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Jérémy Vigneron f, Andrée Tuzet b, Karine Sartelet a 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The aerodynamic effect impacts signifi-
cantly concentrations of species emitted 
in streets. 

• Biogenic emissions induce mainly an 
increase in organic particles 
concentrations. 

• Dry deposition on leaves induces a low 
decrease in gas and particle 
concentrations. 

• Planting of trees with large crowns on 
high-traffic streets should be avoided. 

• Tree species that emit few terpenes 
should be favored in cities.  
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A B S T R A C T   

Urban trees are often not considered in air-quality models although they can significantly impact the concen-
trations of pollutants. Gas and particles can deposit on leaf surfaces, lowering their concentrations, but the tree 
crown aerodynamic effect is antagonist, limiting the dispersion of pollutants in streets. Furthermore, trees emit 
Biogenic Volatile Organic Compounds (BVOCs) that react with other compounds to form ozone and secondary 
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organic aerosols. This study aims to quantify the impacts of these three tree effects (dry deposition, aerodynamic 
effect and BVOC emissions) on air quality from the regional to the street scale over Paris city. Each tree effect is 
added in the model chain CHIMERE/MUNICH/SSH-aerosol. The tree location and characteristics are determined 
using the Paris tree inventory, combined with allometric equations. The air-quality simulations are performed 
over June and July 2022. The results show that the aerodynamic tree effect increases the concentrations of gas 
and particles emitted in streets, such as NOx (+4.6 % on average in streets with trees and up to +37 % for NO2). 
This effect increases with the tree Leaf Area Index and it is more important in streets with high traffic, suggesting 
to limit the planting of trees with large crowns on high-traffic streets. The effect of dry deposition of gas and 
particles on leaves is very limited, reducing the concentrations of O3 concentrations by − 0.6 % on average and at 
most − 2.5 %. Tree biogenic emissions largely increase the isoprene and monoterpene concentrations, bringing 
the simulated concentrations closer to observations. Over the two-week sensitivity analysis, biogenic emissions 
induce an increase of O3, organic particles and PM2.5 street concentrations by respectively +1.1, +2.4 and + 0.5 
% on average over all streets. This concentration increase may reach locally +3.5, +12.3 and + 2.9 % respec-
tively for O3, organic particles and PM2.5, suggesting to prefer the plantation of low-emitting VOC species in 
cities.   

1. Introduction 

Trees in urban environments provide numerous benefits to overcome 
the adverse effects of urbanization (Livesley et al., 2016; Roeland et al., 
2019). The city energy and water budgets are strongly influenced by the 
presence of artificial materials and high buildings and the release of 
anthropogenic heat. These processes induce an increase in temperature 
compared to the country side, called the urban heat island (UHI) effect 
(Nunez and Oke, 1977; Taha, 1997; Arnfield, 2003; Kuttler, 2008; Oke 
et al., 2017; Masson et al., 2020). Urban air quality is also often dete-
riorated due to reduced air flows and high local emissions (Lyons et al., 
1990; Fenger, 1999; Yang et al., 2020). By creating shade and tran-
spiring, trees improve human thermal comfort and limit the UHI effect 
(Taleghani, 2018; Hami et al., 2019). They also preserve permeable soils 
in which runoff water can infiltrate (Livesley et al., 2016; Berland, 
2017). While the effects of trees on climate are widely studied in sci-
entific research and known to the general public, the effects on the urban 
air quality are much less well known. Trees are often promoted for their 
capacity to remove pollutant from the atmosphere by dry deposition 
(Nowak et al., 2006; Escobedo and Nowak, 2009; Setälä et al., 2013; 
Selmi et al., 2016; Xing and Brimblecombe, 2019; Nemitz et al., 2020; 
Lindén et al., 2023). However, other direct effects are rather negative for 
air quality. In the street, the tree crowns strongly modify air flows and 
limit the dispersion of pollutants emitted by traffic (Gromke and Ruck, 
2007; Buccolieri et al., 2009; Vos et al., 2013; Jeanjean et al., 2016). 
Trees naturally emit Biogenic Volatile Organic Compounds (BVOCs) that 
react with the other compounds of the urban atmosphere to form sec-
ondary pollutants such as ozone and secondary organic aerosols (SOAs) 
(Owen et al., 2003; Calfapietra et al., 2013; Ren et al., 2017). In 
temperate cities, these effects are mainly present during the vegetative 
period when trees have leaves. The effect of BVOC emissions, which 
increases with temperature and light, is expected to be higher in summer 
and especially during heatwave periods (Niinemets et al., 2004). To 
estimate the magnitude of these processes, models are useful tools, in 
particular because they can represent the city heterogeneity, and 
sensitivity scenarios can be performed to estimate the relative strength 
of the different tree effects. Computational Fluid Dynamics (CFD) codes 
are frequently used to study the tree effects on air flows and pollutant 
concentrations but their fine resolution (∼ 1 m) requires high compu-
tational resources, limiting the study area to a street or neighborhood 
and the consideration of complex chemistry (Buccolieri et al., 2011; 
Santiago et al., 2017; Gromke and Blocken, 2015; Fu et al., 2024). To 
model air quality at the street scale but over large areas such as cities, 
parameterized street-network models are developed such as SIRANE 
(Soulhac et al., 2011, 2012, 2017), the Model of Urban Network of 
Intersecting Canyons and Highways (MUNICH) (Kim et al., 2018, 2022), 
OSPM (Berkowicz, 2000) or ADMS-Urban (McHugh et al., 1997; Car-
ruthers et al., 2000; Stocker et al., 2012). They are fast-running codes 
because air flows are parameterized and streets are considered as an 

homogeneous volume or are divided in just a few zones. The aero-
dynamic effect of trees in street canyons has been parameterized in the 
street-network model MUNICH based on CFD simulations (Maison et al., 
2022a, 2022b). It is coupled to the regional-scale Chemistry-Transport 
Model (CTM) CHIMERE, with an eulerian approach, allowing to fully 
represent the formation of secondary pollutants from the regional scale 
down to the street scale. 

