11 (2024) 100059

A
2
n

Contents lists available at ScienceDirect

Fundamental Plasma Physics

journal homepage: www.elsevier.com/locate/fpp

Star formation across cosmic time
Jonathan Freundlich
Université de Strasbourg, CNRS UMR 7550, Observatoire astronomique de Strasbourg, 11 rue de l’Université, Strasbourg, 67000, France

A R T I C L E I N F O

Keywords:
Galaxy evolution
Star formation
Interstellar medium

A B S T R A C T

The interstellar medium of galaxies is composed of multiple phases, including molecular, atomic, and ionized
gas, as well as dust. Stars are formed within this medium from cold molecular gas clouds, which collapse
due to their gravitational attraction. Throughout their life, stars emit strong radiation fields and stellar winds,
and they can also explode as supernovae at the end of their life. These processes contribute to stirring the
turbulent interstellar medium and regulate star formation by heating up, ionizing, and expelling part of the
gas. However, star formation does not proceed uniformly throughout the history of the Universe and decrease
by an order of magnitude in the last ten billion years. To understand this winding-down of star formation and
assess possible variations in the efficiency of star formation, it is crucial to probe the molecular gas reservoirs
from which stars are formed. In this article following my presentation at the 10th International Conference
on Frontiers of Plasma Physics and Technology held in Kathmandu from 13–17 March 2023, I review some
aspects of the multiphase interstellar medium and star formation, with an emphasis on the interplay between
neutral and ionized phases, and present recent and ongoing observations of the molecular gas content in
typical star-forming galaxies across cosmic time and in different environments. I also present some of our
understanding of star-forming galaxies from theoretical models and simulations.
1. Introduction

Observations in the microwave domain of the electromagnetic spec-
trum reveal that we are surrounded by a bath of photons emitted at
a moment when the Universe was extremely hot, dense, and homo-
geneous. This cosmic microwave background gives us a snapshot of the
Universe when it had cooled down sufficiently for protons and neutrons
to combine into neutral hydrogen atoms and for photons to start propa-
gating. This epoch is referred to as recombination (although protons and
electrons were not combined before), and the hot, dense plasma that
preceded it is thought to have been opaque to electromagnetic radiation
since the mean free path of photons was extremely short. Structures
emerge from the homogeneous primordial Universe through a competi-
tion between the gravitational attraction, which tends to enhance local
over-densities by attracting the surrounding matter, and the expansion
of the Universe, which tends to dilute such over-densities.

In the current standard model of cosmology based on Einstein’s
general relativity theory, the structure of the Universe and its expansion
is intrinsically related to its matter and energy content. The minute
fluctuations of the cosmic microwave background and the systematic
recession of galaxies from us imply in this context a universe consti-
tuted by 69% of an unknown form of energy named dark energy, which
drives the expansion of the Universe, 26% of an unknown form of

E-mail address: jonathan.freundlich@astro.unistra.fr.
1 In addition to hydrogen, primordial nucleosynthesis also produces deuterium, helium, lithium, and isotopes.
2 1 parsec (pc) = 3.09 × 1016 m = 3.26 light-years.

matter called dark matter, and 5% of ordinary matter, often refereed
to as baryons [1]. Since dark matter represents 84% of the total matter
content of the Universe, it drives the formation of structures at very
large scale, forming a cosmic web of over-densities, but it remains
relatively diffuse given that it does not radiate away energy. Baryons
on their part can emit photons, lose energy, and hence condense further
due to the gravitational attraction at the center of the more diffuse dark
matter haloes. Post-recombination, baryons are in the form of a neutral
gas mostly composed of hydrogen atoms.1 When this gas collapses
due to its own gravitational attraction, temperature and pressure can
get so high that deuterium and hydrogen fusion reactions ignite: stars
are born. Throughout their life, stars emit strong radiation fields,
stellar winds, and can explode as supernovae, which not only ionize
their surrounding interstellar medium but also eventually most of the
Universe.

