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ABSTRACT

Context. The structure and dynamics of the central bar of the Milky Way (MW) are still under debate whilst being fundamental
ingredients for the evolution of our Galaxy. The recent Gaia DR3 offers an unprecedented detailed view of the 6D phase space of the
MW, allowing for a better understanding of the complex imprints of the bar on the phase space.
Aims. We aim to identify and characterise the dynamical moving groups across the MW disc, and use their large-scale distribution to
help constrain the properties of the Galactic bar.
Methods. We used 1D wavelet transforms of the azimuthal velocity (Vφ) distribution in bins of radial velocity to robustly detect the
kinematic substructure in the Gaia DR3 catalogue. We then connected these structures across the disc to measure the azimuthal (φ)
and radial (R) gradients of Vφ of the moving groups. We simulated thousands of perturbed distribution functions using backward
integration, sweeping a large portion of parameter space of feasible Galaxy models that include a bar, in order to compare them with
the data and to explore and quantify the degeneracies.
Results. The radial gradient of the Hercules moving group (∂Vφ/∂R = 28.1 ± 2.8 km s−1 kpc−1) cannot be reproduced by our simple
models of the Galaxy that show much larger slopes both for a fast and a slow bar. This suggests the need for more complex dynamics
(e.g. a different bar potential, spiral arms, a slowing bar, a complex circular velocity curve, external perturbations, etc.). We measured
an azimuthal gradient for Hercules of ∂Vφ/∂φ = −0.63 ± 0.13 km s−1 deg−1 and find that it is compatible with both the slow and fast
bar models. Our analysis points out that in using this type of analysis, at least two moving groups are needed to start breaking the
degeneracies.
Conclusions. We conclude that it is not sufficient for a model to replicate the local velocity distribution; it must also capture its larger-
scale variations. The accurate quantification of the gradients, especially in the azimuthal direction, will be key for the understanding
of the dynamics governing the disc.
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1. Introduction

The phase-space distribution function (DF) of stars in the Milky
Way (MW) is a key element in understanding the structure and
history of our Galaxy. A precise characterisation of this 6D
phase-space (position and velocity R, φ,Z,VR,Vφ, and VZ) of the
MW has been made possible by the second and third Gaia data
releases (Gaia DR2 and DR3, Gaia Collaboration 2018a, 2023).
Studying this Gaia data in various projections reveals the com-
plex substructure within it: ridges in R − Vφ (Antoja et al. 2018;
Kawata et al. 2018; Fragkoudi et al. 2019), a wave in LZ − VR
(LZ = RVφ, Friske & Schönrich 2019; Antoja et al. 2022), a
bimodality in LZ−VZ (Gaia Collaboration 2021; McMillan et al.
2022), the phase spiral in Z − VZ (Antoja et al. 2018, 2023;
Hunt et al. 2021, 2022; Laporte et al. 2019), and thin arches in
VR − Vφ (Gaia Collaboration 2018b; Ramos et al. 2018).

Out of all of these projections, the VR − Vφ distribution close
to the solar neighbourhood (SN) is historically the most stud-
ied one (Strömberg 1946; Eggen 1965). It presents a complex
configuration of overdensities – usually called moving groups –
shaped as thin arches (Dehnen 1998; Famaey et al. 2005). Some

of the moving groups, and also the ridges and the LZ − VR
wave, have been related to the orbital resonances of the bar
and spiral arms of the Galaxy (Kalnajs 1991; Raboud et al.
1998; Dehnen 2000; Antoja et al. 2011; Hunt & Bovy 2018;
Hunt et al. 2018a,b, 2019; Monari et al. 2019a; Bernet et al.
2022) and/or attributed to ongoing phase mixing related
to external perturbations (Minchev et al. 2009; Gómez et al.
2012; Antoja et al. 2018; Ramos et al. 2018; Hunt et al. 2018b;
Khanna et al. 2019; Laporte et al. 2019, 2020). Despite using
numerous analytical and numeric approaches to understand the
structure of the phase space, we still face a significant challenge
in explaining its origin in detail.

In particular, the origin of the Hercules moving group has
been a subject of extensive debate. For the past two decades,
it has been suggested that this moving group is connected to
the resonant interactions between local stars and the central
Galactic bar (e.g. Dehnen 2000; Antoja et al. 2014). Accord-
ing to this hypothesis, if the Sun is located just beyond the
outer Lindblad resonance (OLR) of the bar, a Hercules-like over-
density can be generated, thus implying a bar pattern speed
of Ωb ∼ 55 km s−1 kpc−1 (the short and fast bar scenario,
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Minchev et al. 2007; Chakrabarty 2007; Monari et al. 2017a).
However, recent studies of the gas (Sormani et al. 2015) and
stellar kinematics (Portail et al. 2017; Sanders et al. 2019) in the
inner Galaxy point to a pattern speed of Ωb ∼ 40 km s−1 kpc−1

(the long and slow bar scenario). Following this new evidence,
Pérez-Villegas et al. (2017) and Monari et al. (2019a) proved
that orbits trapped in the co-rotation (CR) resonance of a long
and slow bar can generate a Hercules-like overdensity in the
local velocity space, although it is less pronounced than the
one produced by the OLR (Monari et al. 2017b; Binney 2018;
Hunt et al. 2018a; Fragkoudi et al. 2019). However, the combi-
nation of spiral arms and a bar (Hunt et al. 2018b), or a decelerat-
ing bar (Chiba et al. 2021; Chiba & Schönrich 2021) can create
stronger Hercules-like overdensities even for a slow bar.

Indirectly measuring the pattern speed of the bar requires
one to reproduce the moving groups at the SN through the bar
resonances, something that has been mostly done qualitatively
(e.g. Dehnen 2000; Pérez-Villegas et al. 2017; Hunt & Bovy
2018; Trick et al. 2021; Trick 2022, but see Asano et al. 2022;
Clarke & Gerhard 2022). As the available data improved, first
with RAVE (Steinmetz et al. 2006) and later on with Gaia,
measurements of the pattern speed have been improved by
including other regions of the galactic disc (Antoja et al. 2014;
Monari et al. 2014, 2019a). However, as explained above, there
are a few combinations of pattern speeds and resonances that
produce a similar local velocity distribution, that is to say
degenerated solutions. Studying the position of the moving
groups across the disc might have the potential to break this
degeneracy.

In Bernet et al. (2022, hereafter B22), we presented a robust,
large-scale characterisation of the moving groups across the MW
disc. Our analysis revealed that the moving groups exhibit com-
plex spatial changes, deviating from the expected lines of con-
stant angular momenta along the radial direction and showing
clear non-axisymmetries in azimuth. In particular, our study con-
firmed the azimuthal gradient of the Hercules moving group
measured in Monari et al. (2019b). In their work, they favour the
slow bar scenario using this measurement, as well as the sig-
nificant azimuthal slope of the Horn, which is another moving
groups at negative VR (Monari et al. 2013). Based on the predic-
tions they obtained from perturbation theory, the gradient of Lz
with azimuth for a slow-bar Horn (created by the 6:1 resonance)
should be non-zero, while the fast-bar Horn (created by OLR)
should have a very small azimuthal gradient.

The goal of this study is to quantitatively characterise the mov-
ing groups in the phase space using the new Gaia DR3 data and
improving on the methodology from B22 by including, in addi-
tion to VR and Vφ, a novel set of measurables: the gradients of the
moving groups at the SN in the radial (∂Vφ/∂R) and azimuthal
(∂Vφ/∂φ) directions. The characterisation of the spatial variations
of these groups allows for meaningful comparisons with theoreti-
cal models. As a particular case, we investigated the implications
of kinematic substructures on the pattern speed of the MW bar,
comparing the gradients obtained from the data with those of mod-
els with a simple bar, using backward integration (BI) simulations.
We find that some measurables are compatible with both the fast
and the slow bar models while others are incompatible with either.
We also examined whether the gradients in the models truly differ
between a slow and a fast bar scenario, and we determined the min-
imum number of observables required to break the degeneracies.
We observed a large disagreement between the measured gradi-
ents in the data and the simulations. This disagreement leads us
to the conclusion that simple models are insufficient to reproduce
the current observations.

This paper is organised as follows. In Sect. 2 we describe the
data selection, summarise the methodology presented in B22,
and explain the computation of the gradients. In Sect. 3, we intro-
duce the simulations used in this analysis and explain how we
applied our methodology to them. Section 4 describes the kine-
matic substructure observed in the data and the models, and we
compare the different trends shown by the moving groups and
overdensities. In Sect. 5, we explain how we swept the pattern
speed Ωb and the slope of the rotation curve β in the models and
compare the obtained measurables with the data. In Sect. 6 we
study the change of the overdensities in time and azimuth in the
models to understand the properties of the different structures.
The implications of these results are discussed in Sect. 7. Finally,
in Sect. 8 we summarise our results and list the main conclusions
of this work.

