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Supporting information

1. The partition function for converting the vibrational spectroscopy to 

thermodynamic properties

A partition function links the microscopic properties of a system and its macroscopic ones. If we 

deal with the canonical system, the form of the partition function will be given by:

  (1)𝑍 = ∑
𝑖𝑒

―𝛽𝐸𝑖     (i = 1, 2, 3, ⋯)   

This equation depends on the temperature and the energies of the microstates, where  is the 𝐸𝑖

energy of each microstate (i) and . Where  is the Boltzmann constant, and T is the 𝛽 =
1

𝜅𝐵𝑇 𝜅𝐵

temperature in Kelvin.

The energies of the microstates are determined by thermodynamic variables, such as the number 

of particles and the volume, and by microscopic properties, such as the mass of the particles 

composing the system. From a model of the microscopic constituents of the system, one can 

calculate the energy of the microstates, the partition function, and then the thermodynamic 

properties of the system using the Boltzmann factor: 
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(2)𝑃𝑖 =
1
𝑍𝑒 ―𝛽𝐸𝑖

 is the probability that the system occupies a microstate i. The partition function then acts as a 𝑃𝑖

normalizing constant, making the sum of the probabilities equal to 1. From this step, one can 

calculate the thermodynamic value of the total energy. If the system is divided into N subsystems 

having negligible interaction energies, the partition function is written as the product of the 

partition functions , of each subsystem: (3)𝑧𝑖 𝑍 = ∏𝑁
𝑖 𝑧𝑖

Therefore, the partition function is the sum of the energy states of the system. If the different forms 

of energy in the system are independent from each other, the total energy can be written as a sum 

of all these energies: 

(4)𝐸𝑡𝑜𝑡 = 𝐸𝑛 + 𝐸𝑒𝑙 + 𝐸𝑡𝑟𝑎𝑛𝑠 + 𝐸𝑣𝑖𝑏 + 𝐸𝑟𝑜𝑡

Where  is the nuclear energy,  the electronic energy,  the energy of translation,  the 𝐸𝑛 𝐸𝑒𝑙 𝐸𝑡𝑟𝑎𝑛𝑠 𝐸𝑣𝑖𝑏

energy of vibration and  the energy of rotation. In this way, the energy levels of the molecules 𝐸𝑟𝑜𝑡

are quantified and:   [1, 2]. 𝐸𝑒𝑙 > 𝐸𝑣𝑖𝑏 > 𝐸𝑟𝑜𝑡 >  𝐸𝑡𝑟𝑎𝑛𝑠

The partition function is then written as the product of the partition functions of each energy forms 

in the system:  

(5)𝑍𝑡𝑜𝑡 = 𝑍𝑛.𝑍𝑒𝑙.𝑍𝑡𝑟𝑎𝑛𝑠.𝑍𝑣𝑖𝑏.𝑍𝑟𝑜𝑡

For water, the nuclear and electronic partition functions ( ) are equal to 1 [3]. Additionally, 𝐸𝑛,𝐸𝑒𝑙

the first order of  is negligible, and the translational energy is not quantified frequently [1]. As 𝐸𝑟𝑜𝑡

a result, the vibrational energy, which we measure in FTIR, is the dominant contribution to the 

calculation of the partition function. 

The total energy is the sum of the energies of the microstates multiplied by their probability, and 

it relates to the partition function as follows:

       (6)〈𝐸〉 = ∑
𝑗𝐸𝑗𝑃𝑗 =

1
𝑍∑

𝑗𝐸𝑗𝑒 ―𝛽𝐸𝑗 = ―
1
𝑍

𝛿
𝛿𝛽𝑍(𝛽, 𝐸1, 𝐸2, ⋯) = ―

𝛿ln 𝑍
𝛿𝛽

Which can be written as:

(7)〈𝐸〉 = 𝜅𝐵𝑇2𝛿ln 𝑍
𝛿𝑇
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Since the Helmholtz energy is equal to , then it becomes:𝐹 = 𝐸 ― 𝑇𝑆