Fig. 1 shows this reionization of the Universe during the first billion
year following recombination, as seen in a cosmological simulation
by Ocvirk et al. [2]. Ionized bubbles progressively percolate through
the neutral gas until most of the volume is ionized. Small pockets
of neutral gas however still remain within galaxies at the center of
dark matter haloes, where new stars can continue to form. This large
scale simulation of a portion of the Universe follows the ionized gas
vailable online 23 May 2024
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Fig. 1. Illustration of the progressive reionization of the Universe, from the CoDA II simulation by Ocvirk et al. [2]. Top panel: Time evolution of a planar slice through the
simulation cube, with time increasing from left to right between redshift 𝑧 = 150 shortly after recombination to 𝑧 = 5.8, i.e. during the first billion year of the history of the
Universe. The vertical axis corresponds to 50 comoving Mpc. Bottom panels: Slices zooming around a massive cluster of galaxies at different times, from 𝑧 = 12 to 𝑧 = 8. Blue regions
are photo-heated, small red regions are heated by supernovae feedback and accretion shocks, green regions corresponds to regions where ionization is ongoing or incomplete.
Brightness indicate the gas density. The Universe globally evolves from neutral at recombination to ionized, but small pockets of neutral gas remain within galaxies, where stars
are formed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Ocvirk et al. [2].
fraction and its effect on the temperature of the gas, which in turn affect
the dynamics, but it does not take into account the specific dynamics
of charged particles in the presence of electromagnetic fields nor the
elaborate chemistry of the interstellar gas. Other simulations at much
smaller scales within galaxies can incorporate the effect of electromag-
netic fields on interstellar plasma and/or part of its chemistry [e.g., 3,
4], but without the cosmological nor most of the galactic context.
Galaxy formation and evolution indeed represents a complex multi-
scale phenomenon, encompassing more than ten orders of magnitude
in length, ranging from sub-parsec scales to cosmological megaparsec
scales.2 Moreover, the large-scale environment can affect the interstel-
lar medium locally, while local processes such as star formation, stellar
evolution and supernova explosions can reverberate at large distances
from the galaxy. This makes it challenging if not impossible to include
all scales and processes simultaneously in numerical simulations.

Despite representing only 15% of the total matter content, baryons
make up the visible Universe. Star formation is the essential step
through which galaxies come into existence and from which most
chemical elements that constitute us result. Furthermore, stars shape
their surrounding interstellar medium, their host galaxies, the circum-
galactic medium around galaxies, and leave their imprint on structures
at cosmological scales. How do stars form? What is their effect on
their surroundings? How did star formation proceed throughout the
history of the Universe? Did star formation processes evolve across
cosmic time? As we will see, understanding gas in galaxies, its different
phases, and its interplay with stars is crucial to address these questions.
Not only because stars are formed from cold molecular gas, but also
because stellar evolution, supernova explosions, and active galactic
nuclei affect the surrounding gas and regulate star formation. In the fol-
lowing, Section 2 focuses on star formation in the interstellar medium;
Section 3 on feedback processes resulting from stellar evolution and
active galactic nuclei; Section 4 on the cosmic star formation history;
2

Section 5 on characterizing star formation processes at different epochs;
and Section 6 concludes by presenting some perspectives.

2. Star formation in the interstellar medium

A galaxy like the Milky Way can be defined as a gravitationally-
bound system that contains many stars, but it is not limited to its stars
and the dark matter that surrounds it. The interstellar medium of a
galaxy, which constitutes the rest of the matter, represents about 10%
of the visible mass. Most of it is in the form of gas, representing about
99% of its mass, but it also contains some dust, namely small solid
particles mixed with the interstellar gas, cosmic rays, namely ions and
electrons whose velocities are much higher than thermal velocities, and
electromagnetic radiation from stars and other sources. The interstellar
medium of a galaxy hosts a variety of chemical elements, from hydro-
gen, helium, carbon, nitrogen, and oxygen to heavier elements. Most
of the stars, gas, and dust of a galaxy like the Milky Way are located in
and around a relatively thin disk whose thickness is of a few hundred
pc. As reviewed by Draine [10], gas in the interstellar medium can be
separated into different phases:

• The hot ionized medium, or coronal gas, has a very low density
(𝑛 < 0.01 atoms∕cm3) but fills a large fraction of the volume in
and around the galactic disk. It has been heated to very high
temperatures (𝑇 ≳ 3 × 105 K) by shocks, e.g. from the blastwaves
of supernova explosions, and it is collisionally ionized to high
ionized states, with ions such as O vi (O5+), N v (N4+), or C iv (C3+).