2. Data and methodology

2.1. Data

We used data from the Gaia Data Release 3 (Gaia DR3,
Gaia Collaboration 2023). From it, we selected the approximately
34 million stars with position, proper motion, parallax, and line-
of-sight velocity, and used the StarHorse (Anders et al. 2022) dis-
tances. We applied an astrometric quality selection (RUWE < 1.4),
a selection in parallax quality (parallax_over_error > 5),
and a selection of non-spurious solutions (fidelity_v2 > 0.5,
Rybizki et al. 2022). As recommended for this sample, we cor-
rected the line-of-sight velocity for stars with grvs_mag ≥ 11
and rv_template_teff < 8500 K using Eq. (5) in Katz et al.
(2023). Blomme et al. (2023) discussed the need for another cor-
rection for stars with 8500 ≤ rv_template_teff ≤ 14 500 K
and 6 ≤ grvs_mag ≤ 12. However, after the correction, a resid-
ual bias of a few km s−1 remained. Since these stars are rare, we
only kept stars with rv_template_teff < 8500 K in our sam-
ple. Our final sample has 25 397 569 stars.

We transformed the observables into cylindrical phase space
coordinates using R0 = 8.277 kpc (GRAVITY Collaboration
2022)1, Z� = 0.0208 kpc (Bennett & Bovy 2019), and U� = 9.3,
V� + Vc(R0) = 251.5, and W� = 8.59 km s−1 from the proper
motion of SagA* (Reid & Brunthaler 2020) and its radial veloc-
ity (GRAVITY Collaboration 2022). The reference system is
right-handed with φ oriented contrary to the disc rotation and
thus Vφ < 0 for most stars. We set the origin at the Sun’s azimuth
(φ� = 0).

2.2. Methodology

In B22, we presented a novel method to extract large kinematic
substructures from a dataset of stellar positions and velocities.
The first step of the method is to partition the data into small spa-
tial volumes (∆R,∆φ,∆Z) and run a Wavelet Transform (WT)
on the velocity distribution (VR,Vφ) of each individual volume
to detect the overdensities. These overdensities – the moving
groups – are known to form thin arches elongated around large
ranges of VR, with a slight variation in Vφ (Ramos et al. 2018).
Because of this geometry, in the second step, we slice each
(VR,Vφ) diagram in ∆VR bins, and run a 1D WT in each Vφ his-
togram. The peaks obtained from these 1D WT are connected
through the configuration space to form global substructures
1 Clarke & Gerhard (2022) used an alternative measure of R0, the cen-
tre of the bulge. In their study they found a great agreement between this
measurement and the distance to Sag A*, confirming the hypothesis that
Sag A* is at rest at the centre of the bulge.
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using a modification of the Breadth-First Search (BFS, Moore
1959) algorithm from graph theory. This method has proven
to be effective in detecting large kinematic substructures in the
Gaia EDR3 data and test particle simulations. For more details,
we refer to the original paper.

We modified a few parameters of the method with respect
to the execution in B22. Firstly, we used a larger scale of the
wavelet, from 2 km s−1 in B22 to 6.25 km s−1 here. The main goal
of the wavelet size modification was to robustly detect the large-
scale substructure in regions far from the Sun, where the sta-
tistical significance of the moving groups decreases. Secondly,
we increased the resolution of the grids used in the configura-
tion and velocity spaces. This reduced the degeneracies in the
linking stage of the methodology and allowed for a more precise
computation of the gradients (∂Vφ/∂R and ∂Vφ/∂φ).

The execution was run in the Cloud using resources granted
by the Open Clouds for Research Environments (OCRE) from
the European Union. In B22 we swept the entire disc vol-
ume, but in this analysis we focused on the radial (φ = 0 deg,
Z = 0 kpc) and azimuthal (R = 8.277 kpc, Z = 0 kpc) direc-
tions. Our new binning to compute the positions of the moving
groups was:

– Radial direction (R): [5, 14] kpc in steps of 0.01 kpc,
∆R = ±0.24 kpc around each centre;

– Azimuthal direction (φ): [−50, 50] deg in steps of 0.1 deg,
∆φ = ±2.4 deg around each centre;

– Vertical direction (Z): Not swept,
∆Z = ±0.24 kpc around Z = 0 kpc;

– Radial velocity (VR): [−120, 120] km s−1 in steps of 2 km s−1,
∆VR = ±15 km s−1 around each centre.

The possible biases introduced by a wrong distance estimation
or the size of the bins were discussed in B22. We tested the bias
of the bin size using a smaller bin, and estimated the impact to
be below 2 km s−1, well below the WT size. Since the coordinate
transformations and binning were very similar here, we refer to
those analyses.

After the execution, we obtained independent detections of
each moving group at each small spatial volume, and their link
across the space in the form of large-scale ridge-like structures
(Fig. 1), which we analyse later on. By construction, each detec-
tion corresponds to a single VR, and each moving group is in
turn assigned a set of these detections that span the entirety of its
arch in velocity space. In the rest of the paper, the term structure
refers to the grouping for a single VR in the entire configuration
space, either in the data or the simulations. Moving group refers
to a set of structures covering an entire arch in velocity space
in the data, and overdensity refers to the equivalent of a moving
group in the simulations.

We want to quantify how the structures change across the
MW disc. However, visualising how tens of structures evolve
along two dimensions all at once is challenging. To reduce the
dimensionality of the problem, we computed the radial (∂Vφ/∂R)
and azimuthal (∂Vφ/∂φ) gradients of each structure at the SN.
The computation of gradients is numerically unstable, small
errors in the input data propagate throughout the computation,
leading potentially to big errors. To produce a robust estimation
of the gradient, we fitted a parabola to the structures in the radial
direction and a straight line in the azimuthal direction (dashed
lines in the top plots in Fig. 1), and computed the analytical
derivative of these fittings at the SN. We can then plot these gra-
dients in the SN (left panels in Fig. 2). We propagated the uncer-
tainties in Vφ for each measurement (WT size, σ = 6.25 km s−1)
using Monte Carlo sampling. The uncertainties in the mea-
surements of the gradients in the main moving groups (Hat,

Sirius, Hyades, Horn, and Hercules) are below 1 km s−1 kpc−1

in ∂Vφ/∂R, and below 0.05 km s−1 deg−1 in ∂Vφ/∂φ.

3. Simulations

The Gaia data are unprecedented in its quality and quantity.
As we explained in the previous section, it even allows us to
compute the spatial gradients of the velocity structures. Running
realistic simulations that match the quality of the data is complex
and expensive. For this reason, we used the simpler, but many
times faster, BI method that we explain in Sect. 3.1 to explore
exhaustively the parameter space of different models. In Sect. 3.2
we describe the specific method of detection of structures in the
simulations.

3.1. Setup and bar potential

The BI technique (Vauterin & Dejonghe 1997; Dehnen 2000,
also Hunt & Bovy 2018 for a more recent example) allows us
to approximate the response of the DF to a bar perturbation by
integrating the orbit of stars, all starting at a certain point (R, φ) in
configuration space, but with different velocities on a grid in the
(VR,Vφ) plane. According to the collisionless Boltzmann equa-
tion, the density of the DF inside an infinitesimal phase-space
volume remains constant. However, the DF can only be mea-
sured in finite volumes. The BI technique assumes that the mean
value within the local volume is the same as its central value,
regardless of how the volume is deformed along the orbital evo-
lution. This means that we trace back a single orbit at the central
point of each volume to compute the DF before the perturbation.
It is important to note, however, that these local volumes undergo
significant stretching and kneading, potentially challenging the
assumption that the mean is equal to the central value. In other
words, the measurable DF, also sometimes called the coarse-
grained DF, does not obey the collisionless Boltzmann equation.
Moreover, when smoothly switching on the perturbation ampli-
tude up to its plateau, the separatrixes will move in time whilst
virtually always involving non-adiabatic behaviour on their sur-
face, implying a dependence on the switch-on choice. Neverthe-
less, the assumptions made here are still extremely useful, espe-
cially for studying the dynamical effect of the perturbation for
relatively few dynamical times.

