

Crocodylomorph and dinosaur tracks from the lowermost Jurassic of Le Veillon (western France): ichnotaxonomic revision of the type material (Lapparent collection)

Jean-David Moreau, Romain Vullo, Elsie Bichr, Jérôme Thomas, Georges Gand, Cyril Gagnaison, Pascal Barrier, Didier Néraudeau

▶ To cite this version:

Jean-David Moreau, Romain Vullo, Elsie Bichr, Jérôme Thomas, Georges Gand, et al.. Crocodylomorph and dinosaur tracks from the lowermost Jurassic of Le Veillon (western France): ichnotaxonomic revision of the type material (Lapparent collection). Geodiversitas, 2024, 46 (8), pp.343-366. 10.5252/geodiversitas2024v46a8. insu-04632523

HAL Id: insu-04632523 https://insu.hal.science/insu-04632523v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Crocodylomorph and dinosaur tracks from the lowermost Jurassic of
2	Le Veillon (western France): ichnotaxonomic revision of the type
3	material (Lapparent collection)
4	
5	JEAN-DAVID MOREAU ^{1,*} , ROMAIN VULLO ² , ELSIE BICHR ² , JÉRÔME THOMAS ¹ ,
6	GEORGES GAND ¹ , CYRIL GAGNAISON ³ , PASCAL BARRIER ³ and DIDIER
7	NÉRAUDEAU ²
8	
9	¹ Biogéosciences, UMR 6282 CNRS, Université Bourgogne, 6 Boulevard Gabriel, 21000
10	Dijon, France; jean.david.moreau@gmail.com.
11	² Géosciences Rennes, UMR 6118 CNRS, Université Rennes, 263 Avenue du Général
12	Leclerc, F-35000 Rennes, France.
13	³ Institut Polytechnique UniLaSalle Beauvais, Département Géosciences, Unité Bassins-
14	Réservoirs-Ressources (B2R – U2R 7511), UniLaSalle-Université de Picardie Jules VERNE,
15	19 rue Pierre Waguet – boîte postale 30313, F-60026 Beauvais cedex, France.
16	* Corresponding author
17	
18	Abstract: The coastline from Le Veillon (western France) has become a key tracksite for the
19	study of Lower Jurassic archosaurs from Europe since the second half of the 20th century.
20	Amongst the thousand dinosaur footprints recovered from this locality, some tracks became
21	historical and ichnotaxonomical comparative references in many ichnological studies.
22	However, the type material from Le Veillon has never been revised. Here, we reinvestigate
23	the ichnogeneric and ichnospecific type material from the Albert-Félix de Lapparent's

24	collection using morphometry and 3D imaging photogrammetry. Amongst the eight ichnotaxa
25	historically created at Le Veillon, only two are considered valid, i.e. Grallator olonensis and
26	Grallator variabilis. Batrachopus gilberti, Eubrontes veillonensis and Grallator maximus are
27	subjective junior synonyms of Batrachopus deweyi, Eubrontes giganteus and Grallator
28	minusculus, respectively. The ichnogenus Talmontopus is a subjective junior synonym of
29	Kayentapus. Anatopus and Saltopoides are considered as nomina dubia. The tracks initially
30	ascribed to Dahutherium are here reinterpreted as Batrachopus isp. and indeterminate
31	grallatorid tracks. The ichnoassemblage from Le Veillon is more similar to tracks from the
32	Grands Causses area (southern France) than to any other Lower Jurassic archosaur
33	ichnoassemblage worldwide. Although contemporaneous body fossils remain unknown in
34	Vendée, the tetrapod tracks from Le Veillon confirms the co-occurence of crocodylomorphs
35	and theropods in the central part of Laurasia, along the Tethyan border (near the latitude 30°
36	N) during the Hettangian.
37	
38	Keywords: theropod footprints; crocodylomorph tracks; Hettangian; Talmont-Saint-Hilaire;
39	Vendée.
40	
41	
42	
43	
44	
45	

In 1935, the naturalist Edmond Bocquier (1881-1948) mentioned the presence of "human 46 foot-like" concavities forming alignments on the surface of sandstones from the tidal area of 47 Talmont-Saint-Hilaire, in Vendée, western France (Bocquier 1935; Godard 2003; Viaud & 48 Godard 2008). However, he did not correctly interpret these structures and suggested they 49 were probably produced by marine erosion. It is only in 1963 that Gilbert Bessonnat first 50 interpreted these depressions as archosaur tracks (Lapparent & Montenat 1967). Several field 51 52 prospections and scientific excavations were undertaken in 1963, 1966 and in 1986-1987 (Lapparent & Montenat 1967; Viaud & Duclous 2003). Bessonnat et al. (1965) mentioned 53 more than two hundred tracks. In their monography published in the "Mémoires de la Société 54 Géologique de France", Lapparent & Montenat (1967) estimated that the tidal flat would bear 55 around a thousand crocodylomorph and dinosaur tracks. They provided the first and only 56 detailed ichnological analysis of this tracksite. In this work, they erected eight ichnotaxa: 57 58 Anatopus palmatus, Batrachopus gilberti, Eubrontes veillonensis, Grallator maximus, Grallator olonensis, Grallator variabilis, Talmontopus tersi and Saltopoides igalensis. The 59 validity of some of these ichnotaxa was questioned by several authors (e.g. Lockley & Meyer 60 2000; Demathieu 2003) but the type material was never revised. 61

Amongst the many academic institutions and museums housing archosaur tracks from 62 63 Le Veillon (see the complete list of institutions in Viaud 2003), the collection of the Institut Polytechnique UniLaSalle (Beauvais, France) appears the most important from a scientific 64 point of view. It includes all the type specimens that Lapparent & Montenat (1967) used to 65 erect and describe their ichnotaxa. This collection was constituted by the geologist and 66 palaeontologist Albert-Félix Cochon de Lapparent (1905-1975). The tracksite of Le Veillon 67 being strongly altered by marine erosion and massive excavations (Viaud 2003), this 68 collection represents an outstanding heritage for this locality. Here we reinvestigate the type 69

- 70 material of Lapparent & Montenat (1967) using morphometry and 3D imaging
- 71 photogrammetry in order to revise the validity of the ichnotaxa from Le Veillon.
- 72

73 GEOGRAPHICAL AND GEOLOGICAL SETTING

74

The tracksite is located in the northwesternmost part of the Aquitaine Basin (Fig. 1), along the 75 southern edge of the Armorican Massif (northwestern France), in the Vendée department, 5 76 km south-west of Talmont-Saint-Hilaire. The tracksite is located along a 700-800 m long 77 portion of the Atlantic coastline between the beach from Le Veillon and Port Bourgenay. The 78 tracksite is only visible during low tides. Most of the tracks of the Lapparent collection were 79 collected at "Pointe du Veillon" and "Anse de la République". The Hettangian deposits from 80 the Talmont-Saint-Hilaire coastline can be divided into two informal formations: (1) a detrital 81 82 Formation and (2) a Dolomitic and Limestone Formation. The former, only visible during low tides, consists of lenticular green sandstones that alternate with green clay or argillites. All 83 tracks analysed in this study were collected by Lapparent & Montenat (1967) in this 84 formation. However, rare tracks were observed in the overlying Dolomitic and Limestone 85 Formation (Lapparent & Montenat 1967; Montenat & Bessonnat 2002). At Le Veillon, the 86 87 Detrital Formation yielded abundant conifers remains including leafy axes (Brachyphyllum sp., Hirmeriella airelensis, Pagiophyllum araucaricum and Pagiophyllum peregrinum) and 88 pollen grains (Classopollis) (Thévenard et al. 2003). The Dolomitic and Limestone Formation 89 is mainly exposed in the cliffs along the coastline. The lower part of this formation consists of 90 91 massive, yellowish, brownish to reddish dolomite beds that alternate with green to blue clays. The upper part of the Dolomitic and Limestone Formation consists of grey to yellowish 92 coquinas and dolomitic/calcarenitic limestone beds. First regarded as Rhaetian by Lapparent 93 & Montenat (1967), the age of the Detrital Formation was debated by Montenat & Bessonnat 94

95 (2002) and later challenged by Thévenard *et al.* (2003) who proposed a Hettangian age (Early
96 Jurassic) based on the plant assemblage. The composition of the Detrital Formation
97 ichnoassemblage that we re-evaluate here corroborates this dating. The malacofauna from the
98 coquinas of the limestone levels further attests a Hettangian age (Ters 1961).