The objective of the present study is to estimate the impacts of urban 
trees on gas and aerosol concentrations. Trees are often considered to be 
beneficial in improving street air quality because they increase the 
surface area of deposits, and they also absorb carbon dioxide. It is only 
more recently that their impact on atmospheric chemistry (Maison et al., 
2024) and the trapping of pollutants emitted into the streets (aero-
dynamic effect, Vos et al. (2013)) has been examined. However, urban 
trees outside large parks are usually not taken into account in air-quality 
models, because of the lack of tree inventories that include tree locations 
and characteristics. To quantify the tree effects, the city of Paris is a 
relevant place to study because it integrates a detailed tree inventory. 
Furthermore, Paris is dense, sprawling and regularly subject to air- 
quality issues. The city is also rather well vegetated, with >200,000 
trees in the streets and green spaces and >300,000 trees in the Boulogne 
and Vincennes woods (https://www.paris.fr/pages/l-arbre-a-paris-199, 
last accessed on 27/02/2024, in French). In this study, each tree effect 
(aerodynamic effect, dry deposition on leaves, biogenic emissions) is 
activated one by one in the simulations to quantify their individual 
impact, or all at once to quantify the overall tree impact in the city of 
Paris. 

First, Section 2 presents the materials and methods. The modeling 
chain set-up including the input data, and the reference simulation 
performed without tree are presented in Section 2.1. Section 2.2 de-
scribes the integration of the tree effects in the modeling chain. The tree 
inventory of the Municipality of Paris (Municipality of Paris, 2023) is 
used to integrate trees in the Paris street network and is combined with 
allometric equations to estimate tree characteristics (leaf area, dry 
biomass, tree dimension). The parameterization of the tree aerodynamic 
effect, previously developed, is applied to the whole city of Paris. Dry 
deposition of gas and aerosols on both street and tree leaf surfaces is 
computed based on parameterizations of the literature. Biogenic emis-
sions are estimated from the calculated leaf dry biomass of each indi-
vidual tree, the tree-species dependent emission factors available in the 
Model of Emissions of Gases and Aerosols from Nature, MEGANv3.2, 
and the activity factors of Guenther et al. (1995, 2012) which depends 
on meteorological conditions. CHIMERE/MUNICH simulations are per-
formed over Paris region and the Paris street network for June and July 
2022 with the different tree effects added individually and overall. The 
impacts on isoprene (C5H8), monoterpene, nitrogen dioxide (NO2), 
ozone (O3), organic matter (OM) and particulate matter (PM2.5) con-
centrations are presented in Section 3. 

A. Maison et al.                                                                                                                                                                                                                                 
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2. Materials and methods 

2.1. Description of the reference simulation 

2.1.1. Presentation of the modeling chain CHIMERE/MUNICH 
The CTM CHIMERE is used to estimate the urban background con-

centrations (Menut et al., 2021). It is coupled to the gas-phase mecha-
nism MELCHIOR2, to the aerosol model SSH-aerosol (Sartelet et al., 
2020), and to the meteorological model WRF (Powers et al., 2017; 
Menut et al., 2021), where a one-layer urban canopy model is used 
(Kusaka et al., 2001), with a prescribed anthropogenic heat flux (Pigeon 
et al., 2007; Sailor et al., 2015), as described in (Maison et al., 2024). 
The WRF-CHIMERE domain has a spatial resolution of 1 km × 1 km and 
extends from 48.1203◦N to 49.2503◦N in latitude and from 1.4481◦E to 
3.5817◦E in longitude (see Maison et al. (2024), for a detailed descrip-
tion of the simulations). A time step of 600 s is used for transport, 
gaseous chemistry and aerosol dynamics are computed with an adap-
tative time step. MUNICH is a street-network model that simulates with 
an eulerian approach, gas and particle concentrations at the street level 
(Kim et al., 2022). To be able to simulate concentrations at the street 
level and over large areas such as cities, each street is considered as an 
homogeneous volume. So within a street segment, buildings have the 
same height (H), and the street width (W) is taken as constant. Streets 
can have various lengths (L) and are linked by punctual intersections. 
The MUNICH street network extends from 48.8013◦N to 48.9227◦N in 
latitude and from 2.2301◦E to 2.4590◦E in longitude. MUNICH includes 
the main processes affecting street concentrations: emission of gas and 
particles by traffic, horizontal transport by advection between the 
streets, vertical transport between the street and the background, dry 
and wet deposition of gas and aerosols, gas chemistry and aerosols dy-
namics. The model runs with an adaptative time step for transport, 
gaseous chemistry and aerosol dynamics. MUNICH is one-way coupled 
to the CTM CHIMERE. Both MUNICH and CHIMERE coupled with WRF 
(CHIMERE-WRF) are eulerian models, and CHIMERE-WRF is used to 
estimate the boundary conditions of MUNICH, i.e. meteorological fields 
and background concentrations above the street. As CHIMERE and 
MUNICH use the same gas-phase chemistry MELCHIOR2 and aerosol 
model SSH-aerosol, primary and secondary pollutant concentrations are 
represented consistently from street to regional scale. The input data 
used in this study are presented in the following sections with a focus on 
tree characteristics in Section 2.2. 

2.1.2. Paris street network 
The Paris street network used in the study is composed of 4655 

streets and 3040 intersections. It includes the main streets of the Paris 
city and the close suburbs (Fig. S1). It has been constructed from the 
BDTOPO database, available at https://geoservices.ign.fr/bdtopo (last 
accessed on 27/02/2024), the Paris database available at https://www. 
data.gouv.fr/fr/datasets/trottoirs-des-rues-de-paris-prs/ (last accessed 
on 27/02/2024) (Lugon et al., 2020) and the emission inventory pro-
vided by Airparif, the air-quality monitoring association for the ̂Ile-de- 
France region. The average street aspect ratio is H/W = 0.79. This street 
aspect ratio is rather homogeneous in Paris (between 0.66 and 2), as 
shown in Fig. S1, with more opened areas along the Seine river, the ring 
road and the Vincennes and Boulogne woods. Streets with higher aspect 
ratio can be found in the Défense district. 

2.1.3. Anthropogenic and biogenic emissions 
Anthropogenic emission inventory for all activity sectors were pro-

vided by Airparif. For sectors other than traffic, the inventory represents 
the year 2019 with a spatial resolution of 1 km × 1 km. For traffic, 
emissions are those of June and July 2022, they are given by street 
segment and are estimated from traffic counting. Biogenic emissions at 
the regional scale are estimated using MEGANv2.1 in CHIMERE using 
the land-use approach. At the urban scale in Paris, biogenic emissions 
are calculated from the Paris tree inventory, as described in Maison et al. 