• The H ii ionized gas, where hydrogen has notably been photo-
ionized by ultraviolet photons from hot stars, has densities in
the range 𝑛 ∼ 0.3–104 atoms∕cm3, from dense clouds surrounding
young stars (referred to as H ii regions) to the lower density inter-
cloud medium (diffuse H ii or warm ionized medium) and supernova
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Fig. 2. The Milky Way seen at different wavelength ranges in the electromagnetic spectrum, each of these ranges tracing a different component of the galaxy: (1) optical light
traces stars, which are obscured by dust clouds; (2) the infrared continuum traces the dust itself; (3) X-rays trace the hot ionized medium; (4) the H𝛼 infrared emission line traces
ionized H II regions; (5) the 21 cm emission line traces neutral hydrogen; and (6) the carbon monoxide CO emission line traces the dense molecular gas.
Source: (1) Gaia space observatory, ESA/Gaia/DPAC; (2) Planck space observatory, ESA/NASA/JPL-Caltech; (3) ROSAT space telescope, Snowden et al. [5]; (4) Kitt Peak National
Observatory, Haffner et al. [6]; (5) Dwingeloo & Buenos Aires radio observatories, Kalberla et al. [7]; (5) Dame et al. [8].
Fig. 3. Gas density slice, column density projection, gas temperature slice, and column density of ionized H+, atomic H, and molecular H2 and CO at a given snapshot in a
simulation of the multi-phase interstellar medium by Walch et al. [4]. The simulation shown here includes gravity, magnetic fields, heating and radiative cooling, chemistry of H2
and CO as well as supernova explosions. The simulation focuses on a small region of a galactic disk, 500 pc in width.
Source: Walch et al. [4].
remnants (planetary nebulae). It fills about 10% of the volume of
the disk and its temperature is of the order of 𝑇 ∼ 104 K.

• The warm neutral medium, or warm H i, is predominantly atomic
and fills about 40% of the volume of the disk. It has a density
𝑛 ∼ 0.6 atoms∕cm3 and a temperature 𝑇 ∼ 5, 000 K.

• The cool neutral medium, or cool H i, is also predominantly atomic.
Its has a density 𝑛 ∼ 30 atoms∕cm3, a temperature 𝑇 ∼ 100 K, and
fills about 1% of the volume of the disk.

• The diffuse molecular gas is similar to the cool neutral medium
but with densities sufficiently large to enable the presence of H2
molecules. Namely, it corresponds to 𝑛 ∼ 100 atoms∕cm3, 𝑇 ∼
50 K, and fills about 0.1% of the volume of the disk.

• The dense molecular gas is constituted by gravitationally-bound
clouds where the density has reached 103 to 106 atoms∕cm3 and
temperatures are in the range 10–50 K. This is where star forma-
3

tion occurs.
In addition to these different phases, stars can generate outflows
through which they lose part of their mass. These winds blow in
the interstellar medium with densities in the range 1–106 atoms∕cm3,
temperatures between 50–103 K, and velocities from a few tens to
hundreds of km/s.

Fig. 2 shows images of the Milky Way in different wavelength ranges
of the electromagnetic spectrum, each tracing a different component of
the galaxy: stars and dust, hot ionized medium, H ii regions, neutral
H i gas, and molecular gas. The latter can notably be traced at radio
wavelengths by the line emission of carbon monoxide (CO), which is
the second most abundant molecule after H2 but more easily observed.
Since it can be rotationally excited by collisions with H2 molecules in
the cold interstellar medium, it provides a tracer of molecular hydro-
gen [e.g., 12,13]. The conversion between CO luminosity and molecular
gas mass however hinges on the CO excitation, the metallicity of the

gas, i.e. the amount of elements heavier than hydrogen and helium,
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Fig. 4. Column density map of a subregion of the Aquila star-forming complex of
the Milky Way, highlighting the link between the filamentary over-densities and the
location of pre-stellar and proto-stellar clores (blue and green triangles, respectively).
The majority of pre-stellar cores (75%) lie within the 0.1 pc-wide filaments. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Source: Könyves et al. [9], based on observations with the Herschel Space Observatory.

Fig. 5. The Orion Nebula, a stellar nursery. Young stars at the heart of the nebula
emit energetic ultraviolet ionizing radiation and winds that carve a cavity around
them. Their ultraviolet light reflected at the edge of the cavity can be seen in blue; the
surrounding gas they have ionized, traced by the H𝛼 emission line of ionized hydrogen,
is shown in red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Source: NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA) and the
Hubble Space Telescope Orion Treasury Project Team.

and more generally the physical conditions of the interstellar medium.
Fig. 3 shows a simulated view of the interstellar medium by Walch et al.
[4], highlighting its complex multi-phase nature. This simulation does
not include all the chemical elements and reactions that take place in
the interstellar medium, but it does track the ionization fraction of the
gas, the formation and destruction of H2 and CO molecules, and the
effect of supernova blastwaves.