99

100 MATERIAL & METHODS

101

In 2022 and 2023, we investigated the Lapparent collection at the Institut Polytechnique 102 UniLaSalle (Beauvais, France). The largest part of this collection corresponds to archosaur 103 104 tracks from the Early Jurassic sandstones of Talmont-Saint-Hilaire. It consists of 105 tetradactyl/pentadactyl crocodylomorph tracks and tridactyl dinosaur tracks. Their 106 preservation is variable, from exquisitely preserved tracks to poorly preserved tracks. The 107 Lapparent collection includes the type material used to erect the following ichnotaxa: 108 Anatopus palmatus (ULB-04C15 B, holotype), Batrachopus gilberti (ULB-04C10 A, 109 holotype), Eubrontes veillonensis (ULB-04D21_A, plastotype), Grallator maximus (ULB-04C13_B, plastotype), Grallator olonensis (ULB-04D19_A and ULB-04C12_A holotype; 110 ULB-04C11_A, paratype), Grallator variabilis (ULB-04C08_D, plastotype; ULB-04C05_A 111 and ULB-04C08_A, paratypes), Talmontopus tersi (ULB-04C02_A, holotype) and 112 Saltopoides igalensis (ULB-04C01_B, plaster cast of one footprint from the type trackway). 113 A list of the type specimens is given in Tables 1 and 2. 114 One hundred specimens from the Lapparent collection were used to conduct a 115 116 biometric analysis. The descriptive terminology and biometric parameters used to describe crocodylomorph and dinosaur tracks largely follow those from Leonardi (1987), Demathieu et 117 al. (2002) and Milàn & Hedegaard (2010). We used the following standard abbreviations (Fig. 118 119 2): "L", length of footprint (for dinosaur tracks); "LM" and "LP", length of manus and pes

tracks, respectively (for crocodylomorph tracks); "W", width of footprint (for dinosaur 120 tracks); "WM" and "WP", width of manus and pes tracks, respectively (for crocodylomorph 121 tracks); "LI", "LII", "LIII", "LIV" and "LV": lengths of digits I, II, III, IV and V, 122 respectively; "I-V" "I-IV" and "II-IV", divarication angles between digits I and V, digits I 123 and V, and digits II and IV, respectively. For tridactyl dinosaur footprints, we also used "D" 124 which corresponds to the length of the free part of digit III sensu Demathieu et al. (2002). In 125 the section "Palaeoichnology" below, these morphometric parameters are described by giving 126 three values; the minimum, the average (in brackets) and the maximum. Twenty-seven 127 crocodylomorph tracks (Table 1) and seventy-three dinosaur tracks (Table 2) were measured. 128 The biometric values of the tracks from the Lapparent collection were compared with 129 a large dataset including measurements of 406 tridactyl dinosaur tracks from various Lower 130 Jurassic strata of the USA (based on data from Weems 1992, 2019; Demathieu et al. 2002 and 131 Gand et al. 2018) and the Causses Basin, southern France (based on data from Demathieu et 132 al. 2002 and Moreau et al. 2021). Locomotion speed and height of the hip were estimated 133 based on the formulas of Alexander (1976) and Thulborn (1990). In order to generate 3D-134 photogrammetric reconstructions of each slab-bearing tracks, the software Agisoft PhotoScan 135 Professional 1.2.4 was used to align and combine multiple digital photographs taken with a 136 Nikon D5200 camera coupled with an AF-S NIKKOR 18–105 mm f/3.5–5.6G ED camera 137 lens. The same software was used to produce 3D-photogrammetric textured meshes and 138 digital elevation models (DEMs) in false colours. 139

140

141 SYSTEMATIC PALAEOICHNOLOGY

142 Amongst the ichnotaxa erected by Lapparent & Montenat (1967) we distinguish (1) the valid

143 ichnotaxa Grallator olonensis and Grallator variabilis, and (2) the invalid ichnotaxa

144 Anatopus palmatus, Batrachopus gilberti, Eubrontes veillonensis, Grallator maximus,

Talmontopus tersi and *Saltopoides igalensis*. Lapparent & Montenat (1967) also described
additional and problematic tracks that they identified as *Dahutherium* sp., Unnamed track n°1,
Unnamed track n°2. All these tracks are revised here.

148

Nomenclatural remarks. The ichnotaxonomy of the "classic" Eraly Jurassic tridactyl 149 footprints such as Anchisauripus, Grallator and Eubrontes is complex and remains in the 150 centre of many debates. According to Olsen & Galton (1984), the difference in size of these 151 three types of tracks (Grallator, Anchisauripus and Eubrontes being small-, medium- and 152 large-sized tracks, respectively; i.e., less than 15 cm, about 20 cm long and up to 25 cm long, 153 respectively according to Olsen et al. (1998)) reflects an ontogenetic series and justify the use 154 of a single ichnotaxon. Olsen (1980) and Olsen & Galton (1984) recommended to consider 155 Anchisauripus and Eubrontes as junior synonyms of Grallator. In addition, Weems (1992) 156 could not see any significant morphological difference between Grallator and Anchisauripus, 157 and he rejected the junior name Anchisauripus. Although Olsen et al. (1998) considered 158 Anchisauripus, Grallator and Eubrontes as distinctive ichnogenera, Demathieu (1993), 159 Demathieu & Sciau (1992) and Demathieu et al. (2002) did not used Anchisauripus for 160 medium-sized tridactyl tracks (i.e. L= 15-30 cm) from the Lower Jurassic deposits of France. 161 They justified this choice by the systematic absence of a hallux trace which is an occasional 162 character of Anchisauripus (Lull 1904). Accordingly, Demathieu et al. (2002) emended the 163 diagnosis of Grallator in the following term: "Tridactyl footprints II-IV, from some 164 centimetres to up to a little over 30 cm long, with slender digits in small forms and wider ones 165 166 in the largest. Digits are often separated from each other and bear well-marked pads. Length of the free part of III smaller as track-size increases. L/D varies from 2.24 to 2.78 at the 5% 167 threshold. Angle II-IV up to 57°" (translated from French). Ichnological assemblage from Le 168 169 Veillon sharing strong similarities with tracks found in the Lower Jurassic of the Causses

170	Basin, we follow here Demathieu et al. (2002) and use Grallator for medium-sized tridactyl
171	footprints.
172	
173	Valid ichnotaxa
174	
175	Ichnogenus GRALLATOR Hitchcock, 1858
176	Grallator olonensis Lapparent & Montenat, 1967
177	Figure 3
178	
179	Holotype. Lapparent & Montenat (1967) defined the holotype of G. olonensis as a surface
180	bearing 25 footprints. Here, we limit the holotype to the longest trackway from this surface:
181	trackway T1-Go of the slabs ULB-04D19_A (concave epireliefs; Fig. 3A-B) and ULB-
182	04C12_A (convexe hyporeliefs).
183	
184	Paratype. Lapparent & Montenat (1967) defined the paratype (that they called "other samples
185	of the type") of G. olonensis as a group of 5 footprints on the slab ULB-04C11_A. Here, we
186	limit the paratype to the footprint ULB-04C11_A6 (Fig. 3F-H).
187	
188	Other material. ULB-04C03_B, ULB-04C03_C, ULB-04C03_D, ULB-04C03_E,
189	ULB-04C03_F, ULB-04C05_C, ULB-04C07_A, ULB-04C08_C, ULB-04C08_E, ULB-
190	04C08_G, ULB-04C09_A, ULB-04C09_C, ULB-04C17_E, ULB-04C19_A, ULB-04D17_A,
191	ULB-04D17_B, ULB-04D17_C, ULB-04D22_B,
192	

Etymology. Lapparent & Montenat (1967) erected the ichnospecies *G. olonensis* in reference
to the Olonne-sur-Mer area (Vendée), close to the tidal area from Le Veillon.

195

Diagnosis. Tridactyl, very small-sized tracks (L=3–5 cm), longer than wide and with a long projection of the trace of digit III (L/D = 2.1 in average). L/W ratio quite variable (1.2–2.5). Well-defined, very thin, elongated and often separated impressions of digits. Impression of digit III longer than traces of digits II and IV. Trace of digit III often curved distally. Traces of digits III and IV quite similar in length. Bases of digits II and IV proximally located at the same height. Variable but low divarication angle II–IV (35° in average). Tiny, oval and wellmarked phalangeal pads. Tiny marks of acuminate claws.

203

204 Description. The material includes two trackways (T1-Go and T2-Go) composed of at least 205 three consecutive footprints (ULB-04D19_A; Fig. 3A-B). The longest trackway is 43.5 cm long. The stride is 34.0–(36.7)–39.5 cm long and the pace is 15.1–(17.8)–20.5 cm long. 206 207 Tracks form a narrow angle with the trackway midline. The material also includes several 208 partial trackways (ULB-04C19_A, ULB-04D17_A, ULB-04D19_A). The tracks are tridactyl, very small-sized, 3.3–(4.3)–4.9 cm long and 1.5–(2.5)–3.3 cm wide (Fig. 3C–H; Table 2). 209 Tracks are longer than wide and show a long projection of the traces of digit III. The L/W and 210 211 L/D ratios are quite variable, being 1.2–(1.8)–2.5 and 1.8–(2.1)–2.4, respectively. Impressions of digits are well defined, very thin, elongated and often separated. The impression of digit III 212 is longer than those of digits II and IV. The trace of digit III is often curved distally. The 213 traces of digits II and IV are quite similar in length. Typically, the bases of digits II and IV are 214 proximally located at the same height. The position of the digito-metatarsal pad of digit IV is 215 216 rarely more proximal than that of digit II. The angle between digits II and IV is 24° –(34°)–

217 44°. Phalangeal pads are tiny, oval and commonly well marked. Tracks commonly bears tiny
218 marks of acuminate claws.