(2024). Special treatments, as detailed below, are necessary to include 
the trees in the street network used in MUNICH. 

2.2. Integration of the tree effects in MUNICH 

2.2.1. Integration of trees in the Paris street network 
As presented in Maison et al. (2024), the Paris tree inventory, 

including tree location, species and dimensions is used (Municipality of 
Paris (2023), March 2023 version). To locate the trees in the street 
network, streets are considered as rectangles of known four extremity 
coordinates, and trees are located into the street segments by comparing 
their coordinates with those of streets. Because of uncertainty about 
street widths, trees within a perimeter of half of the street width on each 
side of the street are integrated into the street segment. On the 112,154 
roadside trees listed in the Paris tree inventory, 58.6 % are integrated in 
the MUNICH street network of which 38.8 % in the exact street width 
and 19.8 % by widening the street width between 1.2 (+20 %) and 2 ×

W (+100 %) (see Fig. S2).The non-integration of some trees into the 
street network is mainly due to the fact that they are located in sec-
ondary streets that are not included in the network, and also because of 
inaccuracies in the layout and width of streets, as shown in Figs. S2 and 
S3. Finally, 36.4 % of the streets in the network contain at least one tree. 
Although <40 % of the streets had at least one tree associated with them, 
a significant effect was subsequently observed in our study. 

Moreover, the municipality of Paris estimates that 30 % of the trees 
in the city of Paris are not listed in the database, these missing trees are 
most likely located in private parks and yards. Roadside trees are rather 
well documented. The effects of roadside trees that are not integrated in 
the network are not considered at the street level. However their 
biogenic emissions are taken into account in the regional-scale simula-
tions to estimate background concentrations (see Section 2.2.4 and 
Maison et al. (2024)). Note also that trees planted on roofs are not 
considered here, since their number is very small in Paris compared to 
roadside and park trees (Méziani et al., 2013) and they are not included 
in the Paris tree inventory. 

The tree characteristics needed to compute the different tree effects 
at the street level (leaf area, dry biomass and tree crown height) are 
estimated, as in Maison et al. (2024), based on the Paris Tree inventory 
and a set of allometric equations from McPherson et al. (2016). The 
canopy characteristics of each street segment take into account all the 
trees included in the segment. Depending on the nature of the charac-
teristics, they are averaged or summed over the trees of the street 
segment. The street Leaf Area Index (LAIstreet in m2

leaf .m
− 2
street) and dry 

biomass (DB in g of dry weight) are computed by summing the leaf areas 
and dry biomass of all trees included in the same street segment. The top 
tree height is taken from the Paris tree inventory and is averaged to 
obtain the street average top tree height (hmax in m). More details about 
the tree characteristic computation can be found in Section S1. The 
street leaf area index, normalized dry biomass and crown height to 
building height ratios obtained are plotted for the street network in 
Fig. S4. 

2.2.2. Tree aerodynamic effect 
The presence of trees in the street strongly modifies air flows, 

limiting the dispersion of gaseous and particulate pollutants emitted by 
traffic. These effects are complex and impact advection and vertical 
transport, they were studied in detail in Gromke and Ruck (2007); 
Buccolieri et al. (2009); Vos et al. (2013) and Maison et al. (2022b). The 
tree aerodynamic effect, i.e. the modification of air flows at the street 
level by tree crowns, has been parameterized in MUNICH using empir-
ical equations based on CFD simulations (Maison et al., 2022a, 2022b). 
The vertical profile of horizontal wind speed in the street and the ver-
tical transfer coefficient between the street and the background are 
parameterized depending on LAIstreet and on the average top tree crown 
height to building height ratio hmax/H. The tree aerodynamic effect is 
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expected to be higher in the streets of high LAIstreet and high hmax/H. 

2.2.3. Computation of dry deposition on street surfaces and tree leaves 
The ability of trees to reduce air pollutant concentrations via dry 

deposition is often promoted. However in the literature, the amplitude 
of this process varies (Nowak et al., 2006; Escobedo and Nowak, 2009; 
Setälä et al., 2013; Selmi et al., 2016; Xing and Brimblecombe, 2019; 
Nemitz et al., 2020; Lindén et al., 2023), with sometimes highly 
simplified representations of pollutant deposition rates. To try to esti-
mate if this process modifies significantly the street concentrations, the 
dry deposition flux of gas and particles is taken into account in the street 
mass budget. The deposition fluxes are computed as the product of 
surface area, deposition velocity and average street concentration. 
Deposition velocities are calculated for each surface (wall, street surface, 
tree leaf), which is considered homogeneous. A resistive scheme 
(Fig. S5) is used to compute the deposition velocities, and the different 
resistances are estimated using equations from the literature (Hicks et al. 
(1987); Walmsley and Wesely (1996); Wesely (1989); Venkatram and 
Pleim (1999); Zhang et al. (2002, 2003) for gas and Zhang et al. (2001) 
for aerosols). Due to their different physico-chemical properties, the 
parameterizations varies according to the type of compound. The 
methodology used and the resistance and coefficient formulations taken 
from the literature are presented in Sections S2 for gas and S3 for par-
ticles. Concerning the deposition of BVOCs, due to the lack of mea-
surements to estimate the deposition model parameters, BVOC 
deposition on street and tree leaf surfaces is not considered. Indeed, 
several studies suggest that isoprene and monoterpenes are not directly 
deposited but are rapidly oxidized in the atmosphere and are therefore 
indirectly deposited as oxygenated VOCs (Karl et al., 2010; Nguyen 
et al., 2015; Canaval et al., 2020). 

2.2.4. Biogenic emissions 
The biogenic emissions are computed with the same empirical 

approach used in Maison et al. (2024). At the regional scale, the biogenic 
emissions are estimated from the dry biomass of each tree and are then 
aggregated over the grid cells of the simulation domain. At the street 
scale, the dry biomass of the trees included in a same street is summed to 
compute the total dry biomass for each street (eq. (S2)). The street leaf 
dry biomass computed for the Paris street network is presented in 
Fig. S4b. 