(10)𝐹 = ― 𝜅𝐵𝑇ln 𝑍

Finally, the Gibbs free energy (G) can be obtained from: 𝐺=𝐹+𝑃𝑉, and this yields:

(11)𝐺 = ― 𝜅𝐵𝑇ln (𝑍) + 𝜅𝐵𝑇𝑉(ծln (𝑍)

ծ𝑉
)

As a result, the partition function enables to calculate how much the Gibbs free energy changes 

when the vibrational energy changes. The partition function that we use in this study is the same 

as Bergonzi et al.’s [4, 5], which is derived from Griffith and Scheraga’s [6], and Néméthy and 

Scheraga’s [7]. It can be expressed in the following form:

(11)𝑍 = ∑
𝑁𝑖

𝑔[∏3
𝑖 = 1[𝑓𝑖,𝑖𝑛𝑡𝑒𝑟exp ( ― 𝐸𝑖 𝑅𝑇)]𝑁𝐴𝑥𝑖∏3

𝑖 = 1[𝑓𝑖,𝑖𝑛𝑡𝑟𝑎exp ( ― 𝐸𝑖 𝑅𝑇)]𝑁𝐴𝑥𝑖]
Where g describes the different populations of water absorbing the infrared radiation, and  are 𝑓𝑖

the weighting factors of each infrared mode. 

The fraction of each population was obtained by decomposing the OH stretching band into three 

Gaussian components. The g factor is calculated from these three populations as:

(12)𝑔 =
𝑁𝐴

𝑁𝑁𝑊!𝑁𝐼𝑊!𝑁𝑀𝑊!

Where . 𝑁𝑁𝑊 = 𝑁𝐴𝑥𝑁𝑊, 𝑁𝐼𝑊 = 𝑁𝐴𝑥𝐼𝑊,𝑎𝑛𝑑 𝑁𝑀𝑊 = 𝑁𝐴𝑥𝑀𝑊

NW is the network water (see the main text for details on the three populations), IW the 

intermediate water, and MW the multimer water;  is the Avogadro number and  with 𝑁𝐴 𝑁𝑖 = 𝑁𝐴𝑥𝑖

 are the number of each species per mole of water;  is the mole fraction of each species.∑𝑁𝑖 = 𝑁𝐴 𝑥𝑖

The weighting factors  are assigned to the three intermolecular factors , one for each of 𝑓𝑖 𝑓𝑖,𝑖𝑛𝑡𝑒𝑟

the three populations, and identically for the three intramolecular factors :𝑓𝑖,𝑖𝑛𝑡𝑟𝑎

            (13)𝑓𝑖,𝑖𝑛𝑡𝑒𝑟 = [1 ― exp ( ―ℎ𝜐𝑖
(𝑇) 𝜅𝐵𝑇)] ―3[1 ― exp ( ―ℎ𝜐𝑖

(𝐿) 𝜅𝐵𝑇)] ―3
  (i =  1, 2, 3)

(14)𝑓𝑖,𝑖𝑛𝑡𝑟𝑎 = [1 ― exp ( ―ℎ𝜐𝑖
(𝑆) 𝜅𝐵𝑇)] ―3[1 ― exp ( ―ℎ𝜐𝑖

(𝐵) 𝜅𝐵𝑇)] ―3
 (i =  1, 2, 3)
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 the wavenumber assigned to the OH stretching mode, while the the wavenumber 𝜐𝑖
(𝑆) 𝜐𝑖

(𝐵) 

attributed to the bending mode. In this way, it is crucial to measure the wavenumbers of each mode 

experimentally and not calculate them to adjust the results with the reference values. In addition, 

it is necessary to experimentally obtain the fraction of each of the three populations and insert 

these parameters as an input of the model. These parameters were obtained from the micro FTIR 

measurements presented in the manuscript.