220	Remarks. Based on material from Le Veillon, Lapparent & Montenat (1967) erected G.
221	olonensis and defined the type material but without providing any diagnosis. In France and
222	throughout the world, G. olonensis was only reported from Le Veillon. Other very small-sized
223	tridactyl tracks assigned to distinct ichnospecies of Grallator were described from Lower
224	Jurassic strata in Connecticut (Lull 1953): G. cursorius, G. gracilis (= G. tuberosus according
225	to Weems 1992) and G. tenuis. G. cursorius differs from G. olonensis in showing more
226	slender, longer tracks (type material with L=7.0–7.9 cm according to Weems 1992) and a
227	base of IV much more proximal than II (Fig. 4). Although G. gracilis falls in the range size of
228	G. olonensis, it differs from the latter in showing lower projection of III (type material with
229	L/D= 2.6 according to Weems 1992; Fig. 4). G. tenuis differs from G. olonensis in showing
230	longer tracks (type material with L=6.4–6.6 cm according to Weems 1992) and the base of IV
231	which is more proximal than II (Fig. 4).
232	
233	Grallator variabilis Lapparent & Montenat, 1967
234	Figure 5
235	
236	Plastotype. ULB-04C08_D (Fig. 5A-C).
237	
238	Paratypes. ULB-04C05_A (Fig. 5D-F) and ULB-04C08_A.
239	

Other material. ULB-04C05_B, ULB-04C08_B, ULB-04C08_F, ULB-04C13_A, ULB04C14_J, ULB-04C15_D, ULB-04C15_E, ULB-04C17_C, ULB-04C17_D, ULB-04C17_G,
ULB-04C18_B, ULB-04C18_C, ULB-04D18_A, ULB-04D18_B, ULB-04D18_C, ULB04D18_D.

244

Description. The tracks are tridactyl, small-sized, longer than wide (L/W = 1.3 - (1.6) - 1.9), 245 8.6-(11.0)-13.6 cm long and 5.2-(6.9)-8.0 cm wide (Fig. 5A-I; Table 2). The trace of digit 246 247 III shows a long free part (L/D = 1.8 - (2.4) - 3). Impressions of digits are very well defined, thin, elongated and often separated. The impression of digit III is longer than traces of digits 248 II and IV. Traces of digits II are the shortest. At the base of the trace of digit IV, the position 249 of the digito-metatarsal pad is more proximal than that of digit II. The divarication angle II-250 IV is 24° – (35°) – 46° . Round to oval phalangeal pads and pointed marks of claws are 251 252 commonly very well marked. Marks of claws on the traces of digits II and IV are clearly oriented outward. 253

254

Remarks. G. variabilis was erected by Lapparent & Montenat (1967) based on tracks from Le 255 Veillon. This ichnospecies was abundantly reported in coeval tracksites from the Hettangian-256 Sinemurian deposits of the Causses Basin, in southern France (Demathieu & Sciau 1992; 257 Sciau 1992; Demathieu et al. 2002; Gand et al. 2007), as well as in northern Africa (Bessedik 258 et al. 2008). As mentioned by Lapparent & Montenat (1967), the morphology of G. cuneatus 259 260 from the Connecticut is very close to that of G. variabilis from Le Veillon. Morphometric and 261 statistical analyses made by Demathieu et al. (2002) and Gand et al (2007) on G. variabilis from the Causses Basin confirmed that this last ichnospecies and G. cuneatus is an 262 ichnospecies with close morphological affinities with G. variabilis (Fig. 4). According to 263 264 Weems (1992), G. cuneatus is a synonym of G. tenuis. However, this ichnospecies is smaller

265	than G. variabilis from Le Veillon and from the Causses Basin; L=6.4–6.6 cm; Fig. 4). Since
266	the case of G. cuneatus remains unclear, Demathieu et al. (2002) did not synonymize G.
267	variabilis with this ichnospecies. Considering G. variabilis as valid, Demathieu et al. (2002)
268	erected the following diagnosis (translated from the French): "Fingers are thin with well-
269	marked phalangeal pads. The median digit is very elongated, the lateral digits are tightened
270	and slightly tilted. There are three pads on digits III and IV, and two on digit II. There is no
271	heel but digit IV is slightly prolonged posteriorly. Claws are elongated and sharp forming
272	cuneiform marks. The ratio stride/pace corresponds to an elongated stride. The paces are
273	arranged on a same line, the median digit in the axis of the trackway, its claw oriented
274	inwards".
275	
276	Invalid and problematic ichnotaxa
277	
277	
278	Ichnogenus ANATOPUS Lapparent & Montenat, 1967
279	Anatopus palmatus Lapparent & Montenat, 1967
280	(nomen dubium)
281	Figure 6
282	
283	Material. ULB-04C10_C, ULB-04C15_B (holotype of A. palmatus), ULB-04C15_C.
284	
285	Description. The material includes three, isolated and very poorly preserved tracks. Tracks
286	ULB-04C15_B (Fig. 6A-C) and ULB-04C15_C (Fig. 6D-F) are tridactyl whereas ULB-
287	04C10_C is a partial footprint and only preserves two traces of digits. Lapparent & Montenat
288	(1967) included tracks with two kinds of morphologies in this ichnotaxon.

ULB-04C15_B is small-sized and wider than long (L = 8.5 cm, W = 9.5 cm; Fig. 6A– C; Table 2). The trace of digit III shows a long free part (L/D = 1.6). Impressions of digits are thin, elongated, separated and apically sharp. The impression of digit III is markedly longer than traces of digits II and IV that are not fully impressed (proximal part not marked). Marks of claws are well marked. They are oriented outward on traces of digits II and IV.

ULB-04C15_C is small-sized, 7.5 cm wide (Fig. 6D–F; Table 2). Even if the proximal part of ULB-04C15_C is broken, the footprint is longer than wide. The trace of digit III is thin, elongated, shows a long free part and rounded to oval phalangeal pads. The divarication angle II–IV is 55°.

298

Remarks. Lapparent & Montenat (1967) justified the erection of Anatopus palmatus (without 299 establishing its diagnosis) by (1) the occasional presence of a skin mark forming a webbing 300 301 between tracks of digits II, III and IV; and (2) traces of digits II and IV very short compare to digit III (Fig. 6A-B). Lapparent & Montenat (1967) indicated that only the holotype (ULB-302 303 04C15_B; Fig. 6A–C) shows the mark of a webbing. After reinvestigation of the holotype, we 304 are not convinced by the description of Lapparent & Montenat (1967) (Fig. 6C). The structure considered by Lapparent & Montenat (1967) as the border of a webbing clearly shows a 305 306 sedimentary origin (structure propagated beyond the track). The holotype of Anatopus 307 *palmatus* consists of an undertrack, explaining why the marks of digits II and IV are so short. The sketch of ULB-04C15_C proposed in fig. 16B1 of Lapparent & Montenat (1967) does 308 not correspond to the morphology of the track, which actually looks more like a grallatorid 309 310 footprint; however, it is too poorly preserve to propose any precise determination. We thus consider Anatopus palmatus as a nomen dubium. 311

- 312
- 313

Ichnogenus BATRACHOPUS Hitchcock, 1845

314	Batrachopus gilberti Lapparent & Montenat, 1967
315	(subjective junior synonym of Batrachopus deweyi (Hitchcock, 1843) Hitchcock, 1845)
316	Figure 7
317	
318	Material. ULB-04C02_B, ULB-04C04_A, ULB-04C09_B, ULB-04C10_A (holotype of B.
319	gilberti), ULB-04C10_E, ULB-04C14_A, ULB-04C14_C, ULB-04C14_D, ULB-04C14_F

320

ULB-04C14_G, ULB-04C14_H.

Description. The material includes a single trackway (ULB-04C10_E; Fig. 7A–C) and several 322 323 isolated pes/manus sets (Fig. 7D-L; Table 1). The trackway is narrow, 76 cm long and 8 cm wide and is composed of five consecutive pes/manus sets. Pes and manus track strides are 324 325 33.0-(35.5)-38.0 cm long. Pes track and manus track pace is 16.0-(17.7)-19.5 cm long. Pes 326 and manus tracks show a small positive rotation angle relative to the trackway axis (15–(20)– 25°). Pes and manus tracks show a pronounced heteropody. Pes imprints are digitigrade and 327 328 functionally tetradactyl, longer than wide to as wide as long (2.7–(3.2)–3.9 cm long and 2.1– 329 (3.0)–3.8 cm wide; Table 1). The ratio PL/PW varies from 0.8 to 1.4. On pes tracks, impressions of digits are clearly marked, straight to curved, and short to quite elongated. Their 330 331 apices are rounded and can sometimes bear tiny marks of claws. On pes tracks, impression of digit III is always the longest, and impression of digit I the smallest (Fig. 7D–L). Track of 332 digit II is often the second longest. The divarication angle of digits I-IV strongly varies (36-333 (64)-82°). On pes tracks, the traces of digits II and III are the deepest. Pes tracks can show a 334 short and large plantar-like impression. Manus tracks are pentadactyl and smaller than pes 335 tracks, wider than long to as long as wide, 1.1-(1.8)-2.4 cm long and 1.6-(1.8)-2.2 mm wide 336 (ML/MW = 0.7-(0.)-1.9). On manus tracks, digit imprints are very short and rounded. When 337 preserved, digit V is oriented posteriorly. 338