As in Maison et al. (2024), the tree species emission factors are taken 
from MEGANv3.2 (https://bai.ess.uci.edu/megan/data-and-code/mega 
n32, last accessed on 10/07/2023). At the street scale, the activity fac-
tors are computed with equations from Guenther et al. (2012) for the 
temperature effect and from Guenther et al. (1995) for the light effect. 
The leaf surface temperature is approximated by the air temperature at 
2 m simulated by WRF and the Photosynthetic Photon Flux Density 
(PPFD) is computed from the global solar radiation (SWg) as: PPFD =

4.5× 0.5× SWg. These two factors include the selection of the 400–700 
nm spectral range of the solar radiation and the conversion of W.m− 2 

into μmol.m− 2.s− 1 (Meek et al., 1984). For each street, the temperature 
and global solar radiation are taken from the CHIMERE-WRF horizontal 
cell which is located above the middle of the street. The meteorological 
variables simulated by WRF were compared with data from several 
weather stations in the ̂Ile-de-France region in Maison et al. (2024). In 
addition, the air temperature (Tair) and the global solar radiation that 
are used in the computation of the BVOC emissions at the street level are 
compared to measurements performed in the Hôtel de Ville station 
(HdV) (48.85574◦N, 2.35191◦E) and in the Qualair platform 
(48.84638◦N, 2.35598◦E) (see Fig. S1) in Section S4. 

Fairly significant assumptions are made in calculating biogenic 
emissions, notably that leaf surface temperature is equal to air temper-
ature. The solar radiation reaching the leaves is assumed to be equal to 
the incoming solar radiation above the street, neglecting the effects of 
reflections between street surfaces and building shading. The effect of 

water stress, which can reduce isoprene emissions (Guenther et al., 
2012; Bonn et al., 2019; Otu-Larbi et al., 2020), is not considered here, 
due to the lack of a precise water balance for calculating soil water 
content in the model. It should be also noted that biogenic emissions 
from other tree organs (trunk, branches, flowers, etc.) or from the soil, 
although significant at certain times of the year (Baghi et al., 2012), are 
minor for the simulated period compared to leaf emissions and are not 
considered. 

As in CHIMERE regional-scale simulations, the emitted biogenic 
species are speciated and aggregated into MELCHIOR2 model species. 
Biogenic species include isoprene, monoterpenes, sesquiterpenes and 
many other BVOCs (OVOCs), mainly oxygenated compounds, such as 
methanol, acetone, acetaldehyde and formaldehyde. Note that nitrogen 
monoxide (NO) and carbon monoxide (CO), which are not BVOCs, are 
also emitted by trees and considered in the model. The emission maps of 
isoprene and monoterpenes are shown in Fig. 1. Emissions maps of other 
species are presented in Fig. S7 and the temporal variation of the 
different biogenic species are shown in Fig. S8. 

Similarly to Maison et al. (2024), isoprene is the most emitted 
biogenic species with 54.7 % of the total emissions (in mass) following 
by other oxygenated BVOCs (36.7 %), CO (4.0 %), monoterpenes (3.2 
%), sesquiterpenes (0.8 %) and NO (0.5 %). Figs. 1 and S7 show that 
higher emissions are observed in the streets containing trees and the 
density of the emissions depends on the quantity of leaf dry biomass and 
also on tree species via the emission factors. 

2.3. Simulation set-up 

CHIMERE/MUNICH simulations are performed over the Paris street 
network from June 1 to July 31. A spin-up period of 5 days is considered, 
and the results are analyzed starting from June 6. As a reference and for 
comparison, a simulation without tree is performed (see Section 3.1). 
Simulations with all tree effects are performed to quantify the overall 
effect. Specific effects of trees on concentrations are also assessed using 
shorter simulations (2 weeks). The performed simulations are described 
in Table 1. As explained in Maison et al. (2024), to quantify the impacts 
of uncertainties in the emission factors of terpenes, simulations are also 
performed with a TX2 scenario (Table 1), where monoterpene and 
sesquiterpene emissions are doubled. 

To assess the model's performance, simulated street-level concen-
trations are compared to measurements, as described in the next section. 

2.3.1. Description of the experimental measurements 
Concentrations have been measured in the Paris HdV station and in 

Airparif traffic stations located inside the Paris city or in very near 
suburbs. These latter correspond to 10 permanent air-quality monitoring 
stations included within a large operational stations network operated 
by Airparif. The Paris HdV station was implemented as part of the 
Impact of sTress on uRban trEEs and on city air quality (sTREEt) project. 
It was located in a small garden, next to the town hall and directly 
overlooking the quays of the Seine, which is a major road traffic artery. 
In HdV station, NOx concentrations in the ambient air were measured 
using an instrument based on chemiluminescence and VOCs with a 
Proton Transfer Reaction - Time-Of-Flight - Mass Spectrometry (1000- 
PTR-TOF-MS) instrument. Concentrations of organic aerosols below 2.5 
μm are estimated by using a Quadripole Aerosol Chemical Speciation 
Monitor (Q-ACSM, Ng et al. (2011)), equipped with a PM2.5 lens Xu et al. 
(2017) and a capture vaporizer. 

Note that NO2 concentrations measured in traffic-type stations vary 
from 3.7 to 196.7 μg.m− 3 with an average value of 40.9 μg.m− 3. For 
PM2.5, concentrations vary from 0.4 to 63.2 μg.m− 3 with an average 
value of 11.2 μg.m− 3. Organic PM2.5 concentrations vary from 0.6 to 
27.7 μg.m− 3 with an average value of 6.3 μg.m− 3. A concentration peak 
of organic particles is observed between the 16 and 18th of June due to 
higher temperatures. More details on the measurements performed can 
be found in Section S6 of the supplementary materials. The list of 

A. Maison et al.                                                                                                                                                                                                                                 

https://bai.ess.uci.edu/megan/data-and-code/megan32
https://bai.ess.uci.edu/megan/data-and-code/megan32


Science of the Total Environment 946 (2024) 174116

5

stations with measured compounds is presented in Table S5 and located 
in the map in Fig. S1. 

3. Results and discussion 

3.1. Reference simulation 

To quantify the tree effects on concentrations, a reference simulation 
is performed without urban tree, neither at the regional nor local scale. 
A comparison of observed and simulated concentrations through the 
average and standard deviation of concentrations along with statistical 
indicators is summarized in Table S6. 