The population of NW ( ) is considered as the fundamental level, i.e. . The energy 𝑛ℎ~4 𝐸𝑁𝑊 = 0

assigned to the level of IW is the energy required to transform a bond  of ice in a free 𝑂 ― 𝐻⋯𝑂

OH bond, estimated for liquid water equal to  [4, 8-10]. Finally, the energy 𝐸𝐻 = 23.3 𝑘𝑗.𝑚𝑜𝑙 ―1

allocated to the energy level of the MW population must be a combination of the energies required 

to break 2, 3, and 4 hydrogen bonds with this form . However, 𝐸𝑀𝑊 = 𝑥22𝐸𝐻 + 𝑥13𝐸𝐻 + 𝑥04𝐸𝐻

the fractions of the 2-, 1- and 0-linked populations contained in the MW fraction are not well-

defined separately in the literature. That is why Bergonzi et al. assumed that in MW, the molecules 

create 2 hydrogen bonds at maximum. This hypothesis is verified by different studies [11-14]. 

Therefore, the energy assigned to the MW population is the energy required to break 2 hydrogen 

bonds and is equal to . 2𝐸𝐻

As a result, the partition function can be calculated entirely from the experimental data. But, in our 

case, the connectivity, libration and bending bands were not recorded because of the quartz 

container. Consequently, we use the reference values of Bergonzi’s measurements for these three 

modes of water molecules as a function of temperature, linearly extrapolated when working 

beyond the range (-10° to +90°C) explored in Bergonzi et al.

References

1. Biémont, É., Spectroscopie moléculaire: Structures moléculaires et analyse spectrale. 
2008: De Boeck Supérieur.

2. Poilblanc, R., Spectroscopies infrarouge et Raman. 2006.
3. Martin, J., J. Francois, and R. Gijbels, First principles computation of thermochemical 

properties beyond the harmonic approximation. I. Method and application to the water 
molecule and its isotopomers. The Journal of chemical physics, 1992. 96(10): p. 7633-
7645.



v

4. Bergonzi, I., et al., Gibbs free energy of liquid water derived from infrared measurements. 
Physical Chemistry Chemical Physics, 2014. 16(45): p. 24830-24840.

5. Bergonzi, I., et al., Oversolubility in the microvicinity of solid–solution interfaces. Physical 
Chemistry Chemical Physics, 2016. 18(22): p. 14874-14885.

6. Griffith, J. and H. Scheraga, Statistical thermodynamics of aqueous solutions. I. Water 
structure, solutions with non-polar solutes, and hydrophobic interactions. Journal of 
Molecular Structure: THEOCHEM, 2004. 682(1-3): p. 97-113.

7. Némethy, G. and H.A. Scheraga, Structure of water and hydrophobic bonding in proteins. 
I. A model for the thermodynamic properties of liquid water. The Journal of Chemical 
Physics, 1962. 36(12): p. 3382-3400.

8. Marechal, Y., The hydrogen bond and the water molecule: The physics and chemistry of 
water, aqueous and bio-media. 2006: Elsevier.

9. Eisenberg, D., Kauzmann, The structure and properties of water. 1969, Oxford University 
Press, Oxford.

10. Schuster, P., G. Zundel, and C. Sandorfy, The Hydrogen Bond: Theory. Vol. 1. 1976: 
North-Holland.

11. Luzar, A., Resolving the hydrogen bond dynamics conundrum. The Journal of Chemical 
Physics, 2000. 113(23): p. 10663-10675.

12. Stillinger, F.H. and A. Rahman, Improved simulation of liquid water by molecular 
dynamics. The Journal of Chemical Physics, 1974. 60(4): p. 1545-1557.

13. Swiatla-Wojcik, D., Evaluation of the criteria of hydrogen bonding in highly associated 
liquids. Chemical Physics, 2007. 342(1-3): p. 260-266.

14. Thaomola, S., A. Tongraar, and T. Kerdcharoen, Insights into the structure and dynamics 
of liquid water: A comparative study of conventional QM/MM and ONIOM-XS MD 
simulations. Journal of Molecular Liquids, 2012. 174: p. 26-33.