340	<i>Remarks</i> . These tracks were firstly ascribe to <i>Cheirotherium</i> (= <i>Chirotherium</i>) by Bessonnat
341	et al. (1965). This Triassic ichnogenus differs from the tracks from Le Veillon in showing
342	larger tracks, pentadactyl pes tracks with a trace of digit V much more proximal than the
343	group I-IV. Based on the following morphological characters, tracks from Le Veillon can be
344	confidently ascribed to Batrachopus (see the emended diagnosis in Olsen & Padian 1986):
345	small quadrupedal trackway; pes tracks are digitigrade and functionally tetradactyl; digit III of
346	the pes is the longest and digit I the shortest; pentadactyl and digitigrade manus, usually
347	rotated so that digit II points forward, digit IV points laterally, and digit V points posteriorly;
348	and manus much smaller than the pes.
349	The gross morphology of <i>Batrachopus</i> is close to those of <i>Antipus</i> and
350	Crocodylopodus. Olsen & Padian (1986) considered Antipus as a synonym of Batrachopus.
351	However, Coombs (1996) and Lockley & Meyer (2004) rejected this proposition. According
352	to Lockley & Meyer (2004), Antipus differs from Batrachopus in showing: much longer
353	impressions of digits on the manus tracks; slender, tapering, quite curvated digit tracks with
354	higher divarication angles and narrow claw impressions. The tracks from Le Veillon clearly
355	differ from Antipus in showing shorter blunt-toed digits. Crocodylopodus differs from tracks
356	of Le Veillon in showing more slender and divergent digits, less outward rotation of the pes
357	and more outward rotation of the manus (Lockley & Meyer 2004).
358	Based on ULB-04C10_A, Lapparent & Montenat (1967) erected B. gilberti. The

validity of the diverse ichnospecies of *Batrachopus* was strongly debated (Olsen & Padian
1986; Rainforth 2005, 2007). In their revision of *Batrachopus*, Olsen & Padian (1986)
considered only three valid ichnospecies for this ichnogenus and emended the diagnosis of
each of them: *B. deweyi*, *B. parvulus* and *B. dispar*. Based on the following characters, the
tracks from Le Veillon can be confidently ascribed to *B. deweyi* (see emended diagnosis in

364	Olsen & Padian 1986): range size of pes length (between 2 and 6 cm); manus tracks about
365	75% of the length of the pes; on pes tracks, imprints of digit II and IV are sub-equal in length.
366	We consider B. gilberti as a junior synonym of B. deweyi. B. parvulus (see emended diagnosis
367	in Olsen & Padian (1986)) differs from tracks of Le Veillon in showing a very short
368	impression of I on pes tracks. According to Rainforth (2005), B. parvulus can be synonymized
369	with the type ichnospecies B. deweyi. B. dispar (see emended diagnosis in Olsen & Padian
370	(1986)) differs from tracks of Le Veillon in showing a stronger heteropody. Rainforth (2005)
371	considered three additional valid ichnospecies: B. bellus, B. gracilior, B. gracilis. It contrasts
372	with Olsen & Padian (1986) who subjectively synonymised these ichnospecies in <i>B. deweyi</i> .
373	According to Rainforth (2005), B. bellus cannot be synonymised with B. deweyi because it
374	differs from this ichnospecies in showing tridactyl pes (not concordant with the sketch of B .
375	bellus in fig. 20.2B of Olsen & Padian (1986)). Rainforth (2007) tentatively synonymised B.
376	gracilior and B. gracilis. Olsen & Padian (1986) explained that "apart from its smaller, longer
377	pace and the lack of impressions of digit V in the pes" B. gracilis is identical to B. deweyi.
378	
379	Ichnogenus DAHUTHERIUM Montenat, 1968
380	Dahutherium sp.
381	(nomen nudum)
382	Figure 8
383	
384	Material. ULB-04C15_A, ULB-04C18_B.
385	Description. Lapparent & Montenat (1967) described two isolated tracks including a
386	tetradactyl pes track (ULB-04C18_B; Fig. 8 A-C) and a tridactyl manus track (ULB-

387 04C15_A; Fig. 8D–F) that were collected *ex-situ*. Our interpretation is that the track ULB-

04C18_B described as a tetradactyl pes track by Lapparent & Montenat (1967) actually 388 represents two superimposed tridactyl grallatorid footprints (Fig. 8 A–C). The smallest of the 389 two superimposed tracks is longer than wide (L/W = 1.7), 12.2 cm long and 7.2 cm wide. The 390 391 trace of digit III shows a long free part (L/D = 2.4). Impressions of digits are very welldefined, thin and elongated. The impression of digit III is longer than traces of digits II and 392 IV. The trace of digits II is the shorter. At the base of the trace of digit IV, the position of the 393 digito-metatarsal pad is more proximal than that of digit II. The divarication angle II-IV is 394 395 40°. Round to oval phalangeal pads and pointed marks of claws are well marked. The largest of the two superimposed tridactyl tracks is ≈ 14 cm long (value measured on a partial length 396 397 of track, the apex of the trace of III being not well-marked), 12 cm wide. Impressions of digits are thin, elongated and separated. The divarication angle II-IV is 41°. The impression of digit 398 III is the longest. ULB-04C15 A (Fig. 8D–F) is tetradactyl, not tridactyl as proposed by 399 400 Lapparent & Montenat (1967). This track is quite wider than long, 3.0 cm long and 3.9 cm wide (Table 1). Impressions of digits are short and their apices are rounded. Traces of digit I 401 402 are poorly impressed whereas those of II-IV are well marked. Impression of digit III is the longest, and impression of digit I the smallest. The divarication angle of digits I-IV is 83°. 403

404

Remarks. Lapparent & Montenat (1967) first introduced the name Dahutherium (without 405 diagnosis) for two tracks from Le Veillon while this ichnogenus was actually erected one year 406 later based on material from the Middle Triassic of Ardèche (southern France) (Montenat, 407 1968). The genus Dahutherium has been reported from several Middle Triassic to Lower 408 409 Jurassic tracksites from France (Montenat 1968; Haubold 1971; Gand 1974a, 1974b). The smallest and the largest of the two superimposed tridactyl tracks (initially interpreted as a 410 tetradactyl Dahutherium pes by Lapparent & Montenat (1967); ULB-04C18_B) can be 411 412 ascribed to G. variabilis and Grallator isp., respectively. Although Lapparent & Montenat

413	(1967) interpreted ULB-04C15_A as a tridactyl manus track of <i>Dahutherium</i> , the morphology
414	and the dimension of this specimen match with Batrachopus.
415	
416	Ichnogenus EUBRONTES Hitchcock, 1845
417	Eubrontes veillonensis Lapparent & Montenat, 1967
418	(subjective junior synonym of Eubrontes giganteus Hitchcock, 1845)
419	Figure 9A–C
420	
421	Material. ULB-04D21_A (plaster cast, plastotype of E. veillonensis).
422	
423	<i>Description</i> . The track is tridactyl, longer than wide ($L/W= 1.3$), 34 cm long and 26.5 cm
424	wide (Fig. 9A–C; Table 2). The divarication angle between digits II and IV is quite large (II–
425	$IV = 40^{\circ}$) and D is short (L/D = 3.5). Impressions of digits are particularly wide with well-
426	distinguished and marked pads. The digito-metatarsal pad of digit IV is more proximal than
427	that of digit II. Tracks display elongated and pointed claw marks.
428	
429	Remarks. Based on an in situ trackway composed of twelve footprints, Lapparent & Montenat
430	(1967) erected (without diagnosis) the ichnospecies Eubrontes veillonensis. ULB-04D21_A
431	(Fig. 9A–C) is the plastotype replicating one of the best preserved footprints of this trackway.
432	Recent prospecting conducted in 2022 on the tidal flat from Le Veillon did not allow to find
433	the type trackway, which was most probably destroyed. E. giganteus was introduced by
434	Hitchcock (1845) based on tridactyl tracks from the Lower Jurassic rocks of the Dinosaur
435	Footprint Reservation in Holyoke, Massachusetts (Olsen et al. 1998). In Fig. 4, ULB-
436	04D21_A is compared with Early Jurassic Eubrontes giganteus specimens from France and
437	from the USA. This biometric analysis shows that the <i>Eubrontes</i> track from Le Veillon fully

438	falls within the morphological range of this ichnospecies. E. giganteus and E. veillonensis
439	show similar shape of footprints with massive impressions of digits II, III and IV bearing
440	well-marked pads and long claw marks as well as the presence of a well-marked digito-
441	metatarsal pad of digit IV more proximal than that of digit II. Based on these observations we
442	consider E. veillonensis as a junior synonym of E. giganteus.
443	
444	Ichnogenus GRALLATOR Hitchcock, 1858
445	Grallator maximus Lapparent & Montenat, 1967
446	(subjective junior synonym of Grallator minusculus Hitchcock, 1858 emend. Demathieu,
447	Gand, Sciau & Freytet, 2002)
448	Figure 10
449	
450	<i>Material</i> . ULB-04C04_A_1; ULB-04C06_A; ULB-04C10_B; ULB-04C13_B (holotype of <i>G</i> .
451	maximus).
452	
152	Description The tracks are tridected longer than wide $(I_1/W - 1.5 - (1.6) - 1.7)$ 26.0-(26.8)-
455 AE A	27.5 cm long and 15.5 (16.6) 17.7 cm wide (Fig. 10A, F: Table 2) D is quite long (L/D =
454	27.5 cm long and 15.5–(10.0)–17.7 cm wide (Fig. 10A–F, Table 2). D is quite long (L/D –
455	2.9-(3.0)-3.2). Impressions of digits are large, separated, well defined and elongated. The
456	traces of digits II and III are the smallest and the longest, respectively. The angle between
457	digits II and IV is 30° –(33°)– 37° (Table 2). Impressions of digital pads are well preserved and
458	are circular to oval. The position of the digito-metatarsal pad of digit IV is more proximal
459	than that of digit II (Fig. 10A–F).
460	
-	