Stars form in the densest regions of giant molecular clouds, where
gravity pulls gas particles together to form high-density cores which
will later turn into stars. Giant molecular clouds are not smooth and in-
stead exhibit intricate structures, hosting complex networks of filamen-
tary over-densities [14,15]. Such filaments can arise from intersecting
shock waves in the turbulent, magnetized interstellar medium, become
self-gravitating, and for the densest of them fragment into pre-stellar
cores as a result of gravitational instability [16–19]. As shown in Fig. 4,
from [9], a large fraction of the gravitationally-bound pre-stellar and
proto-stellar cores that may eventually or already have formed stars
4

indeed lie within these filamentary structures. When a pre-stellar core is
dense enough, deuterium fusion reactions ignite, followed by hydrogen
fusion reactions. Hydrogen fusion is the main process that makes stars
like our Sun shine. Young stars emit highly energetic ultraviolet light
and generate winds that ionize and blow away the surrounding gas.
This can notably be seen in Fig. 5 for the Orion Nebula, where the
winds generated by the bright young stars at the center of the stellar
nursery have carved a huge oval cavity.

3. Feedback processes

Throughout their life, stars emit strong radiation fields, neutrinos,
and winds. Furthermore, massive stars can also eventually explode as
supernovae, directly injecting mass, momentum, and kinetic energy
into the interstellar medium. Active galactic nuclei (AGN) due to the
accretion around the central supermassive black holes of galaxies also
induce similar effects. These different processes, collectively named
feedback, can not only hinder subsequent star formation by heating
up the gas, expelling part of it through powerful outflows, decreasing
or suppressing the efficiency of star formation, or preventing further
accretion onto galaxies by heating up the circumgalactic medium, but
they also drive supersonic turbulence in the interstellar medium and
disseminate elements heavier than helium formed within stars or dur-
ing supernova explosions. They can at times also have a positive effect
on star formation, notably by enhancing cooling with the injection of
heavy elements, by catalyzing H2 formation with the release of free
electrons during the ionization of hydrogen and helium, or by locally
compressing the gas during shocks [e.g., 20, p. 200, 21, 22]. Feed-
back processes can affect galaxies at larger scales, their surrounding
circumgalactic medium, and possibly even the distribution of dark mat-
ter [e.g., 23,24, for the latter]. Because of feedback processes, galaxies
at the low and high mass ends form comparatively less stars than
expected from the distribution of dark matter haloes [e.g. 25–28]: at
low mass because the relatively shallow gravitational potentials enable
strong outflows resulting from stellar evolution, at high mass because
of the presence of supermassive black holes and active galactic nuclei
around them. Observations reveal ionized gas winds driven by star
formation with velocities of the order of ∼ 500 km∕s and mass outflow
rates comparable to the star formation rate, while active galactic nuclei
can launch winds with faster velocities ∼ 1000–2000 km∕s [e.g. 29].
Active galactic nuclei can further launch highly collimated relativistic
jets that can propagate up to Mpc-scales [e.g. 30].

Fig. 6 highlights how feedback processes, which originate from
relatively localized regions around stars and active galactic nuclei,
affect galaxies at large scale and their circumgalactic medium. It shows
the dark matter and gas densities, the gas temperature, and the gas
metallicity for the final snapshot of the Illustris cosmological simula-
tion [11], which notably includes gas cooling, star formation, stellar
evolution, supernova explosions and winds, as well as the presence of
supermassive black holes and feedback from active galactic nuclei. The
different feedback processes result in the propagation of blastwaves in
the intergalactic medium, heating the gas and disseminating heavy ele-
ments at very large scales. Earlier in the history of the Universe, similar
processes contributed to reionize the Universe. If such cosmological
simulations enable to reproduce the observed large scale structure of
the Universe and a number of galaxy properties, they rely on sub-grid
recipes to treat processes such as star formation and feedback, which
physically occur beyond the resolution limit.

In the interstellar medium, stellar radiation from massive stars and
cosmic rays can ionize the neutral and diffuse molecular phases, and
ultraviolet radiation from massive stars can also dissociate molecules
such as H2. However, when molecules like H2 in the outer layer of
an interstellar cloud absorb photons, they can become optically thick,
thereby shielding molecules deeper within the cloud from ionizing
stellar light. The interface between the ionized H ii region surrounding
the cloud and the dense molecular cloud is called a photodissociation
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Fig. 6. Dark matter density, gas density, gas temperature, and gas metallicity at redshift 𝑧 = 0 in the Illustris cosmological simulation [11]. The simulated portion of the Universe
is 106.5 Mpc wide. The dark matter density traces the cosmic web, cosmic filaments, dark matter haloes at the nodes of these filaments, and a massive central cluster. The gas
density follows the dark matter density at large scale. Feedback processes in galaxies result in blastwaves propagating in the intergalactic medium, which both heat up the gas
and disseminate elements heavier than helium, as shown by the gas temperature and metalicity.
Source: Illustris Collaboration.
Fig. 7. Structure of a photo-dissociation region, the interface between an ionized H ii
region and a molecular cloud. A selection of ionized, atomic and molecular species are
shown, together with the gas temperature.
Source: Draine [10].