Table S6 shows that the NO2 concentrations are rather well esti-
mated with a good correlation, a low bias and a NAD lower than 0.3 as 
recommended by Hanna and Chang (2012). PM2.5 concentrations are 
also rather well simulated by the model, but PM10 are largely under-
estimated. This may be due the high uncertainties on non-exhaust 
emissions that affect coarse particle concentrations (Lugon et al., 
2021). Isoprene and monoterpene concentrations are also largely 
underestimated by the model. It may be due to the missing biogenic 
emissions of urban trees that will be added in this study. The fraction of 

organic PM2.5 (organic matter, OM) is also underestimated. As they are 
formed by condensation of BVOCs, their concentrations are expected to 
increase with the addition of the local urban biogenic emissions. 

In the next sections, the impact of the different individual and overall 
tree effects is quantified by comparing the concentrations of isoprene, 
monoterpenes, NO2, O3, PM2.5, and OM. The average concentrations 
with all tree effects (3EFF) are compared to the reference simulations 
without tree (REF) (8 weeks between 06/06 and 31/07/22). This com-
parison is done with default biogenic emission factors, and with terpene 
emission factors multiplied by 2 (TX2 scenario) in the supplementary 
materials. For that comparison, the simulation 3EFF TX2 is compared to 
the reference simulation REF TX2, i.e. terpene emissions are multiplied 
by 2 not only for urban trees, but also for the vegetation outside Paris. 

The Mean Relative Difference (MRD in %, see Section S11) between 
the simulation that includes a single tree effect (AERO, DEP, BVOC) and 
the reference simulation (REF) is also computed during the period from 
June 13 to 26 (to save computational time) in all the streets of the 
network and presented in the supplementary materials. In addition, to 
quantify whether the tree effect on air quality is different during heat-
waves, the concentrations are also integrated over heatwave periods. 
Heatwaves are defined here as days with clear clear-sky conditions and 
air temperatures reaching 35 ◦C. For the months of June and July 2022, 
this represents eleven days: June 15 to 18, July 11 to 14 and July 17 to 
19. 

3.2. Tree effects on isoprene and monoterpene concentrations 

Fig. 2 presents the temporal variation of isoprene and monoterpene 
concentrations measured and simulated at HdV. Hourly averages of 
measurements are calculated to compare to simulated concentrations. 

In the reference simulations (dotted lines), concentrations are very 
low because anthropogenic isoprene emissions and isoprene background 
concentrations are low. Isoprene concentrations increase to an order of 
magnitude close to observations when biogenic emissions from urban 
trees are included. During the heatwave (from June 15 to 18), concen-
trations are overestimated by up to a factor 3 probably because isoprene 
emissions are also overestimated. This was also the case in Maison et al. 
(2024), where compared to measurements at PRG site (48.82778◦N, 
2.38056◦E), isoprene concentrations are overestimated on June, 16, 17, 
19 and 20 but largely underestimated on June 18. As the temperature 
and global radiation are not overestimated by the model (Fig. S6) and 
concentrations on other days are rather well simulated, this over-
estimation might come from the emission parameterizations. In fact, 
some studies report that the effect of water stress could significantly 
reduce isoprene emissions during this period (Guenther et al., 2012; 
Bonn et al., 2019; Otu-Larbi et al., 2020) and is not currently taken into 
account. It is also important to note that the fragmentation of 2-methyl- 

Fig. 1. Maps of temporal average of a) isoprene and b) monoterpene emissions over the 2-month period.  

Table 1 
Description of the MUNICH simulations performed with the simulated period, 
the tree effect(s) considered and the corresponding background concentrations 
(see Maison et al. (2024)).  

Simulation 
name 

Start 
and end 
dates 

Aero. 
effect 

Dry 
dep. on 
leaves 

Urban tree 
biogenic 
emissions 

CHIMERE 
background 
simulation 

REF 06/ 
06–31/ 
07 

– – – REF 

AERO 13/ 
06–26/ 
06 

Yes – – REF 

DEP 13/ 
06–26/ 
06 

– Yes – REF 

BVOC 13/ 
06–26/ 
06 

– – Yes bioparis 

EFF 06/ 
06–31/ 
07 

Yes Yes Yes bioparis 

REF TX2 06/ 
06–31/ 
07 

– – – REF-TX2 

EFF TX2 06/ 
06–31/ 
07 

Yes Yes Yes 
ERMT & SQT × 2 

bioparis-TX2  
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Fig. 2. Hourly evolution of measured (black dots) and simulated with MUNICH (lines) a) isoprene and b) monoterpene concentrations (μg⋅m− 3) in Paris HdV station. 
Heatwave periods are indicated by orange shaded areas. 

Fig. 3. Average background and street (a, b) isoprene and (d, e) monoterpene concentrations (06/06 to 31/07/22) simulated with CHIMERE/MUNICH (a, d) without 
trees (REF), (b, e) with trees (3EFF) and (c, f) mean relative difference between the REF and 3EFF (with all tree effects) simulations. (Note that the very large relative 
differences obtained are due to concentrations in the reference simulation (REF) being close to zero in the denominator.) 
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3-buten-2-ol (MBO) at m/z 69 (isoprene) was not accounted for, 
potentially leading to an overestimation of isoprene levels. Besides, the 
simulated concentrations are much larger during the day than during 
the night, strongly underestimating the night-time concentrations 
compared to measurements. The low night-time concentrations in the 
simulations can be explained by the fact that isoprene is mainly emitted 
by vegetation during the day and is highly reactive. Further work is 
therefore needed to identify the cause of the discrepancy between 
measured and simulated isoprene concentrations at night. 

The inclusion of urban trees largely improves the estimation of 
isoprene concentrations, as shown by the statistical comparison of the 
simulations with the observations presented in Table S7. The normalized 
absolute difference (NAD) and the correlation (R) are improved 
(decrease in NAD from 0.93 to 0.39 and increase in R from 0.35 to 0.64), 
but the overestimation of isoprene concentrations induced a positive 
bias (from − 3.4 to +1.0) and a slightly higher root mean square error 
(RMSE from 4.2 to 4.9). 

A map of the 8-week average isoprene and monoterpene background 
and street concentrations simulated with CHIMERE/MUNICH with and 
without trees is presented in Fig. 3. 