461	Remarks. Based on this material, Lapparent & Montenat (1967) erected (without diagnosis)
462	the ichnospecies Grallator maximus. These tracks being similar to G. minusculus (Fig. 4), we
463	consider G. maximum as a junior synonym of this ichnospecies. Based on footprints from the
464	Jurassic of the USA, Hitchcock (1858) first described such large tridactyl tracks under the
465	name Brontozoum minusculum that were renamed Anchisauripus minusculus by Lull (1904).
466	Based on material from the Hettangian-Sinemurian of the Causses Basin, Demathieu (1993)
467	identified tracks that show similarities with the type material of Anchisauripus minusculus.
468	Since Anchisauripus is characterized by the occasional presence of a hallux trace (Lull 1904),
469	which is always absent in the material from France, Demathieu (1993), Demathieu & Sciau
470	(1992) and Demathieu et al. (2002) used Grallator minusculus rather than Anchisauripus
471	minusculus. Demathieu et al. (2002) emended the diagnosis of G. minusculus as follows:
472	"Large tridactyl tracks II–IV of bipeds with $L \times l = ca 300 \times 200$ mm, with large digits and
473	well-marked pads. Claws are weakly developed and the digito-metatarsal pad of digit IV is
474	often marked. The angle II–IV is 39° in average. The projection of III is low with a III/D ratio
475	around 1.93" (translated from French).
476	
477	Ichnogenus SALTOPOIDES Lapparent & Montenat, 1967
478	Saltopoides igualensis Lapparent & Montenat, 1967
479	(nomen dubium)
480	Figure 11
481	
482	Material. ULB-04C01_A, ULB-04C01_B (plaster cast, plastotype of S. igualensis).
483	
484	Description. The tracks are tridactyl, longer than wide (L/W= 1.32–(1.36)–1.40), 15.5–(16)–
485	16.5 cm long and 11–(11.75)–12.5 cm wide; Fig. 11; Table 2). Impressions of digits are quite

wide with well-distinguished claw marks. The free part of III is quite short (L/D = 2.6-(2.8)-3.1). The divarication angle between digits II and IV is large (II–IV = 49.0°–(51.5°)–54.0°) and D is short (L/D=1.31-(1.36)-1.41). The digito-metatarsal pad of digit IV is much more proximal than that of digit II.

Remarks. Based on a poorly preserved trackway composed of three tridactyl footprints (only 490 the distal parts of digits are partially preserved), Lapparent & Montenat (1967) erected 491 Saltopoides igalensis and (without providing any diagnosis). Lapparent & Montenat (1967) 492 493 justified the erection of the ichnogenus Saltopoides by an asymmetry of the footprint and the particularly long length of pace between footprints. Lapparent & Montenat (1967) suggested 494 that the trackmaker was a "jumping dinosaur". Recent prospecting conducted in 2022 on the 495 tidal flat of Le Veillon did not allow us to find the type trackway of S. igalensis that has most 496 probably eroded away. It appears that biometric characteristics of ULB-04C01 A and ULB-497 498 04C01_B (plastotype replicating one of the footprints of the type trackway) differ from other 499 tridactyl tracks from Le Veillon that do not show such a proximal base of digit IV compared 500 to digit II. However, without any possibility to revise the now-destroyed type trackway, the ichnotaxonomic validity of S. igalensis remains questionable. 501

503	Ichnogenus TALMONTOPUS Lapparent & Montenat, 1967
504	(subjective junior synonym of Kayentapus Welles, 1971)
505	Talmontopus tersi Lapparent & Montenat, 1967
506	$(nomen\ dubium = Kayentapus\ isp.)$
507	
508	Figure 12A–C
509	
510	Material. ULB-04C02_A (holotype of T. tersi).

512 *Description*. The track ULB-04C02_A consists of a single, slightly longer than wide (L/W = 513 1.2), 26 cm long and 21.5 cm wide tridactyl track (Fig. 12A–C; Table 2). The angle between 514 II and IV is large (II–IV = 64°). Digit imprints are quite thin and pointed. The traces of digits 515 II and IV are straight and quite similar in length. The trace of digit III is the longest and is 516 slightly curve. The digito-metatarsal base of digit IV is slightly more proximal than that of 517 digit II. The free part of III is quite short (L/D = 2.8). The imprints of pads and claws are only 518 poorly marked.

Remarks. Based on the track ULB-04C02_A, Lapparent & Montenat (1967) erected 519 Talmontopus tersi. They justified the creation of T. tersi by a very high T value between thin 520 521 tracks of digits, and the presence of a putative webbing mark. We consider the webbing mark 522 drew in fig. 17 of Lapparent & Montenat (1967) as a sedimentary structure that corresponds to a slight thickening of sediment preserved between the traces of digits (see also plate XII.1 523 524 in Lapparent & Montenat 1967; ULB-04C02_A). Since ULB-04C02_A shows many 525 characters of *Kayentapus*, we consider *Talmontopus* as a subjective junior synonym of this ichnogenus. Kayentapus differs from Grallator and Eubrontes in showing larger divarication 526 angle II-IV and a smaller L/W ratio. Kayentapus was erected by Welles (1971) based on the 527 type ichnospecies K. hopii from the Lower Jurassic Kayenta Formation in Arizona. Two other 528 ichnospecies were later described from Lower Jurassic strata of the USA and Poland: K. 529 minor and K. soltykovensis (firstly named Grallator (Eubrontes) soltykovensis in Gierliński 530 1991 and Gierliński & Ahlberg 1994), respectively (Weems 1987; Gierliński 1996). Based on 531 532 its D/W and (L-D)/W ratios (0.43 and 0.78, respectively), the track ULB-04C02_A fully falls within the morphological space of K. hopii (see the fig. 1 of Gierliński 1996 and the fig. 6B of 533 Lockley et al., 2011). However, K. hopii is clearly larger (L=34.0-35.5) than ULB-04C02_A 534 535 (Fig. 4). It also differs from ULB-04C02 A in showing traces of digits that are slender and

536	well individualized, and digito-metatarsal pads of the digit IV much more proximal. ULB-
537	04C02_A is close to K. minor (Fig. 4), however, it seems to differ from this ichnospecies in
538	showing a higher D/W ratio (see the fig. 1 of Gierliński 1996 and the fig. 6B of Lockley et al.
539	2011). K. slotykovensis differs from ULB-04C02_A in showing a smaller (L-D)/W ratio (see
540	the fig. 1 of Gierliński 1996 and the fig. 6B of Lockley et al. 2011).
541	
542	Unnamed track n°1
543	(= Batrachopus isp.)
544	Figure 13A–C
545	
546	Material. ULB-04C14_I, ULB-04C17_A.
547	
548	Description. The two tracks described by Lapparent & Montenat (1967) under the name
549	"Unnamed track n°1" are poorly preserved. They are tetradactyl, small-sized, as long as wide,
550	3.3–(3.4)–3.6 cm long and 2.8–(3.0)–3.2 cm wide (Fig. 13A–C; Table 1). Traces of digits are
551	short. They show rounded phalangeal pads and their apices bear tiny marks of claws. A large
552	plantar-like impression is present on ULB-04C14_I.
553	<i>Remarks</i> . In their description of Unnamed track n°1, Lapparent & Montenat (1967) made a
554	mistake by considering that both tracks are tridactyl. However, a thorough examination of the
555	material reveals the presence of a poorly marked fourth digit. The morphology and the
556	dimension of Unnamed track n°1 match with the ichnogenus Batrachopus.
557	
558	Unnamed track n°2
550	
559	(= G. CI. variabilis)

560	Fig. 13D–F
561	
562	Material. ULB-04D22_A.
563	
564	Description. The track is tridactyl, small-sized, longer than wide, approximatively 11 cm long
565	and 7 cm wide (Fig. 13D-F; Table 2). Impressions of digits are elongated. The impression of
566	digit III is the longest. At the base of the trace digit IV, the position of the digito-metatarsal
567	pad is more proximal than that of digit II. The divarication angle II-IV is 29°. Round to oval
568	phalangeal pads and pointed marks of claws are commonly very well marked. Marks of claws
569	on the traces of digits II and IV are clearly oriented outward.
570	
571	Remarks. In their description of this track, Lapparent & Montenat (1967) made a mistake by
572	considering that the traces of digits II, III and IV are parallel and of the same length.
573	However, the reexamination of this track indicates that it matches with the ichnogenus
574	Grallator. Despite its poor preservation, ULB-04D22_A shares some similarities with the G.
575	variabilis ichnospecies.
576	
577	DISCUSSION
578	
579	Comparison with other ichnotaxa from coeval tracksites
580	
581	Early Jurassic crocodylomorph tracks were reported from southern Africa, Argentina,
582	Colombia, Europe and the USA, where they have been mainly ascribed to the ichnogenus
583	Batrachopus (e.g. Hitchcock 1845; Lapparent & Montenat 1967; Olsen & Galton 1984; Olsen