region. Its outer boundary is an ionization front, namely the surface
where hydrogen is 50% ionized, and it contains a photodissociation
front, where hydrogen is 50% atomic and 50% molecular, as shown
in Fig. 7 from [10]. Dust plays an important role in these regions,
since it catalyses H2 formation and can also absorb ionizing ultra-violet
photons, thus further protecting molecules against photodissociation.
Specific numerical codes, such as the Meudon PDR code [31], focus
on photodissociation regions to calculate their chemical and thermal
structure and predict their emission and absorption. In these regions,
the different wavelength ranges of the electromagnetic spectrum inter-
act out-of-equilibrium with hundreds of different chemical elements,
themselves coupled by thousands of chemical reactions, making such
models extremely complex despite the limited size of the region at
stake.

4. Cosmic star formation history

The current star formation (SFR) of the Milky Way is estimated to
be around 2 M⊙ yr−1 [32,33], on par with other nearby spiral galaxies.
But galaxies did not always form their stars at similar rates throughout
the history of the Universe. Eight billion years ago, typical star-forming
galaxies used to form stars at rates around 50 M⊙ yr−1; ten billion
years ago, those rates were as high as 150 M⊙ yr−1 [e.g., 34,35]. As
shown in Fig. 8, from [36], observations indicate a peak of the star
formation activity ten billion years ago, followed by a drop of the star
formation rate by an order of magnitude. The high star formation rates
observed ten billion years ago imply significant amounts of cold gas
available to form stars at the center of dark matter haloes. Cosmological
5

Fig. 8. The observed cosmic star formation rate density, i.e. the star formation rate
averaged over a comoving volume of the Universe, displays a peak ten billion years
ago, around redshift 𝑧 ∼ 2.
Source: Madau and Dickinson [36].

simulations suggest that streams stemming from the cosmic web could
penetrate deeply into halos of mass lower than a certain threshold
and hence bring fresh gas directly at their centers [37–39]. However,
direct observational evidence is challenging. These cold streams should
be best detectable through the Lyman-𝛼 emission of neutral hydrogen
atoms [40], but deep Lyman-𝛼 observations are still scarce and only
provide plausible detections of cold streams so far [e.g., 41].

Fig. 8 averages the star formation rate over the whole population of
galaxies at each epoch. But the galaxy distribution is far from homoge-
neous, notably with a bimodality between blue star-forming galaxies on
one side, the so-called star-formation main sequence [42–45], and red
galaxies that form much less stars on the other. The color of a galaxy
indeed relates to its stellar population and star formation rate, since
young stars are bluer than old ones. Fig. 9 shows this bimodality at
redshift 𝑧 ∼ 0, but it holds at least up to 𝑧 ∼ 2.5. About 90% of the cos-
mic star formation since 𝑧 ∼ 2.5, i.e. over the past ten billion years, took
place on and around the main sequence [46,47]. In accordance with the
cosmic star formation history shown in Fig. 8, the star formation rate
on the main sequence drops by an order of magnitude from 𝑧 ∼ 2.5 to
present time at any given mass. The relative tightness of the sequence
promotes an overall smooth and continuous star formation, for instance
sustained by accretion along cold streams from the cosmic web and
minor mergers. Blue main sequence galaxies are predominantly disky
while red galaxies are predominantly elliptical [e.g., 48,49], which
further supports the cold streams scenario since streams would keep
rotating disks intact, contrarily to major mergers. The low number
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Fig. 9. The bimodal distribution of galaxies in the star formation (SFR) versus stellar
mass (𝑀⋆) plane at 𝑧 ∼ 0, using the SDSS [52] MPA-JHU compilation. The color scale
and the contours indicate the number of galaxies in each bin, logarithmically. The
main sequence of typical star-forming galaxies is in the upper part, the red sequence
of galaxies that are forming much less stars at the bottom. The solid line highlights the
mean main sequence line at 𝑧 = 0 from [35]; the dashed lines to the 0.3 dex scatter
around this line. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

of galaxies between the two sequences advocates for relatively fast
mechanisms that would quench star formation at some point in the
history of a galaxy. Galaxies above the main sequence, i.e. with partic-
ularly high star formation rates, are often associated to mergers, which
induce nuclear inflows, shocks, and tidal compression and hence an
increase in the star formation rate. However, they may not constitute
a distinct population from the main sequence, since mergers do not
necessarily result in an offset from the main sequence [50,51]. Indeed,
for a given instantaneous star formation rate, a galaxy which formed
more stars in the past may fall within the scatter of the main sequence
while a galaxy which formed less stars would appear above without
fundamental differences between the two besides their stellar mass.