On average over the 8-week period, taking into account the effects of 
trees, isoprene concentrations increase very significantly at both the 
street (+2690 %, i.e. +2.1 μg.m− 3 on average) and the regional scales 
(Fig. 3c). This large increase is mainly due to the local isoprene emis-
sions (see Figs. S9 and S10). Dry deposition does not affect isoprene 
concentrations and the tree aerodynamic effect induces an increase up to 
+23 % and a decrease up to − 11 %. The effect of biogenic emissions is 
larger during heatwave periods (on average ≈ + 4,000%, i.e. +3.5 μg. 
m− 3 versus ≈ + 2,000%, i.e. +1.8 μg.m− 3 over the 2 weeks of sensi-
tivity analysis, see Fig. S10), because emissions are larger due to higher 
temperatures and clear-sky conditions (Figs. S6 and S8). Note that there 
is no difference between the 3EFF and 3EFF TX2 simulations (Figs. 3c 
and S11c) because unlike monoterpenes and sesquiterpenes, isoprene 
emissions are the same in the two simulations. 

As for isoprene, the concentrations of monoterpenes in the reference 
simulation are low and underestimated compared to the measurements 
(Fig. 2b). The addition of local monoterpene emissions from urban trees 
allows to better simulate the observed concentrations, especially when 
monoterpene concentrations are doubled in TX2 scenario (decrease in 
RMSE from 1.0 to 0.7, NAD from 0.85 to 0.35 and bias from − 0.9 to 
− 0.5, and increase in R from 0.25 to 0.35, see Table S8). The concen-
tration peak during the heatwave around the 18th of June is rather well 
simulated by MUNICH. However concentration increases on the 8th, 
13th, 29th of June and 2nd, 4th of July are not simulated by the model. 
Overall, as there are also uncertainties in monoterpene measurements, 
the monoterpene concentrations are reasonably well simulated with the 
TX2 scenario. 

The monoterpene concentrations of the REF simulation are very low 
without urban trees except in western Paris, around the Boulogne wood 
and the forests of southwestern Paris (Fig. 3d). The addition of urban 
trees, and mainly monoterpene emissions, increase very largely the 
concentrations both in the streets (+9776 %, i.e. +0.15 μg.m− 3 on 
average) and the background, as shown in Fig. 3e and f. As for isoprene, 
this increase is mainly due to the addition of biogenic emissions (+9559 
%, i.e. +0.13 μg.m− 3 on the 2-week sensitivity analysis) since there is no 
dry deposition on leaves and the aerodynamic effect of trees leads to a 
variation of monoterpene concentrations between − 15 % and + 11 % 
(Figs. S12 and S13). The increase is larger during heatwaves (≈ +

20, 000%, i.e. +0.23 μg.m− 3 on average) due to higher emissions 
(Fig. S13). In the TX2 scenario, as monoterpene emissions are doubled, 
monoterpene concentrations are much higher (Fig. S11e). The relative 
impact of urban trees is also a little higher especially inside Paris city 
(≈ + 16,000%, i.e. +0.29 μg.m− 3 on average in streets, see Fig. S11f). 
This comparison suggests that monoterpenes concentrations are very 
sensitive to local emissions. It would therefore be important to reduce 
uncertainties in emission factors, and also to quantify and characterize 

the missing trees in Paris (∼ 30%) and its suburbs. 
Biogenic concentrations are, as expected, largely increased by the 

addition of biogenic emissions from urban trees. The next section fo-
cuses on the impact of trees on NO2 and O3 concentrations. 

3.3. Tree effects on NO2 and O3 concentrations 

The overall tree effects on NO2 and O3 concentrations are evaluated 
for the 2-month average concentrations in Fig. 4. It presents the 8-week 
average NO2 concentrations without trees along with the relative dif-
ference between the REF and 3EFF simulations (Fig. 4a and b). The trees 
induce mainly a variation of NO2 concentrations in the streets from − 17 
% to +36 %. 

To analyse the impacts of urban trees on NO2 concentrations, the 
relative impact of each individual tree effect is quantified over the Paris 
street network on average over 14 days and shown in Fig. S14, and 
during the 4-day heatwave in Fig. S15. The predominant tree impact 
that affects NO2 concentrations is the aerodynamic effect (Figs. S14 and 
S15). Depending on the street, it leads to an increase up to +37 %, but 
also to a decrease, which can reach − 12 % (Fig. S14b). This effect is 
especially significant in the streets including trees (Fig. S15b). The effect 
of dry deposition of NO2 on tree leaves leads to a decrease of concen-
trations up to − 2.5 %, and it is not significant at the city scale (p-value of 
the t-test between the simulation with trees and the reference simulation 
≥ 0.1, see Fig. S15). Although biogenic emissions, particularly isoprene, 
can have an impact on NO2 concentrations through the ozone cycle, this 
effect is low, as shown by the mean relative difference of the BVOC and 
the REF simulation, which does not exceed ±1 % (Fig. S14d). The 
impact of trees on NO2 concentrations is therefore related to the aero-
dynamic effect and it is not much impacted by either the heatwave 
(Fig. S15) or the TX2 scenario (Fig. S16). Besides, the increase in NO2 
concentrations is rather well correlated with the street LAI, which is the 
main tree characteristic involved in the aerodynamic effect (Fig. S4a). 
Besides, the effect of adding trees on the model's performance in simu-
lating NO2 concentrations depends on the street, but on average it tends 
to increase the model's overestimation (NAD = 0.20, bias = 2.3 μg.m− 3 

and R = 0.54). 
Because NO2 is emitted in streets by traffic, its dispersion is limited 

by the presence of trees. In order to quantify the possible links between 
the NO2 emission intensity and the amplitude of the tree aerodynamic 
effect, the temporal average of the mean relative difference of the NO2 
concentrations between the simulations AERO and REF (MRD AERO) is 
plotted as a function of the street LAI and of the NO2 emissions in Fig. 5. 
It shows that in treeless streets (LAIstreet = 0), the MRD AERO is globally 
between ±10 % and seems quite independent of the intensity of emis-
sions. This variability observed in treeless streets could be a consequence 
of transport of concentrations between adjacent streets. In streets where 
NO2 emissions are low, the tree aerodynamic effect is relatively low 
(between about +5 and − 10 %) for all LAIs. When NO2 emissions are 
higher, a strong aerodynamic effect proportional to LAI is observed. 
Other factors influence the aerodynamic effect, such as the street aspect 
ratio and the direction of the wind compared to the street. However, on 
average over the period, the aerodynamic effect is always significant in 
high-traffic streets when the LAI exceeds 0.5, and in medium-traffic 
streets when the LAI exceeds 1.0m2

leaf .m
− 2
street. The tree aerodynamic ef-

fect has an impact on the street concentration, because of emissions of 
primary pollutants in streets. 