584	& Padian 1986; Mojica & Macia 1987; Demathieu & Sciau 1992; Olsen 1995; Popa 1999;
585	Lockley et al. 2004; Milner et al. 2006; Dalman 2012). In Europe, lowermost Jurassic
586	(Hettangian-Sinemurian) crocodylomorph tracks are quite rare (Lockley & Meyer, 2000),
587	being only known from France (Lapparent & Montenat 1967; Sciau 1992; Moreau et al.
588	2019) and Romania (Popa 1999).
589	
590	Early Jurassic tridactyl tracks of dinosaurs were reported from many areas of
591	Australia, Africa, America, Asia and Europe (e.g. Gierliński & Ahlberg 1994 ; Olsen et al.
592	1998; Demathieu et al. 2002; Lucas et al. 2006; Dalman 2012; Xing et al. 2014;
593	Wagensommer et al. 2016; Sciscio et al. 2017 ; Romilio 2021). The co-occurrence of
594	Grallator, Kayentapus and Eubrontes was observed in various Early Jurassic tracksites from
595	several areas in Europe: France (Moreau et al. 2018), Hungary (Gierliński 1996), Italy
596	(Avanzini et al. 2006) and Poland (Pacyna et al. 2022). The ichnoassemblage from Le Veillon
597	shares many similarities with the historical Early Jurassic American tracksites described by
598	the palaeoichnologist Edward Hitchcock (Hitchcock 1841, 1845, 1858). Batrachopus,
599	Grallator and Eubrontes were introduced based on material from New England, eastern USA
600	(Hitchcock 1841, 1845, 1858). The ichnogenus Kayentapus was first described based on
601	material from Arizona in western USA (Welles 1971; Lockley et al. 2011).
602	Among the international record of Early Jurassic archosaur tracksites, the
603	ichnoassemblage from Le Veillon shares most similarities with that of the Grands Causses
604	area (southern France). The Hettangian-Sinemurian deposits from the Causses Basin yielded
605	more than 60 archosaur tracksites. In this area, Sinemurian crocodylomorph tracks were
606	ascribed to Batrachopus deweyi by Demathieu & Sciau (1992) and Demathieu et al. (2002).
607	These tracks differ from the specimens assigned to <i>B. deweyi</i> from Le Veillon in showing
608	more slender traces of digits and wider divarication angle. In France, Le Serre tracksite

(Lozère, northern part of the Causses Basin) is the only other Hettangian tracksite yielding
crocodylomorph traces (Moreau *et al.* 2019).

Although very small-sized tridactyl tracks such as G. olonensis remain unknown from 611 612 the Hettangian-Sinemurian deposits of the Causses Basin, this area yields abundant specimens of Grallator variabilis and Grallator minusculus. Biometric comparisons among tracks from 613 Le Veillon and those from the Causses Basin show that the occupied morphological spaces 614 615 are similar for each of these two ichnospecies in both regions (Fig. 4). Early Jurassic archosaur tracksites from the Causses Basin also yield two additional Grallator ichnospecies 616 that are absent from the Lapparent collection: Grallator lescurei and Grallator sauclierensis. 617 618 In the Hettangian tracksites from the Causses Basin, two ichnospecies of Eubrontes were identified, Eubrontes divaricatus (Demathieu & Sciau 1999) and Eubrontes giganteus 619 620 (Demathieu et al. 2002; Sciau 2003: Moreau et al. 2021). Since the revision of the ichnogenus 621 Eubrontes by Olsen et al. (1998), Demathieu et al. (2002) suggested to use only Eubrontes giganteus for the material from this area. Although Dilophosauripus williamsi was broadly 622 623 used to describe tracks from the Causses Basin (e.g. Demathieu & Sciau 1992; Sciau 1992, 2003; Demathieu 1993; Demathieu et al. 2002; Gand et al. 2007; Moreau et al. 2014), its 624 validity was strongly debated (Lucas et al. 2006; Lockley et al. 2011). Recent morphometrical 625 626 comparisons made by Gand *et al.* (2018) suggested that tracks ascribed to *Dilophosauripus* in the Causses Basin are similar to those of Kayentapus and should be ascribed to that 627 ichnogenus. Their morphology is quite close to that of the Kayentapus tracks from Le Veillon 628 but they are smaller. In France, except the Le Veillon tracksite and the Causses Basin, Early 629 630 Jurassic tridactyl dinosaur tracks were also reported from Lot (Lange-Badré & Lafon 2000), Dordogne (Gand et al. 2007) and Var (Ellenberger 1965). 631

632

633 Trackmakers

635 Crocodylomorph and dinosaur body fossils remain unknown in the lowermost Jurassic deposits from Vendée. Olsen & Padian (1986) proposed that the trackmakers of Batrachopus 636 637 were crocodyliform protosuchians (see fig. 20.11 in Olsen & Padian 1986). The osteological architectures of manus and pes of Protosuchus (Colbert et al. 1951) match with the 638 morphology of Batrachopus (Olsen & Padian 1986). The trackmaker of Batrachopus should 639 640 have been a crocodylomorph with a pedal digit V reduced (Olsen & Padian 1986). Earliest Jurassic crocodylomorphs were small and fully terrestrial (Frey 1988; Olsen 1995). Body 641 fossils of crocodylomorphs are almost unknown from the earliest Jurassic of Europe, with 642 643 only a few isolated remains from Great Britain assignable to indeterminate sphenosuchians (Whiteside et al. 2016). 644

The phalangeal formula (type 3, 4 and 5 for toes II, III and IV, respectively) of the 645 646 tridactyl tracks Eubrontes, Grallator and Kayentapus matches with the osteological architecture of theropod dinosaurs. Body fossils of earliest Jurassic theropods were ascribed to 647 648 Coelophysoidea and Ceratosauria and reported from Africa, Antarctica, China, Europe and 649 USA (Weishampel et al. 2004; Smith et al. 2007; Xing et al. 2013). In Europe, rare theropod remains have been discovered in the Hettangian-Sinemurian deposits of Great Britain, France, 650 Italy and Luxembourg (Larsonneur & Lapparent 1966; Benton et al. 1995; Carrano & 651 Sampson 2004; Delsate & Ezcurra 2014; Martill et al. 2016; Dal Sasso et al. 2018). The 652 Moon-Airel Formation (Normandie, northwestern France), yielded the only known earliest 653 Jurassic theropod from France (Larsonneur & Lapparent 1966), i.e. the coelophysoid 654 Lophostropheus airelensis (Cuny & Galton 1993; Ezcurra & Cuny 2007). Using the formula 655 of Alexander (1976) and Thulborn (1990), the hip height of the smallest theropods from Le 656 657 Veillon varies from 18 to 21 cm (trackmakers of G. olonensis). The speed of the trackmakers of G. olonensis varies from 2.9 to 4.4 km/h, suggesting a walking gait. Lapparent & Montenat 658

(1967) attributed the trackmaker of *Talmontopus* to an ornithopod. As this ichnogenus is here reinterpreted and renamed (*Kayentapus*), its trackmaker must be regarded as a medium-sized theropod. Lapparent & Montenat (1967) mentioned that they observed several tail marks of theropods associated with track-bearing tridactyl tracks. However, they specified that it was not possible to link tail marks and footprints. We interpret the single specimen figured in Lapparent & Montenat (1967; pl.4, fig.2 in Lapparent & Montenat 1967; ULB-04C15_E) as a sedimentary structure such as a large desiccation crack, not a tail mark.

666

667 CONCLUSION

668

669 The ichnotaxonomic revision of the type material from the Lapparent collection allows to identify valid and invalid/problematic ichnotaxa from Le Veillon, a historical earliest Jurassic 670 671 tracksite in western France. Amongst the eight ichnotaxa erected by Lapparent & Montenat 672 (1967), only two are considered as valid, Grallator olonensis and Grallator variabilis. The diagnosis of Grallator olonensis is here formally established. Batrachopus gilberti, Eubrontes 673 674 veillonensis and Grallator maximus are regarded as subjective junior synonyms of Batrachopus deweyi, Eubrontes giganteus and Grallator minusculus, respectively. Anatopus 675 and Saltopoides are considered as nomina dubia. The ichnogenus Talmontopus is considered 676 as a subjective junior synonym of Kayentapus. The tracks initially ascribed by Lapparent & 677 Montenat (1967) to Dahutherium are here reinterpreted and identified as Batrachopus isp. 678 679 Grallator variabilis and Grallator isp. The two kinds of unnamed tracks described by Lapparent & Montenat (1967) are assigned to *Batrachopus* isp. and G. cf. variabilis. The 680 681 Hettangian ichnoassemblage from Le Veillon shares strong similarities with the Early Jurassic 682 archosaur ichnoassemblage from the Causses Basin area in southern France. The

683	ichnodiversity of the Lapparent collection show that trackmakers were theropod dinosaurs and
684	crocodylomorphs.
685	
686	Acknowledgements. This work is a contribution to the e-Col+ project funded by the
687	Programme d'Investissements d'Avenir (ANR 21 ESRE 0053) and the Research Infrastructure
688	Récolnat (national network of naturalist collections). We thank Emmanuel Fara for
689	discussions and comments on the first draft of the manuscript.
690	
691	Author contributions. Conceptualization Jean-David Moreau (JDM), Romain Vullo (RV),
692	Didier Néraudeau (DN); Data Curation JDM; Formal Analysis JDM; Funding Acquisition
693	Jérôme Thomas (JT); Investigation JDM, JT; Methodology JDM; Project Administration
694	JDM; Supervision JDM; Validation RV, Georges Gand (GG), DN; Visualization JDM;
695	Writing – Original Draft Preparation JDM; Writing – Review & Editing RV, Elsie Bichr
696	(EB), JT, GG, Cyril Gagnaison (CG), Pascal Barrier (PB), DN.
697	
698	REFERENCES
699	
700	ALEXANDER, R. McN. 1976. Estimates of speeds of dinosaurs. Nature 261, 129–130.
701	
702	AVANZINI, M., PIUBELLI, D., MIETTO, P., ROGHI, G., ROMANO, R. and MASETTI, D.
703	2006. Lower Jurassic (Hettangian-Sinemurian) dinosaur trackmegasites, southern
704	Alps, northern Italy. New Mexico Museum of Natural History and Science Bulletin, 37,

207-216.