In practice, we follow the model presented in Dehnen
(2000). To validate our approach, we refer to existing liter-
ature: Monari et al. (2017b) modified the setup proposed by
Dehnen (2000) to ensure complete phase-mixing and calculated
the present-day DF using the pendulum approximation. Addi-
tionally, Trick et al. (2021) ran forward test particle simulations
in an identical setup. Both studies produced results in agreement
with the BI technique, affirming the reliability of our compu-
tations and the low impact of the assumptions presented in the
previous paragraph.

We use the Dehnen (1999) distribution function to model the
stellar disc before the bar formation

f (E, L) ∝
Σ(RE)
σ2

R(RE)
exp

[
Ω(RE)(L − Lc(E))

σ2
R(RE)

]
, (1)

where RE , Ω(RE), and Lc(E) are radius, circular frequency, and
angular momentum of a circular orbit with energy E. The ana-
lytical form of the DF allows for an efficient computation. Σ(R)
and σR(R) are defined as

Σ(R) = Σ0 exp(−R/Rs), (2)
σR(R) = σ0 exp(−R/Rσ), (3)
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where the values of the constants Σ0, σ0, Rs, and Rσ (Table 1) are
the same as in Dehnen (2000). This DF is used extensively in the
literature (e.g. Hunt et al. 2018a; Monari et al. 2019a), providing
an initial setup consistent with previous analysis. Possible bias
induced by the selection of the DF parameters are discussed later
on.

The axisymmetric potential is assumed to be such that the
circular velocity is given by

vc(R) = v0
(
R/R0

)β
, (4)

where v0 is the circular velocity at the Solar radius R0, and β
characterises the shape of the rotation curve.

Also following Dehnen (2000), we model the bar potential
as a simple quadrupole

Φb(R, φ) = Ab(t) cos(2(φ − φb −Ωbt)) ×
{
−(Rb/R)3, for R ≥ Rb,
(R/Rb)3 − 2, for R ≤ Rb,

(5)

where Ωb is the pattern speed of the bar, φb is angle of its long
axis and Rb its size, which we fix to be 80% of the corotation
radius2, given by

RCR ≡ R0
(
Ωb/Ω0

)1/(β−1)
, (6)

where Ω0 ≡ v0/R0 denotes the circular frequency at the Sun.
The bar amplitude is initialised at Ab(t) = 0 for t = 0,

increases smoothly for t < t1 as

Ab(t) = A f

[ 3
16
ξ5 −

5
8
ξ3 +

15
16
ξ +

1
2

]
, ξ = 2

t
t1
− 1, (7)

and it remains at a fixed A f for t > t1 until the end of the simu-
lation at t = t2. We express t in units of the bar rotation period
Tb ≡ 2πΩb. Finally, the amplitude constant is defined as

A f = αv2/3
0

(
R0

Rb

)3

, (8)

which depends on the dimensionless bar strength α, defined as
the ratio of the radial forces from the bar’s quadrupole and the
axisymmetric power-law background at R0 along the major axis
of the bar (Dehnen 2000).

We present two fiducial models, which aim to reproduce the
velocity distribution of the SN in a MW with a fast bar and a
slow bar. In the Slow Bar Model (SBM) we included a bar with
a pattern speed of Ωb = 39 km s−1 kpc−1. The Fast Bar Model
(FBM) has a pattern speed of Ωb = 56 km s−1 kpc−1. The Sun
is at R� = 8 kpc, and the bar is at φb = −30 deg with respect
to the Sun (Bland-Hawthorn & Gerhard 2016). The parameters
of the fiducial simulations can be found in Table 1. The orbit
integration was performed using AGAMA (Vasiliev 2019).

For consistency, we tested the effect of a significant modi-
fication of the parameters of the DF. We increased individually
the fiducial values of Σ0, σ0, Rs, and Rσ by a 25% and assessed
that the change on the position of the overdensities is below
2 km s−1. In addition, we tested the relative error in the gradi-
ents with the same increase of 25%. The relative error in radial
gradients is below 2%, while the relative error in azimuthal gra-
dients is below 5%. These shifts are even less significant on
higher order resonances. With this analysis, we show that the

2 This value is the same used by Dehnen (2000) and is close to the ref-
erence value of R =

RCR
Rbar

= 1.2 (Athanassoula 1992, but see Font et al.
2017).

Table 1. Parameters of the fiducial models.

Symbol Units SBM FBM

Ωb km s−1 kpc−1 39 56
t1 Gyr 2Tb = 0.32 2Tb = 0.22
t2 Gyr 4Tb = 0.64 4Tb = 0.44
R0 kpc 8
v0 km s−1 220
α 0.01
β 0
Σ0 km s−1 1
σ0 km s−1 48
Rs kpc 2.64
Rσ kpc 8

measurements are robust to significant variations of the input
parameters. We remark that the local velocity dispersion of the
used model (σR = 17.6 km s−1) would correspond to a relatively
younger population of stars of the MW (1−2 Gyr, Robin et al.
2022). We tested the measurables obtained with a larger disper-
sion (σR = 35 km s−1) which would correspond to an older pop-
ulation (6−7 Gyr, Robin et al. 2022) and the variations are well
within the errors estimated in Table 2.

Finally, we computed the gradients with a McMillan (2017)
potential, a Ferrers (1877) bar and a Quasi-isothermal DF
(Binney & McMillan 2011), and observed an error of 5% in
radial gradient, and 20% in azimuthal gradient. Therefore, we
conclude that the choice of DF has an impact on the final models,
but the obtained measurables are still dominated by the global
physics of the resonances.

We also note that the used models are 2D for simplicity,
ignoring the contribution of the vertical motion. It is known that
the position of the moving groups depends on the vertical com-
ponent (B22). However, the studied sample is very dominated by
stars close to the plane, and we tested that different vertical sizes
in the selection induce biases below 1 km s−1 in the positions of
the moving groups. Therefore, we conclude that the vertical sub-
structure will not bias our measurements, thus allowing for a fair
comparison with 2D models.

3.2. Arch detection

In these simulations, we applied the methodology described in
Sect. 2.2. The first step of this methodology is to detect over-
densities in the velocity distribution. For the data, the WT has
proven to be optimal for this task (e.g. Chereul et al. 1998;
Skuljan et al. 1999; Antoja et al. 2008; Kushniruk et al. 2017;
Ramos et al. 2018; Lucchini et al. 2023). However, for the sim-
ulated velocity distributions, we find that in the case of the
SBM the detections with the WT are not robust enough. This
is because the overdensity caused by CR is not as prominent as
when observed in the data or the FBM (Binney 2018; Hunt et al.
2018a). Luckily, the velocity distributions produced with BI have
potentially “infinite” resolution3, and can be considered twice-
differentiable. Taking advantage of that, we used the statistic
defined in Contardo et al. (2022) that estimates the “gappiness”
of each point for differentiable distributions. We constructed the
statistic as follows.
3 In practice, to have reasonable computing costs, we limit our velocity
grid to a resolution of 0.2 km s−1, which is of the order of the velocity
uncertainties at the SN.
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For each point in the VR − Vφ grid, we computed the gradi-
ent vector ∇p and the Hessian matrix H of the density on the
velocity distribution. Then we calculated the projected second
derivative tensor ΠHΠ, with

Π ≡ I −
∇p∇p>

∇p>∇p
, (9)

where I is the identity. The maximum eigenvalue of ΠHΠ is the
“gappiness” estimator of the point. It is important to notice that
“gappiness” is the opposite of “overdensityness”, and therefore
the minimum eigenvalue of ΠHΠ gives information on the posi-
tion of the overdensities in the velocity distribution. For more
details, we refer to the original paper (Contardo et al. 2022). We
note that it would be ideal to apply the same methodology to
the Gaia data. However, we aim to reach distant regions of the
disc, where the Poisson noise is very significant and we do not
have the differentiability conditions to apply this method. We
tested the difference between both methods in the fiducial mod-
els, and found it to be below 1 km s−1 in the main overdensities,
well below the WT size used in the data. When the overden-
sities are not sharp enough horizontally, the different methods
may diverge. However, these overdensities are not studied in this
paper, since we focus on the main structures. For less signifi-
cant structures, a careful discussion on the bias induced by the
method would be needed.

In the simulations, we applied the same methodology as in
the data, described in Sect. 2.2, but using the “overdensityness”
in VR−Vφ. This reveals a complex velocity field, rich in overden-
sities, the equivalent in the simulations of the moving groups. To
then measure the gradient of each overdensity, we first computed
auxiliary velocity distributions in the radial direction (between
7 and 9 kpc, in steps of 0.1 kpc) and the azimuthal direction
(between 20 and 40 deg in steps of 1 deg). For each BI-generated
VR − Vφ map, we detected the overdensities present and used
the same methodology that we used for the data to find the set
of structures, groupings across configuration space with a single
VR, that compose them.