Fig. 10 illustrates gas cycles within galaxies, with gas channeled
to the galaxy along cold streams stemming from the cosmic web, star
formation, feedback-driven outflows, and some of the outflowing gas
being recycled to form new stars as it falls back on the galaxy. As
their stellar mass increases, typical galaxies are thought to evolve along
the main sequence in a slowly evolving gas-regulated quasi-equilibrium
between inflows, outflows, and star formation [54–56]. Assuming that
the mass outflow rate is proportional to the star formation rate to
account for stellar feedback processes, the variation in gas mass can
be expressed as

�̇�gas = �̇�gas,in − �̇�⋆ − 𝜂�̇�⋆ + 𝑅�̇�⋆, (1)

where �̇�gas,in is the inflow rate from cosmological accretion, �̇�⋆ the
star formation rate, 𝜂�̇�⋆ the outflow rate, and 𝑅�̇�⋆ the recycling
rate. Namely, the gas reservoir is fed by accretion and recycling,
consumed by star formation, and removed by outflows. Provided that
the timescale associated to star formation is smaller than the accretion
timescale, this model leads to a steady state solution where the gas mass
is constant and the star formation rate proportional to the cosmological
inflow rate. Despite its simplicity, it yields a star formation peak around
𝑧 ∼ 2, as observed, and approximately the right scaling between star
formation rate and stellar mass for the main sequence [54].

The quasi-equilibrium is expected to last until galaxies enter a
denser environment or reach a typical stellar mass 𝑀⋆ ∼ 1011 𝑀⊙, at
which point star formation quenches [57]. In addition to feedback pro-
cesses from stars and active galactic nuclei, a reduction in gas accretion
onto massive haloes, changes in morphology, and environmental effects
6

Fig. 10. Schematic representations of gas flows in and around a galaxy: the galaxy is
fed by cold gas streams stemming from the cosmic web (blue arrows), which condense
to form stars, while stars and the possible presence of an active galactic nucleus
generate powerful outflows that not only hinder subsequent star formation but can also
affect the galaxy as a whole and its surrounding circumgalactic medium (yellow/red).
Some of the outflowing gas can later fall back towards the galaxy and be recycled
(purple). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Source: Zhen Yuan (zyuan-astro), inspired by Tumlinson et al. [53].

can contribute to the quenching of star formation. Cold streams from
the cosmic web are notably expected to be unstable above a halo mass
of the order of 1012 M⊙ at 𝑧 ≲ 2, which should shut off the gas supply
and prevent further star formation [39,58,59]. As far as morphology is
concerned, the build-up of a massive bulge at the center of a galaxy can
stabilize the disk against gravitational instabilities and hence quench
star formation [morphological quenching; 60]. Stellar bars can also
influence star formation, although in ways that are still debated: on
one side, stirring turbulence could inhibit star formation [61–65]; on
the other, driving gas towards the galactic center could enhance star
formation there while depleting other regions of gas [66–70]. In dense
environments, different physical processes can affect the gas content
and star formation: galaxy–galaxy interactions and mergers [71], tidal
interactions with nearby companions or with the gravitational poten-
tial [galaxy harassment; 72], ram-pressure [73] and tidal stripping of
the gas [74], a halt in the cold gas supply [strangulation; 75,76], as
well as thermal evaporation due to the interaction between the hot
intergalactic gas and the cooler galactic gas [77]. While a sudden
gas removal by ram-pressure or tidal stripping rapidly quenches star
formation, the shut-off of gas accretion leads to a slower mode of
quenching, since star formation can continue with the gas still available
in the galaxy until it is used up [76]. Tidal interactions and ram-
pressure can also locally enhance star formation [e.g. 78–81]. Before
the final quenching occurs and a galaxy falls to the red sequence,
cosmological simulations further suggest star forming galaxies may os-
cillate within the scatter of the main sequence through episodes of gas
compression and enhanced star formation, possibly triggered by major
and minor mergers, followed by gas depletion, limited quenching, and
replenishment by external accretion [82–85].