707	BENTON, M. J., MARTILL, D. M. and TAYLOR, M. A. 1995. The first Lower Jurassic
708	dinosaur from Scotland: limb bone of a ceratosaur theropod from Skye. Scottish
709	<i>Journal of Geology</i> , 31 , 177–182.
710	
711	BESSEDIK, M., MAMMERI, C., BELKEBIR, L., MAHBOUBI, M., ADACI, M., HEBIB,
712	H., BENSALAH, M. and MANSOURI, M. E. H. 2008. Nouvelles données sur les
713	ichnites de dinosaures de la région d'El Bayadh (Crétacé inférieur,
714	Algérie). Palaeovertebrata, 36 , 7–35.
715	
716	BESSONNAT, G., LAPPARENT (de), A. F., Montenat, C. and Ters, M. 1965. Découverte de
717	nombreuses empreintes de pas de reptiles dans le Lias inférieur de la côte de Vendée.
718	Comptes Rendus de l'Académie des Sciences de Paris, 260, 5324–5326.
719	
720	BOCQUIER, E., 1935. Observations sur quelques témoins d'anciens rivages dans le
721	Talmondais (Vendée). Annuaire de la Société d'Émulation de la Vendée, 17-26.
722	
723	CARRANO, M. T. and SAMPSON, S. D. 2004. A review of coelophysoids (Dinosauria:
724	Theropoda) from the Early Jurassic of Europe, with comments on the late history of
725	the Coelophysoidea. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 9,
726	537–558.
727	
728	COLBERT, E. H., MOOK, C. C. and BROWN, B. 1951. The ancestral crocodilian
729	Protosuchus. Bulletin of the American Museum of Natural History, 97, 149–182.
730	

731	COOMBS, W. P. Jr. 1996. Redescription of the ichnospecies Antipus flexiloquus Hitchcock,
732	from the Early Jurassic of the Connecticut Valley. Journal of Paleontology, 70,327-
733	331
734	
735	CUNY, G. and GALTON, P.M. 1993. Revision of the Airel theropod dinosaur from the
736	Triassic-Jurassic boundary (Normandy, France). Neues Jahrbuch für Geologie und
737	Paläontologie, Abhandlungen 187, 261–288.
738	
739	DALMAN, S. G .2012. New data on small theropod footprints from the Early Jurassic
740	(Hettangian) Hartford Basin of Massachusetts, United States. Bulletin of the Peabody
741	Museum of Natural History, 53 , 333–353.
742	
743	DAL SASSO, C., MAGANUCO, S. and CAU, A. 2018. The oldest ceratosaurian
744	(Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution
745	of the three-fingered hand of birds. <i>PeerJ</i> , 6 , e5976.
746	
747	DELSATE, D. and EZCURRA, M. D. 2014. The first Early Jurassic (late Hettangian)
748	theropod dinosaur remains from the Grand Duchy of Luxembourg. Geologica Belgica,
749	17 , 175–181.
750	
751	DEMATHIEU, G., 1993. Empreintes de pas de dinosaures dans les Causses (France). Zubía,
752	5 , 229–252.
753	
754	DEMATHIEU, G. 2003. Comparaison des ichnopopulations des Grands Causses (Sud de la
755	France) et du Veillon (Vendée). Le Naturaliste Vendéen, 3, 59-60.

757	DEMATHIEU, G. and SCIAU, J. 1992. Des pistes de dinosaures et de crocodiliens dans les
758	dolomies de l'Hettangien du Causse du Larzac. Comptes Rendus de l'Académie des
759	<i>Sciences de Paris</i> , 315 , 1561–1566.
760	
761	DEMATHIEU, G. and SCIAU, J. 1999. De grandes empreintes de pas de dinosaures dans
762	l'Hettangien de Peyre (Aveyron, France). Geobios, 32, 609-616.
763	
764	DEMATHIEU, G., GAND, G., SCIAU, J. and FREYTET, P. 2002. Les traces de pas de
765	dinosaures et autres archosaures du Lias inférieur des Grands Causses, Sud de la
766	France. Palaeovertebrata, 31 , 1–143.
767	
768	ELLENBERGER, P. 1965. Découverte de pistes de vertébrés dans le Permien, le Trias et le
769	Lias inférieur, aux abords de Toulon (Var) et d'Anduze (Gard). Comptes Rendus de
770	l'Académie des Sciences de Paris, 260, 5856–5860.
771	
772	EZCURRA, M.D. and CUNY, G. 2007. The coelophysoid Lophostropheus airelensis, gen.
773	nov.: a review of the systematics of "Liliensternus" airelensis from the Triassic-
774	Jurassic outcrops of Normandy (France). Journal of Vertebrate Paleontology, 27, 73-
775	86.
776	
777	FREY, E. 1988. The carrying system of crocodilians a biomechanical and phylogenetical
778	analysis. Stuttgarter Beiträge zur Naturkunde, 426, 1–60.
779	

780	GAND, G. 1974a. Les traces de vertébrés Triasiques de l'Autunois et du nord du Charollais.
781	Bulletin de la Société d'Histoire Naturelle d'Autun, 69, 7–24.
782	
783	GAND, G. 1974b. Sur les niveaux a empreintes de pas de vertébrés triasiques. Des carrières
784	de St-Sernin-du-Bois (Saône-et-Loire). Bulletin de la Société d'Histoire Naturelle du
785	<i>Creusot</i> , 32 , 12-22.
786	
787	GAND, G., DEMATHIEU, G. and MONTENAT, M. 2007. Les traces de pas d'amphibiens,
788	de Dinosaures et autres Reptiles du Mésozoïque français : inventaire et interpretations.
789	Palaeovertebrata, 35 , 1–149.
790	
791	GAND, G., FARA, E., DURLET, C., CARAVACA, G., MOREAU, JD., BARET, L.,
792	ANDRE, D., LEFILLATRE, R., PASSET, A., WIENIN, M. and GELY, JP., 2018.
793	Les pistes d'archosauriens : Kayentapus ubacensis nov. isp. (théropodes) et
794	crocodylomorphes du Bathonien des Grands-Causses (France). Conséquences paléo-
795	biologiques, environnementales et géographiques. Annales de Paléontologie, 104,
796	183–216.
797	
798	GIERLIŃSKI, G. 1991. New dinosaur ichnotaxa from the early Jurassic of the Holy cross
799	Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 85, 137-
800	148.
801	
802	GIERLIŃSKI, G. 1996. Dinosaur ichnotaxa from the Lower Jurassic of Hungary. Geological
803	Quarterly, 40 , 119–128.
804	

805	GIERLIŃSKI, G. and AHLBERG, A. 1994. Late Triassic and Early Jurassic dinosaur
806	footprints in the Höganäs Formation of southern Sweden. Ichnos, 3, 99–105.
807	
808	GODARD, G. 2003. Histoire de la géologie en Talmondais (Vendée, France). Le Naturaliste
809	Vendéen, 3 , 13–28.
810	
811	HAUBOLD, H. 1971, Ichnia Amphibiorum et Reptiliorum fossilium. Encyclopedia of
812	Paleoherpetology, 18, 1–124.
813	
814	HITCHCOCK, E. 1841. Final Report on the Geology of Massachusetts. JS & C. Adams. 831
815	pp.
816	
817	HITCHCOCK, E. 1845. An attempt to name, classify, and describe the animals that made the
818	fossil footmarks of New England. Proceedings of the 6th Meeting American
819	Association of Geologists and Naturalists, 23–25.
820	
821	HITCHCOCK, E. 1858. Ichnology of New England: a report on the sandstone of the
822	Connecticut valley especially its fossil footmarks, made to the Government of the
823	Commonwealth of Massachusetts. William White, printer, 220 pp.
824	
825	KLEIN, H. and LUCAS, S. G. 2021. The Triassic tetrapod footprint record. New Mexico
826	Museum of Natural History and Science Bulletin, 53, 1–194
827	