In Sect. 5, we explore the parameter space of the models.
For this particular case, the amount of data we generate would
be too large to deal with. Instead, we fitted a parabola in VR −Vφ

for each overdentisty of interest and selected the maximum as
their representative. We note, however, that sometimes one over-
density might get split into two independent ones after crossing
a certain radius, for instance, through the mechanism explained
in Dehnen (2000) for the OLR. To avoid confusion, we select
the representative obtained from the larger of the resulting over-
densities after the split. Overall, this representative selection is
feasible thanks to the stability of the overdensities in the sim-
ulations, which remain bounded along the configuration space,
but it is infeasible for the data due to the unstable shape of the
moving groups once we move a few kpc away from the SN.

4. Data versus the fiducial models

In this section, we explore the phase-space and the spatial gradi-
ents of the kinematic structures in the SN for the Gaia DR3 data
and the models.

4.1. Global ridges in the radial and azimuthal directions

Figure 1 shows the structures obtained with our methodology,
which trace the skeleton of the phase space. We show their Vφ in
the radial (φ = 0 deg, left panels) and azimuthal (R = 8.277 kpc,

right panels) directions. This projection allows us to study all the
structures at the same time. We see how the different lines organise
in bundles related to each moving group. In the inner disc, the high
kinematic temperature and the low number of stars observed blur
these structures. Despite the usefulness of our methodology else-
where, in this region it clearly struggles to obtain reliable detec-
tions. Thus, we ignore the detections with Vφ > 80R−740 km s−1

in this analysis (translucent white region in Fig. 1, left panels).
In the first row of Fig. 1, we show the Vφ of the moving

groups as a function of R and φ, selecting, from all the struc-
tures in each moving group at different VR, only the one that cov-
ers a largest area (accounting for both the radial and azimuthal
directions). This subset selection is used only for visualisation
purposes. In the second row, we show all the structures that are
obtained (about 1500). The new results show an improvement in
the resolution and extent of the structures with respect to B22.
Good examples of this are the extended range of detection of
Hercules in the outer disc, the new structure below Sirius in the
high |Vφ| part of the inner disc, and the azimuthal extension of
Hyades and Sirius up to ±40 deg.

In the second row, we observe how the different bundles of
lines reveal the rich ridge-like pattern. In the outer parts of the
disc, we observe two clear ridges (AC1, and AC2). These were
first detected in Gaia Collaboration (2021), where it was hypoth-
esised that, due to the likely weaker effects of the bar resonances
at these radii, they could be due to spiral arms and/or the interac-
tion with external satellites. Below these ridges we observe the
Hat, which in the radial direction, is traced robustly from the SN
to R = 13.5 kpc. In the azimuth direction, we are only able to
detect the Hat in a small angular range.

Sirius is the most dominant structure in the radial direction. It
is detected in almost the entire studied range robustly, both in the
radial and azimuthal directions. Below Sirius, we observe Hyades
and the Horn, which are especially well detected in azimuth.
Hyades shows a robust linear behaviour within±40 deg, while the
Horn shows a negative slope for φ < 0 and a flat profile for φ > 0.

Finally, we focus on Hercules, which is known to be formed by
three thin arches (Gaia Collaboration 2018b; Asano et al. 2020).
In this execution, due to the use of a WT with a larger scale,
two of these arches (A8 and A9 in Ramos et al. 2018) appear
joined as Hercules1, while the other arch (A10 + A11) is detected
and labelled as Hercules2. We note that the azimuthal velocity
of Hercules1 has a clear linear increase with azimuth. As for the
radial behaviour, with our methodology, both in B22 and here, we
observe a ridge that flattens as we move to the inner parts of the
disc. In B22, we discussed that this flattening could be related to
the influence of the centroid of the distribution in the peak detec-
tion of the methodology. Interestingly, in this work, a new set of
structures have appeared in the inner disc, which we label Her-
cules_In. This structure appears as a symmetric parabola (peak of
|Vφ| at VR = 0 km s−1), in good agreement with Fig. 4 of Dehnen
(2000), where x1(2) orbits dominate (his Fig. 7). In the R − Vφ

and VR − Vφ maps, we observe a potential continuity between
Hercules1 and Hercules_In, thus, we manually linked both sets
of structures at each VR (thick dashed line in Fig. 1, bottom left
panel). In the rest of the paper, we will consider these grouped
structures as Hercules1. We find that, in doing so, the resulting
structure is more coherent with the results obtained in the litera-
ture simulations (e.g. Fig. 13 in Hunt et al. 2019).

4.2. Gradients of the moving groups and overdensities

Figure 2 shows the moving groups detected at the SN in the
Gaia DR3 data (left panels), and the overdensities in the fiducial
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Fig. 1. Azimuthal velocity of the kinematic substructures as a function of radius (φ = 0◦, left panels) and azimuth (R = 8.24 kpc, right panels),
and coloured by their radial velocity. The vertical error in these measurements is the size of the WT, σ = 6.25 km s−1. Top: Main structure for
each moving group, tagged with the name from the literature. The dashed black lines illustrate the fitting used to compute the gradients in the SN.
Bottom: All the structures detected by the methodology.

models (middle and right panels), coloured by their gradients
∂Vφ/∂R (top) and ∂Vφ/∂φ (bottom). Thus, we are including
information of the large-scale shape, that is, how the velocities
of the structures change with R and φ. In the left panel, the big
dots correspond to the largest structure of each moving group,
that is, the structures shown in the top panel of Fig. 1, which we
included for visualisation purposes only. In the middle and right
panels, the crosses correspond to the representatives of the over-
densities in the simulations, described in Sect. 3.2. These are the
representatives used in Sect. 5.

As explained in the introduction, Hercules is a moving group
commonly associated with bar resonances. In the slow bar sce-
nario, the Hat has been related with the OLR (e.g. Monari et al.
2019a). In the fast bar scenario, it is associated with the 1:1 res-
onance (Dehnen 2000). In Fig. 2 we represent the regions of
these moving groups with dashed black boxes. We computed the
mean and standard deviation of the gradients of the structures
within the boxes in the data and the models (Table 2). We do
this to capture the gradients of the entire moving group, not just
at a specific VR, as it allows a more robust comparison with the
simulations.

In Hercules1, we measured a similar azimuthal gra-
dient throughout the entire moving group ∂Vφ/∂φ ∼

−0.63 km s−1 deg−1 (Table 2), compatible with both models
within the error bars. In ∂Vφ/∂R, we detected two sub-segments
for Hercules1: in the VR < 50 km s−1 part of the arch, we mea-
sured ∂Vφ/∂R ∼ 29 km s−1 kpc−1, while in the VR > 50 km s−1

part we obtained ∂Vφ/∂R ∼ 25 km s−1 kpc−1. The overall aver-
age slope of Hercules1, without separating into segments, ends
up being ∂Vφ/∂R = 28.1 ± 2.8 km s−1 kpc−1. The correspond-
ing values of ∂Vφ/∂R for the SMB (36.5 km s−1 kpc−1) and FBM
(40.5 km s−1 kpc−1), however, are both about 10 km s−1 kpc−1

larger than the gradient measured in the data. In Sect. 5 we
explore this discrepancy in more detail. The gradients of Her-
cules2 are significantly different than Hercules1 but no counter-
part is found in the models.

In the Hat, we observe different ∂Vφ/∂R values within vari-
ous parts of the same arch. It is important to note that the data
detections in the Hat are not as reliable compared to the Her-
cules data, due to the low number of sources in the border of the
distribution. Despite this, the gradients seen in both models are
compatible with the data distribution.

The gradients in Sirius, Hyades, and Horn behave smoothly
within large parts of the moving groups, with sudden breaks in
some places. These breaks are a projection of the pattern already
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Fig. 2. Moving group and overdensities’ detection, coloured by their ∂Vφ/∂R (top panels) and ∂Vφ/∂φ (bottom panels) at each VR. The dashed
boxes represent the region of the velocity distribution associated with Hercules and Hat. Left: Gaia DR3 SN moving groups, tagged by their
literature names. Middle: SBM detection of the overdensities. Right: FBM detection of the overdensites.

Table 2. Mean slope and the dispersion within the box (see Fig. 2) in
the data and both fiducial models.