Fig. 4c and d shows a comparison of average O3 concentrations with 
and without trees over the 8-week simulations. Urban trees lead to a few 
percent increase in background O3 concentrations, as shown in Maison 
et al. (2024). At street level, when the aerodynamic effect of trees is 
considered, O3 concentrations decrease as NO2 concentrations increase. 
The difference with the TX2 scenario is not clearly visible on the 
Fig. S16d, and the doubled monoterpene and sesquiterpenes emissions 
only induce a slightly higher impact of trees on O3 concentrations. This 
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suggests that terpenes have a low impact on O3 compared to other VOCs 
such as isoprene, which are emitted in larger quantities. 

The individual impacts of urban trees on O3 concentrations at the 
street scale are shown in Figs. S17 and S18. The aerodynamic effect leads 
to a decrease in O3 concentrations in many streets (up to − 23 %) and to 
an increase in others (up to +17 %). This effect is more significant in 
streets containing trees and is anti-correlated with the increase in NO2 
concentrations, as shown in Fig. S19 that plots the MRD AERO of O3 
depending on the MRD AERO of NO2. The effect of the dry deposition on 
O3 concentrations is very low and does not exceed − 2.5 %. However, 

Fig. S18b shows that the dry deposition is more significant in the streets 
with trees (− 0.62 % on average and up to − 2.5 %). The biogenic 
emissions induce an average O3 increase of +1 % which is very homo-
geneous over the Paris city highlighting the impact of the background 
concentrations. This increase is larger during the heatwave period 
(+2.1 %) as shown in Fig. S18. As this is a relative difference and the 
reference simulation (without tree) already includes the effect of 
weather on O3 formation, this increase of concentration during the 
heatwave is only due to the increase of biogenic emissions. The com-
parison of the individual tree effects with the overall effects (3EFF 
simulation) shows that the three tree effects compensate each other to 
give an average tree impact that can be negative, nil or positive 
depending on the street and time period. 

Following the study of gaseous species, the impact of trees on par-
ticles, and more specifically on the organic fraction, is quantified in the 
next section. 

3.4. Tree effects on particle concentrations 

As the BVOCs emitted by trees may be oxidized leading to the for-
mation of organic particles, called organic matter (OM), the concen-
trations of these latter may increase because of the urban biogenic 
emissions. To compare with observations, the OM concentration is 
computed by summing the concentrations of the organic compounds of 
particles of diameters lower than 2.5 μm. 

The hourly-average measured concentrations of OM at the HdV 
station are compared with simulated concentrations in Fig. 6. It shows 
that, both for the unmodified and TX2 emission scenarios, the concen-
trations of the simulations with all tree effects (solid lines) are slightly 
higher than the concentrations of the reference simulations (dotted 

Fig. 4. Average background and street a) NO2 and c) O3 concentrations (06/06 to 31/07/22) simulated with CHIMERE/MUNICH without trees (REF) and (b, d) 
mean relative difference between the REF and 3EFF (with all tree effects) simulations. 

Fig. 5. Mean relative difference of NO2 concentrations between the simulations 
AERO and REF as a function of the street LAI and the average NO2 emission (for 
each street averaged from 13 to 26/06). 

A. Maison et al.                                                                                                                                                                                                                                 



Science of the Total Environment 946 (2024) 174116

9

lines). Urban trees contribute significantly to the increase in OM con-
centrations (on average in the street of the HdV station by 11.5 % and 
10.1 % for TX2). When monoterpene and sesquiterpene emissions are 
doubled, the simulated concentrations (red lines) compare much better 
to observations, especially during the concentration peak around the 
18th of June. The statistical comparison of simulations and observations 
presented in Table S9 shows that the inclusion of urban trees slightly 
improves the comparison to observations (decrease in bias from − 1.5 to 
− 1.3 for TX2). The best agreement between observed and simulated 
concentrations is in the TX2 scenario, suggesting that the modeled OM 
concentrations are significantly affected by the terpene concentrations. 
As simulated terpene concentrations are very sensitive to urban trees, 
those need to be better characterized to improve the modeling of OM in 

summer. 
Fig. 7a and b presents the average overall tree effect on OM over the 

8 weeks of simulation. It shows that the overall effect of urban trees 
leads to an increase in OM concentration of +3.9 % on average in Paris 
streets (Fig. 7a and b). With the TX2 scenario, this increase reaches +4.4 
% (Fig. S20b). 

Similarly to the previous chemical species studied, the tree effect on 
OM concentrations is quantified by calculating and mapping the mean 
relative difference of the sensitivity simulations with the reference 
simulation (Fig. S21) and by comparing the different MRD over the 
whole period and the 4-day heatwave (Fig. S22). Fig. S21 shows that the 
tree aerodynamic effect leads to an increase in OM concentrations 
mainly in street with trees (up to +31.5 %) and to a decrease in others 

Fig. 6. Hourly evolution of measured (black dots) and simulated with MUNICH (lines) organic matter (OM) concentrations (μg⋅m− 3) in Paris HdV station. Heatwave 
periods are indicated by orange shaded areas. 

Fig. 7. Average background and street a) OM and c) PM2.5 concentrations (06/06 to 31/07/22) simulated with CHIMERE/MUNICH without trees (REF) and (b, d) 
mean relative difference between the REF and 3EFF (with all tree effects) simulations. 
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(up to − 7.3 %). It is mainly the primary organic aerosols (POAs), 
emitted by traffic, whose concentrations are increased by the aero-
dynamic effect of trees. The comparison of the BVOC simulation with the 
reference shows that OM concentrations are increased quite uniformly 
across Paris city by on average + 2.4 % and up to +12.3 %, because the 
transformation of BVOCs into condensables that may form particles 
occurs mostly in the urban background (Wang et al., 2023). During the 
heatwave period, this OM increase reaches +3.4 % on average and up to 
+21.3 %. The dry deposition of OM on leaves remains limited (up to 
− 2.4 %) and non-significant compared to the other effects, in particular 
biogenic emissions. 