5. Efficiency of star formation processes

The star formation rate is an extensive quantity that is expected to
correlate with the gas mass of a galaxy, and particularly its molecular

https://www.zyuan-astro.com/
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gas mass, since stars form through gravitational collapse within giant
molecular clouds. To assess star formation processes regardless of the
available gas reservoirs, it could be more insightful to use an intensive
quantity reflecting the efficiency of these processes. The Kennicutt–
Schmidt relation parametrizes the correlation between the star formation
rate and the gas surface densities through a power-law

𝛴SFR ∝
(

𝛴gas
)𝑁 (2)

[86–89], where the surface densities can be averaged either over whole
galaxies or over resolved sub-regions of the galaxies. One would expect
the most fundamental relation to be between the star formation rate
and gas volume densities, as initially proposed by Schmidt [86], but
observations of external galaxies can only measure surface densities
integrated along the line of sight. Observations in local star-forming
galaxies indicate a power-law exponent 𝑁 = 1.41 ± 0.07 when consid-
ering the total atomic and molecular gas content [87,90], and 𝑁 =
1.0 ± 0.2 when considering only the molecular gas content [91–95]. A
linear relation between the star formation rate and the molecular gas
content can be reframed as a constant depletion time

𝑡depl =
𝑀gas

SFR
, (3)

which is the characteristic time needed for a gas mass 𝑀gas to turn
into stars at constant star formation rate SFR. The depletion time is
an intensive measure of how fast star formation proceeds in a given
galaxy or sub-region of a galaxy, its inverse sometimes referred to in
observational contexts as the star formation efficiency (SFE = 1∕𝑡depl).
The mean molecular gas depletion time in the local Universe is around
1–3 Gyr [88,92,95–97]. Under reasonable assumptions, e.g. vertical hy-
drostatic equilibrium, it may be possible to infer volumic densities and
obtain a relation between star formation rate and gas volume densities
that is tighter than that between their surface densities [98,99], indi-
cating that the relation between volume densities may indeed be more
fundamental than the surface but observable Kennicutt–Schmidt rela-
tion. The relation also breaks down below a few hundreds of parsecs,
where star-forming regions and molecular clouds become decorrelated
as feedback processes from newly-formed stars rapidly disperse the gas
surrounding them (100–103; see also Fig. 5).

Different theoretical arguments can justify the observed values for
the power-law exponent of the Kennicutt–Schmidt relation. The gravi-
tational collapse of a spherical gas cloud of initial volume density 𝜌gas
is expected to occur in a free-fall time 𝑡f f ∝ 1∕

√

𝐺𝜌gas, where 𝐺 is the
gravitational constant. Hence, if the star formation rate is a fraction of
the star-forming gas mass per free-fall time, one could write its volume
density

𝜌SFR = 𝜖f f
𝜌gas
𝑡f f

(4)

where 𝜖f f is a dimensionless star formation efficiency, preferred in theoret-
ical contexts, corresponding to the star formation rate per free-fall time
for a unit gas mass [104,105]. Comparing the mass of giant molecular
clouds with the star formation rate in the Milky Way yields values
for 𝜖f f ∼ 1% [106,107], which enables to grasp how inefficient star
formation is: no more than ∼ 1% of the available gas in giant molecular
clouds is transformed into stars per free-fall time. Turbulence, magnetic
fields, and feedback processes in the interstellar medium contribute
to hinder star formation and reach such a low efficiency compared to
purely gravitational free-fall [108]. Given the expression of the free-fall
time, Eq. (4) implies an exponent 1.5 between the volume densities.
Further assuming a uniform line-of-sight scale height leads to an ex-
ponent 𝑁 = 1.5 between the surface densities, close to the observed
Kennicutt–Schmidt relation for the total gas content. Instead assuming
that all giant molecular clouds are similar and that the star formation
rate simply reflects their number leads to a proportionality between
star formation rate and gas mass, i.e. 𝑁 = 1. Other theoretical models
enable to physically motivate values of 𝑁 in the range 0.75–2 [cf. 92],
and more general relations involving for instance the stellar surface
7

Fig. 11. Observed Kennicutt–Schmidt relation between the star formation rate and
molecular gas surface densities at different epochs. The plot includes galaxy-averaged
measurements at 𝑧 = 0 [111], 𝑧 = 0.5 − 0.8 [112], 𝑧 = 1.2 − 2.2 [113] together with
resolved unlensed measurements at 𝑧 = 1.2 [114, probing ensembles of clumps on scales
∼ 8 kpc], 𝑧 = 4 [115, on scales ∼ 2 kpc], and 𝑧 = 4.5 [116, on ∼2 kpc] as well as
resolved gravitationally-lensed measurements at 𝑧 = 1 [117, down to ∼ 100 pc], 𝑧 = 2.6
[118, on ∼6 kpc], and 𝑧 = 5.2 [119, on ∼9 kpc]. The color of the data points indicates
the average redshift of each sample. The galaxy-averaged [90] and resolved [95, on
∼1.5 kpc] Kennicutt–Schmidt relations measured in the local Universe as well as the
global relation at 𝑧 ∼ 4 from cosmological simulations [120] are shown as dashed and
dashed–dotted lines. The diagonal dotted lines indicate constant depletion times 𝑡depl =
0.1, 1, and 10 Gyr. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

density have also been proposed [e.g. 109,110]. Already-formed stars
indeed contribute both to the gravitational potential in which stars
form and to the hydrostatic pressure acting on star-forming regions.