∂Vφ/∂R (σ) ∂Vφ/∂φ (σ)
[km s−1 kpc−1] [km s−1 deg−1]

Hercules
Data 28.1 (2.8) –0.63 (0.13)
39 36.5 (1.1) –0.49 (0.05)
56 40.5 (0.9) –0.76 (0.01)

Arch/Hat
Data 28.7 (6.8) 0.07 (0.13)
39 25.7 (1.4) –0.20 (0.02)
56 22.7 (0.1) –0.20 (0.01)

observed in Fig. 1, where on the large scale the ridges break and
merge.

We also explored the dependence of these gradients with the
integration time. In Fig. A.1 and Table A.1 we show the equivalent
of Fig. 2 and Table 2 for t2 = 14 bar laps, in contrast to the t2 =
4 bar laps in the fiducial models. We observe that the gradients
in Hercules and Hat are very similar at short and long integration
times, thus indicating that time is not playing a major role in the
value of these measurables, similar to Dehnen (2000), where he
pointed out that the velocity of Hercules does not strongly depend
on time. In the FBM, the Horn structure is maintained for long
integration times, while it is not seen in the SBM.

Finally, in the negative VR part of the distribution we note a
resemblance, both in position and gradients, between the over-

densities in the models and Hat, Sirius, and Horn. In Sect. 6, we
study these overdensities in the models to explore an alternative
hypothesis on the origin of these moving groups.

5. Model parameter exploration

In the literature, the resonant origin of the moving groups is usu-
ally tested by placing a given resonance (or set of resonances)
in the SN, and comparing the resulting VR −Vφ distribution with
the data. We have already discussed in the introduction that dif-
ferent pattern speeds create resonances compatible with the data
(slow-fast bar degeneracy). Other parameters can also shift the
position of the overdensities in the models, thus leading to extra
degeneracies, for example the slope of the rotation curve. In this
section we use the azimuthal and radial gradients as large-scale
measures and sweep different parameters of the fiducial mod-
els, to test if we can indeed break some of these degeneracies.
We start by studying how the properties of each simulated struc-
ture change with the model parameters and identify properties
that may strongly depend on the model (Sect. 5.1). Secondly, we
compare the properties of the models with those of the data and
try to identify the parameter region that offers a better match.

Apart from the model parameters that we want to explore,
there is a bunch of kinematic structures from these models to
compare to the data. For this analysis we focus on Hercules and
Hat as possible moving groups associated with the bar’s effects.
Possible links between other moving groups and the overdensi-
ties seen in the models are discussed in Sect. 6.
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5.1. Parameter exploration

The parameter space to explore is huge and multidimensional
(Table 1). Below we detail each of the parameters and specify
which ones we investigate:

– R: In each model, we sweep R between 7 and 9 kpc, in steps
of 0.1 kpc to compute ∂Vφ/∂R.

– R�: It can be fitted by external measurements
(GRAVITY Collaboration 2022), so we maintain the
fiducial model value R� = 8 kpc.

– v0: We keep this parameter fixed but we checked that chang-
ing it even by a considerable amount (±15 km s−1) does
not change significantly our results (variations in the radial
slopes of about 1 km s−1 kpc−1).

– φ: In each model, we sweep φ between −10 and 10 deg, in
steps of 1 deg to compute ∂Vφ/∂φ.

– φb: It can also be fitted by external measurements, though
there is less consensus. In this section, we keep the value of
φb = −30 deg used in the fiducial model. In Appendix B we
repeat the analysis for φb = −20,−40 deg and see that, to
first order, all the trends are the same.

– α (bar strength). The strength of the bar hardly changes the
position of the resonances (Dehnen 2000). Therefore, we
leave it fixed to the value of the fiducial models.

– Ωp: We explored a parameter range of ±2 km s−1 kpc−1

around the slow and fast bar pattern speeds, within which
the Vφ of the overdensities in the models remain compatible
with Hercules and Hat.

– β (rotation curve slope): We explored this parameter around
the flat rotation curve (0 ± 0.1). This range covers the real-
istic values for the MW rotation curve (but see discussion in
Sect. 7).

In Fig. 3, we show how the measurables Vφ, VR, ∂Vφ/∂φ, ∂Vφ/∂R
(different rows) of the Hercules-like (left) and Hat-like (right)
overdensities behave, as a function of Ωp (horizontal axis in all
panels) and β (vertical axis in all panels). Each pixel of each
panel represents a different Galaxy Model. We cover the param-
eters around the two fiducial models: SBM for the first and third
columns, and FBM for the second and fourth columns.

For the interpretation of some of these maps it is important to
have in mind that, when a resonance moves inwards in the disc,
the associated orbits reach the SN with a smaller Vφ, and vice
versa. The first row of Fig. 3 shows that the azimuthal veloc-
ity |Vφ| of both the Hercules- and Hat-like groups decreases as
Ωb increases. This is expected, since the position of all reso-
nances move inwards in the disc as the bar rotates faster. On the
other hand, we see opposed behaviours with β: while the |Vφ|

of Hercules-like overdensities decreases with β, that of the Hat-
like overdensities increases. This can be explained by the same
argument as above once we consider the fact that changes in β
affect the position of the resonances differently whether they are
inside R0 or outside. An increase in β decreases the slope of the
azimuthal frequency curve, thus sending the resonances inside
R0 inwards, and the resonances outside R0 outwards. Conversely,
if β decreases the frequencies change faster with radius, which
pulls the resonances closer to R0.

Regarding ∂Vφ/∂φ (third row in Fig. 3), it shows an almost
linear decrease with Ωb and β for both Hercules-like4 and the
Hat-like overdensities across the parameter space for the slow
bar (Cols. 1 and 3). In the fast bar case, the gradients of the Hat-

4 The Hercules-Slow Bar (leftmost column) presents an irregularity
around β = 0.02 in the panels of VR, ∂Vφ/∂φ, and ∂Vφ/∂R due to the
split in the arch (see Sect. 3.2). The global trends are maintained, so
this does not affect our final conclusions.

like overdensity remain at a fixed value and shows little to no
variation (rightmost column).

In contrast, the ∂Vφ/∂R of Hercules-like structures increases
almost linearly with both Ωb and β, while in Hat-like structures,
∂Vφ/∂R increases with Ωb and decreases with β. At first glance,
this difference in behaviour might be related to the effect β has on
Vφ, which we described above. In this sense, we can interpret all
this information as follows: if the resonance moves inwards, the
slope observed at the Sun increases, whether it moves inwards
because of β (increasing for inner resonances and decreasing
for the outer ones) or by increasing the pattern speed of the bar.
Moreover, the slope seems to be proportional to Ωb regardless of
the type of resonance or its resonant radius. It is difficult to obtain
an intuition of these slopes beyond the empirical measurements,
but these trends are a good milestone for an analytical modelling
of these measurables.

A visual comparison between the slow and the fast bar mod-
els reveal that, to first order, the overdensities present a similar
behaviour. Specially in the Hercules-like overdensities, the con-
tours of all the measurables are parallel, indicating a consistent
directional change in the parameter space. The only significant
qualitative difference is the steepness of this change (distance
between white contours) in the gradients. This similarity com-
plicates the task of breaking degeneracies between the slow and
fast bar scenarios.

In Appendix C we study the differences between the fiducial
SBM and FBM measurable for Hercules and Hat (Table 2) and
the galaxy models around the FBM. The goal is to evaluate the
minimal parameters we should consider to distinguish between
the models, in case the data matched the models. We conclude
that the best combination to constrain the bar parameters is to
consider the measurements for both Hercules and Hat, and that
including the azimuthal gradient of both structures brings the
statistical significance over 8σ in almost the entire parameter
space.

5.2. Comparison with Gaia data

The black contours in Fig. 3 show the statistical deviation
between each galaxy model and the data, that is, the difference
with regard to the mean value in Table 2 in units of standard
deviation. For instance, a 1σ deviation means that the difference
between the model and the mean gradient of the corresponding
moving group equals the standard deviation of the data reported
in Table 2.

Since we are exploring the parameter space around the fidu-
cial models, to first order the results are similar to what we
have described in Sect. 4.2. In some parts of the parameter
space, the azimuthal gradient is matching the one seen in the
data (0σ curves). In the slow bar Hercules-like overdensity (left-
most column) the azimuthal gradient matches the data for Ωb ∼

40 km s−1 kpc−1 and β ∼ 0.025. Opposite to that, the azimuthal
gradient of the fast bar Hercules-like overdensity (second col-
umn) matches the data for Ωb ∼ 54 km s−1 kpc−1 and β ∼ −0.05.