Fig. 7c and d shows the average overall tree effect on PM2.5 over the 
8 weeks of simulation. The increase in PM2.5 due to biogenic emissions is 
visible locally in the background concentrations over area with denser 
vegetation (up to +1.6 %). In streets, PM2.5 concentrations vary from 
− 8.4 % to +21.7 % and increase by +0.8 % on average. Doubling 
monoterpene and sesquiterpene emissions (TX2) leads to an increase of 
PM2.5 concentrations of +1.2 % on average in all streets (Fig. S20c and 
d). 

If the individual effects of the trees are considered, the aerodynamic 
effect of trees induces a large increase in PM2.5 concentrations in some 
streets (up to +22 %) and a small decrease in others (up to − 5 %) 
(Figs. S23b and S24). A part of PM2.5 are emitted by traffic, so like NO2, 
they are sensitive to the presence of trees in streets and to the emission 
intensity, which explains the heterogeneity obtained. Although biogenic 
urban tree emissions strongly influence OM concentrations, they have a 
limited impact on PM2.5 concentrations (+0.5 % on average) except in 
the densely vegetated areas (up to +2.9 %) (Fig. S23d). The effect of dry 
deposition on leaves is weak and induces a decrease of PM2.5 concen-
trations by up to − 1.6 % (Fig. S23c). Note that the addition of trees does 
not significantly modify the statistics between simulated and observed 
PM2.5. 

To summarise, PM2.5 concentrations increase because of biogenic 
emissions from urban trees and in particular monoterpene an sesqui-
terpene emissions that leads to the formation of OM. In addition, there is 
an increase in concentrations in streets with trees due to the aero-
dynamic effect and a small decrease in adjacent streets. 

4. Conclusion 

The three main effects of trees, i.e. reduced ventilation (aerodynamic 
effect), dry deposition on leaves and biogenic emissions are rarely all 
taken into account over large urban areas (Mircea et al., 2023). This 
study aims to estimate the urban tree effects on air quality at the street 
and city scale, which to our knowledge, has never been studied before. 
Firstly, the three main effects of urban trees on air quality were added to 
the modeling chain CHIMERE/MUNICH: aerodynamic effect in street 
canyons, dry-deposition on leaves, BVOC emissions. 

The simulations show that the dry deposition reduces the concen-
trations of gas and particles by at most a few percents. This decrease is 
only slightly significant for ozone in streets with trees. The tree aero-
dynamic effect affects mainly the species emitted in streets. The impact 
of aerodynamic effect increases with emission intensity and tree LAI. It is 
significant in streets with high and medium emissions depending on the 
LAI, and reaches +37 % for NO2. Although ozone is a secondary 
pollutant, and is therefore not emitted in the street, concentrations are 
also modified by the aerodynamic effect of trees, because of the increase 
in NOx concentrations and titration. The tree aerodynamic effect also 
impacts OM and PM2.5 concentrations through the effect on primary 
aerosols (up to +31.5 and + 22 % respectively). 

As expected, the biogenic emissions from urban trees increase very 
largely the concentrations of isoprene and monoterpenes both in the 
streets and the background. This increase is higher during heatwaves 
due to higher emissions. Compared with measurements, isoprene con-
centrations are globally well estimated, but they tend to be over-
estimated during the heatwave. However, for monoterpenes and 

sesquiterpenes, the scenario where their emissions are doubled leads to 
the best correlation between simulated and observed monoterpene 
concentrations. The urban tree biogenic emissions do not significantly 
impact NO2 concentrations and induce a slight increase in O3 street 
concentrations of 1 % on average over the 14 days and of 2.1 % during 
the 4-day heatwave. The OM concentrations significantly increase 
because of biogenic emissions (+2.4 % on average over the 14 days and 
+ 3.4 % during the heatwave). This increase is larger when monoterpene 
and sesquiterpene emissions are doubled, and this scenario gives a better 
comparison to measurements. This suggests the importance of mono-
terpenes and sesquiterpenes from urban vegetation in the formation of 
OM in summer. 

To summarise, this study indicates that trees cannot be considered as 
an effective solution for reducing air pollution via leaf deposition. 
However, there are large uncertainties in the dry deposition parame-
terizations used and more measurements of dry-deposition velocities on 
urban trees at the leaf scale are necessary. The aerodynamic effect 
locally increases the concentrations of the species emitted in the street. 
Its intensity depends on tree LAI and its impact on concentrations is 
correlated to chemical species emission, suggesting that the plantation 
of large trees in streets with heavy traffic should be limited. Finally, the 
biogenic emissions induce an increase in ozone (mainly due to isoprene 
and OVOC emissions) and organic matter (also due to monoterpene and 
sesquiterpene emissions), especially during the heatwave periods. It 
should be remembered, that there is a large uncertainty on the emission 
factors of BVOCs (about a factor of 2) and they vary with the tree species. 
Emission factors are not specifically estimated for urban trees, which can 
be quite different from forests, as they are planted and pruned artifi-
cially. Therefore, the impact of urban trees on ozone and particulate 
concentrations varies greatly from one city to another (Owen et al., 
2003; Calfapietra et al., 2013; Ren et al., 2017). More measurements of 
emission factors specific to urban trees are needed to lower down the 
uncertainties on tree BVOC emission factors, and in particular terpenes. 
The overestimation of isoprene concentrations observed could be due to 
the effect of water stress on trees, which could reduce isoprene emis-
sions, and it is not considered in this study. 

Trees have a significant impact on air quality, notably through their 
aerodynamic effects and BVOC emissions. The conclusions of this study 
can be generalized at least to cities whose climate and morphology 
(building aspect ratio) are similar to those of Paris. The modeling chain 
developed could be used to study different tree planting scenarios to see 
whether certain tree species and configurations could limit these im-
pacts. Given the many positive aspects of urban trees (effects on thermal 
comfort, water, biodiversity, well being, etc.), planting trees in cities is 
essential, but urban tree management should include criteria related to 
air quality (Sicard et al., 2018), which is not the case today. 

Code availability 

The code to process the Paris tree inventory database, calculate tree 
characteristics and estimate biogenic emissions is available online at: 
https://zenodo.org/doi/10.5281/zenodo.10381923, last accessed on 
02/02/2024 (Maison et al., 2023). 

The version of CHIMERE-WRF code used here is available on request. 
The last version of the MUNICH source code is available online at: 

https://doi.org/10.5281/zenodo.4168984, last accessed on 02/02/ 
2024. 
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