As mentioned earlier, the evolution of galaxies throughout the
history of the Universe is marked by a peak in star formation activity
ten billion years ago. Is the subsequent decline in the star forma-
tion rate solely due to a decrease in the amount of gas available
to form stars, or is it partially due to less efficient formation pro-
cesses? This can be answered by probing molecular gas at different
epochs and determining the associated depletion times. Fig. 11 shows
the Kennicutt–Schmidt relation between the star formation rate and
molecular gas surface densities for a selection of samples at different
redshifts. The figure includes galaxy-averaged measurements [90,111–
113], resolved measurements [95,114–116], resolved measurements
in gravitationally-lensed objects [117–119], as well as stacked mea-
surements [121]. For comparison, it also shows the relation obtained
in cosmological simulations by Kraljic et al. [120]. While [111,113],
and [112] sample the main sequence relatively evenly by construction,
measurements at redshifts higher than 2.5 may however be biased
towards outliers. At 𝑧 > 2.5, while [118,119], and [115] find rela-
tively low depletion time above the lower-𝑧 relation, the measurements
of Béthermin et al. [116] at 𝑧 = 4.5 fall precisely on that relation despite
galaxies being very different between the two epochs. Gravitationally-
lensed measurements possibly suffer from their own lens modeling
uncertainties and biases. More generally, systematic uncertainties affect
star formation rate, stellar and molecular gas mass estimates. Neverthe-
less, the Kennicutt–Schmidt relation seems to be strikingly linear and
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universal, at least between the peak epoch of star formation and now.
This indicates that the evolution of the star formation rate throughout
the history of the Universe is mainly due to the amount of available
molecular gas and that even though this evolution is accompanied by
a small decrease in their efficiency, star formation processes are very
similar across cosmic time [cf. also 122,123].

6. Conclusion

Despite large observational programs targeting the molecular gas
from which stars form, significant questions remain regarding the role
of this gas in the history of star formation and galaxy evolution. In
particular, the reason why galaxies stop forming stars at some point in
their life and the transition from the main sequence of star formation
to the red sequence are still debated. Does star formation cease because
galaxies run out of gas or because the efficiency of star formation
drops? What is the actual strength of the feedback processes associated
with stellar evolution and active galactic nuclei? Galaxies are complex
systems to simulate, where gravity, turbulence, radiation, star forma-
tion and feedback interact with one another, and where the different
components and scales affect one another. State-of-the-art cosmological
simulations still fail to harbor gas reservoirs as high as observed and to
form stars at the right time and place [e.g. 124]. Furthermore, they do
not form bars as would be expected from observations [e.g. 125]. The
fate of star-forming regions is also unclear: are they transient or not,
and what is their fate in the galactic disk? If they are long-lived, these
structures could notably migrate through dynamical friction towards
the center and contribute to the formation of a bulge during the ten
billion years following the peak of star formation [e.g. 126]. Finally,
not only does the majority of existing observations of the gas concern
isolated galaxies that are still actively forming stars, but most obser-
vations beyond the local Universe do not distinguish the substructures
where stars are forming.

New or upcoming instruments such as the James Webb Space
Telescope (JWST) and the Square Kilometer Array (SKA) will enable to
probe galaxies and their gas earlier in the history of the Universe and
to have a more complete picture of gas in galaxies. JWST has already
uncovered galaxies at 𝑧 > 10 [e.g. 127]. ALMA not only enables to
spectroscopically confirm the distance of galaxies up to 𝑧 ∼ 9 and
o detect distant massive dusty galaxies, but also to study gas and
tar formation processes within galaxies at 𝑧 > 4 on scales smaller

than a kiloparsec. Synergies between the two instruments should allow
us to observe the distribution of gas and dust together with the stel-
lar populations within distant galaxies and study how these different
components are interconnected. SKA will further allow not only the
observation of molecular gas at very high redshift but also probing the
atomic gas up to the peak epoch of star formation, providing a much
more complete picture of gas in galaxies. SKA will indeed detect the HI
atomic gas before it cools down to the molecular phase up to 𝑧 ∼ 1.7,

ap environmental effects up to 𝑧 ∼ 1, and further allow to better
nderstand the evolution of low surface brightness galaxies [128].
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