The radial gradients, on the other hand, do not match the
values of the data in any part of the parameter space explored.
Thus, in general, we do not find any combination of Ωb and β
that reproduces all the measures in the data. To obtain a match
in radial gradient we would need to decrease the parameters
under Ωb � 37 km s−1 kpc−1, away from the match in Vφ, and
β � −0.1, well below realistic models of the MW. Similar anal-
ysis in the other azimuths (see Figs. B.1 and B.2) lead to similar
differences in radial gradients, always above 3σwhen comparing
models and data. This confirms that our models are sub-optimal
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Fig. 3. Parameters of the Hercules-like (first and second columns) and Hat-like (third and fourth columns) overdensities representatives in the
models. The parameter space is swept around the fiducial models β and Ωb. First row: Vφ of the overdensity. Second row: VR of the overdensity.
Third row: ∂Vφ/∂φ of the overdensity. In black, we provide the statistical deviation to the measurements in Gaia DR3 (Table 2). Fourth row: Same
as the third row but with ∂Vφ/∂R.

to reproduce the large-scale velocity distribution for any param-
eter combination.

6. Azimuth and time exploration

In Sect. 4.2, we pointed out the resemblance, both in position
and gradients, between the overdensities in the models and the
moving groups Hat, Sirius, and Horn in the data. The goal of
this section is to understand these structures in the models and
the potential implication on the origin of the mentioned moving
groups.

6.1. Origin of the overdensities in the models

We aim to study the global shape of these overdensities in the
negative VR region of our models, which is the region of the
Horn that at the same time includes Sirius and Hat. To simplify
our analysis, we focus on a subset of structures, arbitrarily those
with a radial velocity VR = −60 km s−1. In Fig. 4, we present the
azimuthal velocity (Vφ) of these structures across the azimuthal
range of ±90◦ with respect to the long axis of the bar. The models
have 180-deg symmetry, so we just need to cover half of the disc.
In the top panels, we study the structures in the fiducial models.
We see that all the overdensities in the SN (black vertical line)
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Fig. 4. Vφ of the overdensities at VR = −60 km s−1 for an entire turn around the model of the galaxy. Left: Results for the SBM. Right: Results for
the FBM. Top: Structures for t2 = 4 bar laps. We observe how the arches seen in the fiducial models are part of the same global structure, linked
through a 180 deg symmetry (dashed red lines). Middle: Structures for t2 = 10 bar laps. The resonant regions start to be clear, and the structures in
the middle are flatter and closer between them. Bottom: Structures for t2 = 40 bar laps. The resonant regions are clearly defined, and the middle
region is crowded with flat structures. The vertical dashed lines mark the location of the Sun.

belong to a few global structures, that link the different over-
densities in the SN in an entire turn around the galaxy (forming
double helical shapes). The dashed red lines in the top panels of
Fig. 4 represent these links5. These connections could already be
suspected in Fig. 2 of Dehnen (2000), but to our knowledge, it is
the first time that it is characterised in detail.

Since this analysis is done at very short timescale (four bar
laps, i.e. 0.64 Gyr for the slow bar, and 0.44 Gyr for the fast bar)
in the second and third rows of Fig. 4 we do the same analysis for
t2 = 10 and 40 bar laps, respectively. We observe two phenom-
ena: the predicted resonant regions appear (CR and OLR for the
slow bar and OLR and 1:1 for the fast bar), and the global helix
winds, flattening in φ, except at the resonance boundaries, where
the lines get squeezed. To understand the evolution from one
row to another, in Fig. A.2 we show the velocity of these struc-
tures with time. We observe that the Vφ of most of the structures
evolves in time, asymptotically approaching the boundaries of
one of the resonant regions.

In the last row of Fig. 4 we can clearly see the nodes of the
resonant regions, which are not aligned with the bar major axis
as one would expect. We computed the position of the nodes for
positive VR = 50 km s−1 and they are located in the opposite site
of the major axis. Therefore, at VR = 0 km s−1 the nodes will be
5 Notice that we are assuming a 180-deg symmetry. Therefore we are
linking each structure with its counterpart.

aligned with the bar as expected, indicating that the displacement
of these nodes is probably due to the eccentricity of the orbits. A
more detailed description of these nodes is beyond the scope of
this work.

In summary, in the models we have two types of overden-
sities: resonances, and transient arches. The position of the res-
onance boundaries stabilise relatively quickly (∼8 bar laps) and
remain fixed, as previously anticipated in Dehnen (2000). The
transient arches are joined trough an entire turn around the disc
forming a global structure with helical shape. In addition, this
helical shapes ends at the resonance boundaries, joining all the
overdensities. These transient arches are the result of introduc-
ing the bar potential in an axisymmetric DF, and thus contain
temporal information of the model.

6.2. Comparison with Gaia data

As an exercise, we now assume that, in the MW, the Hat, Horn,
and Sirius moving groups are indeed related with the same global
helical structure. In this scenario, the Hat would be formed in
a resonance boundary and Sirius and Horn would in turn be
the imprints of the ongoing phase-mixing. In Fig. 5, we show
the detection of structures in the data for VR = −60 km s−1 in
the radial and azimuthal direction. Following the assumption
that they are related, we compute the fitting of a linear helix in
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Fig. 5. Detection of the structures in the data at VR = −60 km s−1

(extracted from the bottom panel of Fig. 1). Left: Radial position of
the structures. Right: Azimuthal position of the structures.

azimuth (grey line on the right panel). We obtain a global slope
for this structure of ∂Vφ/∂φ = −0.177 km s−1 deg−1. Although
the fitting results are poor, especially for Sirius (B), it does match
the slope of Hat (A) and the parts of Horn (C) at φ > 0.

Back to the models, we observed that the space between
the transient arches decreases with time (Fig. 4). That is, the
∂Vφ/∂φ of the transient arches in azimuth decreases with time.
We note that the diagrams of this figure show aspects similar
to typical phase-mixing in a frequency-angle plot (in our case
equivalent to Ωφ − φ plane), where the lines get closer and have
smaller slopes with time (e.g. Li & Widrow 2021; Frankel et al.
2023; Darragh-Ford et al. 2023, for the case of the phase spiral).
In Fig. 6 we compute this slope of the transient arches for the
slow (green points) and fast (orange points) bar model at differ-
ent integration times. We see that, if t is expressed in bar laps,
the evolution of the slope with time is the same for both pat-
tern speeds. It seems therefore that in this case the phase-mixing
times are modulated not only by the orbital frequencies but also
by the bar as well.

Again, assuming that the structures in the model are the same
as the moving groups, we see that the measured slope for the
data (see above) gives a timescale estimate of the MW bar of
t ≈ 0.6 Gyr. This is evidently a very short timescale compared
with the usual MW bar age estimations (&8 Gyr, e.g. Grady et al.
2020; Sanders et al. 2022). In the following section, we discuss
the implications of this short timescale prediction.

7. Discussion

Radial gradients. The main disagreement between the mod-
els and the data is observed in the radial gradients of the mov-
ing groups. Our measurement of the radial gradient of Hercules
∂Vφ/∂R = 28.1 ± 2.8 km s−1 kpc−1 is compatible with recent
results such as the one in Ramos et al. (2018), of ∂Vφ/∂R =

26.5 km s−1 kpc−1, but does not match the ones in the mod-
els by a significant amount (Table 2). In previous studies, they
found a good agreement between the data and simulations in
the case of the FBM. For instance, in Antoja et al. (2014) the
detection of Hercules6 in the RAVE data at different radius
matched the empirical predictions of test particle models. Revis-
iting this work, we note that the radial slope measured with
RAVE (∂Vφ/∂R = ∼33 ± 10 km s−1 kpc−1) was significantly
larger than the one found in this work but with a large measure-
ment error. In our case, even when modifying the slope of the

6 Technically, the gap between Hercules and Hyades–Pleiades.
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Fig. 6. Azimuthal slope of the transient arches at each integration time,
for a slow and a fast bar. The black line shows the curve −0.72t−1, which
approximates both curves. The dashed black line corresponds to the
slope fitted in the data (Fig. 5), and the intersection returns the time
estimation. The dashed red line marks the end of the growth of the bar
(t = 2 bar laps).

rotation curve (row 4 in Fig. 3) or the angle of the bar (row 4
in Figs. B.1 and B.2) we are still far from obtaining a match
between the models and the data, with a disagreement above
3σ. However, it could be possible that the MW circular velocity
curve is not well approximated by a single power-law. In fact,
as discussed in Antoja et al. (2022) where we examined various
models and observations for the MW, not all cases could be well
fitted by a single power law model. For instance, the model by
McMillan (2017) shows raising and decreasing trends with the
transition at R ≈ 8 kpc. Quantifying this effect with the current
set-up requires changing some of its pieces, like the DF used.
However, we can use the formalism of Ramos et al. (in prep.) to
assess the impact of different rotation curves on the slopes.

It may be that a more sophisticated axisymmetric model,
the effect of spiral arms (Hunt et al. 2018b), self-gravity, Giant
Molecular Clouds (GMCs), external perturbations, and/or, the
scenario that is currently gaining the most traction, a deceler-
ating bar (Chiba et al. 2021; Chiba & Schönrich 2021) are non-
negligible effects that need to be taken into account. A clear next
step using the framework that we have constructed is to compute
the radial gradients of the moving groups in a decelerating bar
and check if we are able to reproduce the trends measured in
Gaia.

Azimuthal gradient of Hercules and Horn. In this
analysis, we measure an azimuthal slope for Hercules of
∂Vφ/∂φ = −0.63 ± 0.13 km s−1 deg−1. Using also Gaia DR37,
in Lucchini et al. (2024) they obtain a measurement of −0.74 ±
0.04 km s−1 deg−1. In this work, the VR is marginalised, obtaining
a smaller error than ours, but loosing the VR information. Sim-
ilarly, in B22 we computed ∂Vφ/∂φ = −0.5 km s−1 deg−1 using
Gaia EDR3 data.

Using a combination of perturbation theory and the pen-
dulum approximation (Monari et al. 2019a), in Monari et al.
(2019b) they found a slope of ∂Lz/∂φ = −8 km s−1kpc deg−1

at a radius of 8.2 kpc, which corresponds to ∂Vφ/∂φ =

−0.96 km s−1 deg−1, when looking at the mean VR of the model
of a slow bar, which roughly agrees with the observations. They

7 They use Bailer-Jones et al. (2021) distances and a R0 = 8.15 kpc
instead of R0 = 8.277 kpc used here. This can modify the value of
the measurement, but the global trends are not expected to change
significantly.
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also observe the Horn variation with azimuth, which we con-
firmed in Figs. 1 and 2. In Monari et al. (2019b), they claim that
in the fast bar regime, a Horn moving group with an OLR origin
would show a flat azimuthal structure. In contrast, in the slow
bar regime, a Horn created by the 6:1 resonance would have a
significant slope. In the case of Hercules, they predict a distinct
azimuthal slope in the slow bar regime (CR origin) and a less
pronounced slope in the fast bar regime (OLR origin).

Our measurements in the fiducial models show evidence
that both the SBM and the FBM present a significant gra-
dient in azimuth for the Hercules-like overdensity (Table 2)
for short and long integration times. We also confirm that the
azimuthal structure of the fast bar Horn-like structure is flatter
than the Hercules-like. However, due to the absence of high-
order moments in our simple bar model, we cannot generate a
Horn-like overdensity (6:1 resonance) in the slow bar regime.

We observe that for Hercules-like overdensities, both
azimuthal gradients are still within the error bar of the data (even
when exploring the parameter space around the fiducial models,
see row 3 in Fig. 3). We would need to reduce the observational
errors at least by a half to obtain a significant similitude (or dif-
ference) between the models and the data (Table 2). Finally, we
note that the measure in Lucchini et al. (2024), with a smaller
error, is very compatible with our models with a fast bar.

Azimuthal shape of Hercules. In an ideal, long-lived barred
galaxy, the resonances form steady state closed islands in the
Vφ − φ diagrams (Fig. 4) with a certain azimuthal periodic-
ity, depending on the resonance order (e.g. Tsoutsis et al. 2009;
Michtchenko et al. 2018). The features in the velocity distribu-
tion related to these islands will then follow periodic curves in
azimuth. Therefore, either they have null slope or they must con-
tain a minimum and a maximum within a period (Bolzano’s
theorem, Bolzano 1817). If Hercules is related to a resonance,
it should follow one of these periodic curves in the Vφ − φ
space. Thus, it should contain a maximum and a minimum in
−90 ≤ φ ≤ 90 deg.

In our measurements, we observe Hercules to follow a
linear trend covering up to 60 deg and we do not observe a
maximum nor a minimum. There are two possibilities: the
maximum and the minimum are located in a part of the
disc that we have not observed yet, or the resonance regions
are not stationary (closed), indicating that the MW disc is
far from phase-mixed. Future spectroscopic surveys (WEAVE,
4MOST, SDSS-V/MWM) covering larger fractions of the disc
will allow us to detect Hercules in a larger azimuthal range,
ideally going beyond the long axis of the bar, and confirm
its connection to this non-axisymmetric component of the
Galaxy.

Origin of Hat, Sirius, and Horn. In Sect. 6, we used the mov-
ing groups Hat, Sirius and Horn (in particular, their azimuthal
gradient) to time the stage of phase-mixing induced by the
growth of the bar. Our estimate of ∼0.6 Gyr contradicts by far
the current measurement of the age of the MW bar, &8 Gyr
(Grady et al. 2020; Sanders et al. 2022). Thus, given the ini-
tial assumption, it is unlikely that our hypothesis is true. How-
ever, these timescales below one Gyr would be compatible with
more recent events, such as the Sagittarius (Sgr) impact, and
a paradigm of ongoing phase-mixing of the MW disc. In fact,
other studies have determined the phase-mixing timescales in
the planar velocities (VR − Vφ) following a perturbation from a
galactic satellite. These studies find similar but slightly larger
times. For instance, in Antoja et al. (2022) we found times of
0.8−2.1 Gyr based on the separation between peaks of the wave

in VR − LZ . Prior to that, Minchev et al. (2009) found a start of
phase-mixing time of 2 Gyr based on a separation between mov-
ing groups of 20 km s−1. For this same velocity separation, from
our Fig. 6 we would obtain times of around 1 Gyr, that is to say
smaller than in Minchev et al. (2009), and which also depend on
the pattern speed of the bar, thus indicating a different underly-
ing phase-mixing mechanism. Although the studies mentioned
are more specific for an external perturbation than the present
work, they do not explore the azimuthal dimension and are still
simplified models. More tests must be done to establish the rela-
tion between certain moving groups and Sagittarius, both with
idealised models (Antoja et al. 2022) and taking into account the
effect of self-gravity (Darling & Widrow 2019).

Possible caveats of this work. The main contribution of
this work is the development of novel techniques to quantify
the large-scale kinematic substructure in both the data and mod-
els. The final goal of this quantification is to perform a direct
discrimination between the likelihood of the models. However,
this task has a clear obstacle: a proper modelling of the data.
The models used in this work, despite being intentionally sim-
ple, depend on a large set of parameters. Throughout the present
work, we tested the impact on the measurables of each of
the parameters of the model (Table 1) and the “observational”
methodology (vertical size of the selection, overdensity detec-
tion, gradient fitting. . .). We assessed that the bias produced by
each of the tested factors independently is well below the pre-
cision we can measure in the actual data. However, there is a
non-negligible possibility that a combination of biases in the
model and/or the methodology is the cause of the clear disagree-
ment with the data. Regardless, as mentioned above, the sim-
plicity of the model itself is most likely the main contributing
factor, as the interaction with a satellite, spiral arms, and/or a
slowing bar would play a major role that has not been tested in
this work.

8. Summary and conclusions

In this work we provide a detailed analysis of the kinematic sub-
structure of the MW disc in the Gaia DR3 data across 7 kpc in
radius and 80 deg in azimuth. We compared the results in the
data to a suite of BI simulations, and we found that the over-
densities detected in the fiducial models, as well as their gradi-
ents to a lesser degree, are compatible between them, and that
this similarity is maintained even in the parameter space around
the fiducial models. Our main findings and conclusions are the
following:

– We detected new ridges in the outer disc, propose a
new radial profile for Hercules, and precisely characterise
Hyades, Horn, and Hercules ∼70 deg along the disc.

– We observed a robust slope in azimuth for Hyades and Horn,
which were previously unexplored.

– The radial gradient of Hercules is ∂Vφ/∂R = 28 ±
2.3 km s−1 kpc−1, and the azimuthal gradient is ∂Vφ/∂φ =

−0.63 ± 0.13 km s−1 deg−1.
– The radial gradient of Hercules in the BI models disagrees

with the data with a significance above 3σ for all the
explored parameters (Ωb, β, and φb). We conclude that more
complex models, which take into account spiral arms, self-
gravity, external perturbations, and/or a slowing-down bar,
are required to reproduce the observations. Despite this,
we acknowledge that this problem has a high complex-
ity and we could be underestimating some biases in the
analysis.
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– The azimuthal gradient of Hercules in the data is compatible
with both the slow and the fast bar models. For these simple
models, we require at least half of the error in the data to
disentangle between them.

– Our analysis points out that a robust determination of the
pattern speed using our type of analysis requires fitting the
azimuthal velocity and the azimuthal gradient of at least two
moving groups.

– We study the azimuthal slope of the phase-mixing structures
induced by the growth of the bar in the models, and asses
that for identical Galaxy models, the evolution of the slope
only depends on the pattern speed of the bar.

– We explore the possibility of a phase-mixing origin for Sirius
and Horn in the context of the growth of the bar, which leads
to an estimate of the bar age that is too low (∼0.6 Gyr). We
conclude that a different hypothesis is required to explain
these structures.

With this work we confirm the potential of our methodology
and of the Gaia data to provide a quantitative description of
the MW kinematic substructure. In the near future, the use of
spectroscopic surveys to extend the range of the Gaia 6D sam-
ple, especially towards the tip of the MW bar, will allow us to
disentangle the resonant origin of Hercules. Finally, this project
makes it clear that simple models cannot capture the full com-
plexity of our Galaxy, especially on a large scale. It emphasises
the need of exploring more advanced models, and reminds us
that an optimal model will have to go beyond matching local
patterns.
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Appendix A: Time dependence of the arches

In order to understand how does the velocity distribution evolve
in time, we integrate it 14 bar laps and compute the radial and
azimuthal gradient of each overdensity. We show these results
in Fig. A.1 (equivalent of Fig.2) and Table A.1 (equivalent of
Tab. 2). We see that the both Hercules-like and Hat-like struc-
tures are located in the same position at all times. The gradients
of the main structures are also very similar as the fiducial ones.

As for the presence of overdensities, the only features that
are maintained are the Hercules-like and Hat-like for both pat-
tern speeds, and the Horn-like for the fast bar. In the slow bar
regime, a Horn-like structure can be produced by the 6:1 reso-
nance, but our bar is a simple quadrupole that has no high order
moments. Therefore, it is expected that these high order reso-
nances are not appearing.

To gain an intuition in how do the overdensities evolve from
one integration time to the other, we selected the structures in

Table A.1. Mean slope and the dispersion within the box (see Fig. 2) in
both models for t = 14 bar laps.

∂Vφ/∂R (σ) ∂Vφ/∂φ (σ)

Hercules 39 36.2 (1.8) -0.43 (0.11)
56 40.5 (5.7) -0.62 (0.13)

Arch/Hat 39 24.5 (0.9) -0.13 (0.06)
56 24.6 (1.1) -0.10 (0.03)

VR = −60 km s−1 and traced them along 50 bar laps (Fig. A.2).
We observe that the structures are created in given positions
of the phase space (green lines) and tend asymptotically to the
boundaries of a resonance (red lines), following exponential
decays in time. Understanding this behaviour could bring new
intuitions to understanding the phase-mixing of this system.
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Fig. A.1. Overdensities’ detection in the simulations, for t = 14 bar laps. They are coloured by their ∂Vφ/∂R (top panels) and ∂Vφ/∂φ (bottom
panels) at each VR. The dashed black boxes represent the region of the velocity distribution associated with Hercules and Hat. Left: SBM detection
of the overdensities. Right: FBM detection of the overdensites.
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Appendix B: Correlation in other azimuths

In this section, we complement the parameter exploration done
in Sect. 5 by exploring the same diagrams at different φb. We
conclude that the trends observed at φb = −30 deg (Fig. 3) are
maintained when looking at other azimuths. The only notice-

able change is the steepness of the ∂Vφ/∂R and ∂Vφ/∂φ panels
according to the distance to the major axis of the bar. In Fig. B.1
(φb = −20 deg) the contour lines are close to each other, indicat-
ing a rapid change of the properies. Opposite to that, in Fig. B.2
(φb = −40 deg), the contour lines are more separated, indicating
a solution which is more stable.
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Fig. B.1. Same as Fig. 3 but computed with φb = −20 deg.
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Fig. B.2. Same as Fig. 3 but computed with φb = −40 deg.
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Appendix C: Model versus model degeneracy

The computation of the Galactic models links a set of parameters
(Ωb, β, φb...) to a set of measurables (VR, Vφ, ∂Vφ/∂R, ∂Vφ/∂φ).
For a set of target measurables (e.g. Gaia DR3 measurables), a
set of parameters will be optimal if the measurables it produces
match the target measurables. Given a set of parameters, we
define their statistical difference (σ, dimensionless) with respect
to a target as the difference between the measurables in units of
the measure error in the target. Notice that in this work we have
not been able to obtain an optimal set of parameters to reproduce
the target Gaia DR3 measurables. In this section we will use the
fiducial models as targets.

Lets suppose that our target measurables are the ones from
the fiducial SBM (Tab. 2). In this case, by definition the fiducial
SBM will be an optimal set of parameters. To test the degenera-
cies, we want to check if there are other sets of parameters that
also reproduce the SBM measurables. This is what we explore
in Figure C.1, where we show the statistical differences between
the target measurables (assuming those of the model SBM) and
the models around the FBM using various combinations of mea-
surables. The top panel exclusively utilises the measurables cor-
responding to the Hercules-like overdensity, while the bottom
panel incorporates measurables for both Hercules and Hat. The
black contours represent the statistical differences between the
model and the target when considering only Vφ. When restricted
to Hercules and its local value of Vφ alone (black contour, top
panel), we observe a substantial region of parameter space where
the solution is degenerate, with multiple combinations of Ωb
and β from the FBM models yielding the same Vφ. However,
as we introduce additional measurables, such as ∂Vφ/∂φ (orange
contour) and ∂Vφ/∂R (green contour), the statistical difference
becomes more pronounced, scaling to over 4σ. When we further
include a second structure like Hat (bottom panel), the degener-
acy in the solution can be partially resolved using only Vφ. Once
gradients are factored in, the distinction between models is once
again emphasised.

To complement this study, we repeat the analysis assuming
that the target measurables are the ones of the fiducial FBM
(Table 2), and study the statistical difference with the models
around it (Fig. C.2). The goal in this exercise is to characterise
the local degeneracy. The results are very similar to the ones in
Fig. C.1: we need to include the gradients to obtain a statistical
difference.

This analysis suggests that the best combination of mea-
surables to break the degeneracy is to consider both Hercules
and Hat (bottom panel). Using only Vφ of both structures we
already see that we are able to constrain a small region of Ωb
and β. In addition, including the azimuthal gradient brings the
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Fig. C.1. Differences between the fiducial SBM and the galaxy models
around the FBM for Hercules (top) and Hercules + Hat (bottom). Black
contours show the disagreement considering only Vφ measurements.
Orange contours are for the disagreement considering Vφ and ∂Vφ/∂φ.
Green contours show the disagreement considering Vφ, ∂Vφ/∂φ, and
∂Vφ/∂R.

statistical significance over 8σ in almost the entire parameter
space.

A92, page 19 of 20



Bernet, M., et al.: A&A, 686, A92 (2024)

1.0 σ

0.5 σ

0.0 σ

0.5 σ

1.0 σ

0.5 σ

4.0 σ

4.0 σ

8.0 σ

8.0 σ 12.0 σ

0.5 σ

4.0 σ

4.0 σ

12.0 σ

12.0 σ

54.5 55.0 55.5 56.0 56.5 57.0 57.5

Ωb [km s−1 kpc−1]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

β

H
er

cu
le

s

0.5 σ

1.0 σ

4.0 σ

8.0 σ

12.0 σ

16.0 σ

54.5 55.0 55.5 56.0 56.5 57.0 57.5

Ωb [km s−1 kpc−1]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

β

Vφ

Vφ + ∂Vφ/∂φ

Vφ + ∂Vφ/∂φ+ ∂Vφ/∂R

H
er

cu
le

s
+

H
at

Fig. C.2. Similar to Fig. C.1 but showing the differences between the
fiducial FBM and the galaxy models around it when using only the
Hercules-like overdensity (top) or theHercules- and Hat-like one (bot-
tom).

A92, page 20 of 20


	Introduction
	Data and methodology
	Data
	Methodology

	Simulations
	Setup and bar potential
	Arch detection

	Data versus the fiducial models
	Global ridges in the radial and azimuthal directions
	Gradients of the moving groups and overdensities

	Model parameter exploration
	Parameter exploration
	Comparison with Gaia data

	Azimuth and time exploration
	Origin of the overdensities in the models
	Comparison with Gaia data

	Discussion
	Summary and conclusions
	References
	Time dependence of the arches
	Correlation in other azimuths
	Model versus model degeneracy