828	LANGE-BADRE, B. and LAFON, JP. 2000. Découverte de pistes de dinosaures théropodes
829	dans le Lias inférieur des environs de Figeac (Lot). Comptes Rendus de l'Académie
830	des Sciences de Paris, 330 , 379–384.
831	
832	LAPPARENT (de), A. F. and MONTENAT, C. 1967. Les empreintes de pas de reptiles de
833	l'Infralias du Veillon (Vendée). Mémoires de la Société Géologique de France, 46, 43
834	pp.
835	
836	LARSONNEUR, C. and LAPPARENT (de), A. F. 1966. Un dinosaurien carnivore,
837	Halticosaurus, dans le Rhétien d'Airel (Manche). Bulletin de la Société Linnéenne de
838	Normandie, 10 , 108–116.
839	
840	LEONARDI, G. 1987. Glossary and manual of tetrapod footprint palaeoichnology.
841	Publicação do Departemento Nacional da Produção Mineral Brasil, 75 pp.
842	
843	LOCKLEY, M. G. and MEYER, C. 2000. Dinosaur Tracks and other fossil footprints of
844	Europe. Columbia University Press, 327 pp.
845	
846	LOCKLEY, M. G. and MEYER, C. 2004. Crocodylomorph trackways from the Jurassic to
847	Early Cretaceous of North America and Europe: implications for
848	ichnotaxonomy. Ichnos, 11, 167–178.
849	
850	LOCKLEY, M.G., KIRKLAND, J. and MILNER, A. R. C. 2004. Probable relationships
851	between the Lower Jurassic crocodilomorph trackways Batrachopus and Selenichnus:

852	Evidence and implications based on new finds from the St. George area southwestern
853	Utah. Ichnos, 11, 143–149.
854	
855	LOCKLEY, M.G., GIERLIŃSKI, G. and LUCAS, S. G. 2011. Kayentapus revised: notes on
856	the type material and the importance of this theropod footprint ichnogenus. New
857	Mexico Museum of Natural History and Science Bulletin, 53 , 330–336.
858	
859	LUCAS, S. G., LOCKLEY, M. G., HUNT, A. P., MILNER, A. R. and TANNER, L. H. 2006.
860	Tetrapod footprint biostratigraphy of the Triassic–Jurassic transition in the American
861	southwest. The Triassic-Jurassic Terrestrial Transition. New Mexico Museum of
862	Natural History and Science Bulletin, 37 , 105–108.
863	LULL, R. S. 1904. Fossil footprints of the Jura-Trias of North America. Memoirs of the
864	Boston Society of Natural History, 5, 461–557.
965	LULL B. S. 1052 Triaggia life of the Connectiout Valley. State Coological and Natural
805	LULL, K. S. 1955. Thassic life of the Connecticut Valley. State Geological and Natural
800	History Survey, 551pp.
867	MARTILL, D. M., VIDOVIC, S. U., HOWELLS, C. and NUDDS, J. R. 2016. The oldest
868	Jurassic dinosaur: A basal neotheropod from the Hettangian of Great Britain. PLoS
869	<i>ONE</i> , 11 , e0145713.
870	MILAN, J. and HEDEGAARD, R. 2010. Interspecific variation in tracks and trackways from
871	extant crocodylians. New Mexico Museum of Natural History and Science Bulletin, 51,
872	15–29.
873	
874	MILNER, A. R. C., LOCKLEY, M. G. and KIRKLAND, J. I. 2006. A large collection of
875	well-preserved theropod dinosaur swim tracks from the Lower Jurassic Moenave

876	Formation, St. George, Utah. New Mexico Museum of Natural History and Science
877	Bulletin, 37 , 315–328.
878	
879	MOJICA, J. and MACIA, C. 1987. Nota preliminar sobre la improntas de vertebrados
880	(Batrachopus sp.) en sedimentitas de la Formación Saldaña, región de Prado-Dolores,
881	valle superior del Magdalena, Colombia. Geología Colombiana, 16, 89–94.
882	
883	MONTENAT, C. 1968. Empreintes de pas de reptiles dans le Trias moyen du plateau du Daüs
884	près d'Aubenas (Ardèche). Bulletin Scientifique de Bourgogne, 25, 369-389.
885	
886	MONTENAT, C. and BESSONNAT, G. 2002. Le gisement d'empreintes de pas de reptiles
887	du Veillon (Vendée): paléobiologie d'un estuaire infraliasique. Actes des congrès
888	nationaux des sociétés historiques et scientifiques, 124 , 337–351.
889	
890	MOREAU, JD., TRINCAL, V., GAND, G., NÉRAUDEAU, D., BESSIÈRE, G. and
891	BOUREL, B. 2014. Two new dinosaur tracksites from the Hettangian Dolomitic
892	Formation of Lozère, Languedoc-Roussillon, France. Annales de Paléontologie, 100,
893	361–369.
894	
895	MOREAU, JD., TRINCAL, V., ANDRE, D., BARET, L., JACQUET, A. and WIENIN, M.
896	2018. Underground dinosaur tracksite inside a karst of southern France: Early Jurassic
897	tridactyl traces from the Dolomitic Formation of the Malaval Cave (Lozère).
898	International Journal of Speleology, 47 , 29–42.
899	

900	MOREAU, JD., FARA, E., NÉRAUDEAU, D. and GAND, G. 2019. New Hettangian
901	tracks from the Causses Basin (Lozère, southern France) complement the poor fossil
902	record of earliest Jurassic crocodylomorph in Europe. Historical Biology, 31, 341-
903	552.
904	
905	MOREAU, JD., SCIAU, J., GAND, G. and FARA, E. 2021. Uncommon preservation of
906	dinosaur footprints in a tidal breccia: Eubrontes giganteus from the Early Jurassic
907	Mongisty tracksite of Aveyron, southern France. Geological Magazine, 158, 1403-
908	1420.
909	
910	OLSEN, P. E. 1980. Fossil great lakes of the Newark Supergroup in New Jersey. In Field
911	studies of New Jersey geology and guide to field trips: New York State Geological
912	Association, 52 nd Annual Meeting, Rutgers University, 352–398.
913	
914	OLSEN, P. E. 1995. Paleontology and paleoenvironments of Early Jurassic age strata in the
915	Walter Kidde Dinosaur Park (New Jersey, USA). Field Guide and Proceedings of the
916	Twelfth Annual Meeting of the Geological Association of New Jersey. William
917	Patterson College, 156–190.
918	
919	OLSEN, P. E., GALTON, P. M. 1984. A review of the reptile and amphibian assemblages
920	from the Stormberg of southern Africa, with special emphasis on the footprints and the
921	age of the Stormberg. Palaeontologia africana, 25: 87-100.
922	
923	OLSEN, P. E. and PADIAN, K. 1986. Earliest records of Batrachopus from the southwestern
924	United States, and a revision of some Early Mesozoic crocodylomorph ichnogenera.

925	259–273. In PADIAN K. (ed). The beginning of the Age of Dinosaurs. Cambridge
926	University Press.
927	
928	OLSEN, P. E., SMITH, J. H. and MC DONALD, N. G. 1998. Type material of the type
929	species of the classic theropod footprint genera Eubrontes, Anchisauripus and
930	Grallator (Early Jurassic, Hartford and Deerfield basins, Connecticut and
931	Massachusetts, U.S.A.). Journal of Vertebrate Paleontology, 18, 586-601.
932	PACYNA, G., ZIAJA, J., BARBACKA, M., PIEŃKOWSKI, G., JARZYNKA, A. and
933	NIEDŹWIEDZKI, G. 2022. Early Jurassic dinosaur-dominated track assemblages,
934	floristic and environmental changes in the Holy Cross Mountains region, Poland.
935	Geological Quarterly, 66 , 66–29.
936	
937	POPA, M. E. 1999. First finds of Mesozoic tetrapod tracks in Romania. Acta Palaeontologica
938	<i>Romaniae</i> , 2 , 387–390.
939	
940	RAINFORTH, E. C. 2005. Ichnotaxonomy of the fossil footprints of the Connecticut Valley
941	(early Jurassic, Newark Supergroup, Connecticut and Massachusetts). Columbia
942	University, 1301 pp.
943	
944	RAINFORTH, E. C. 2007. Ichnotaxonomic updates from the Newark
945	Supergroup. Contributions to the Paleontology of New Jersey (II): Field Guide and
946	Proceedings. Trenton: Geological Association of New Jersey, 49–59.
947	

948	ROMILIO, A. 2021. Additional notes on the mount Morgan dinosaur tracks from the Lower
949	Jurassic (Sinemurian) Razorback beds, Queensland, Australia. Historical Biology, 33,
950	2005–2007.
951	
952	SCIAU, J. 1992. Sur la piste des dinosaures des Causses. Association des Amis du Musée de
953	Millau, 31 pp.
954	
955	SCIAU, J. 2003. Dans les pas des dinosaures des Causses, inventaire des sites à empreintes.
956	Association des Amis du Musée de Millau, 107 pp.
957	
958	SCISCIO, L., BORDY, E. M., ABRAHAMS, M., KNOLL, F. and McPHEE, B. W. 2017.
959	The first megatheropod tracks from the Lower Jurassic upper Elliot Formation, Karoo
960	Basin, Lesotho. PLoS One, 12, e0185941.
961	
962	SMITH, N. D., MAKOVICKY, P. J., HAMMER, W. R., CURRIE, P. J. 2007. Osteology of
963	Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica
964	and implications for early theropod evolution. Zoological Journal of the Linnean
965	Society, 151 , 377–421.
966	
967	TERS, M. 1961. La Vendée littorale: étude de géomorphologie. Oberthur, 578 pp.
968	
969	THÉVENARD, F., DESCHAMPS, S., GUIGNARD, G. and GOMEZ, B. 2003. Les plantes
970	fossiles du gisement hettangien de Talmont-Saint-Hilaire (Vendée, France). Le
971	Naturaliste vendéen, 3 , 69–87.
972	

973 THULBORN, T. 1990. *Dinosaur Tracks*. Chapman & Hall, 410 pp.

975	VIAUD, JM. 2003. Un site géologique remarquable à protéger et à valoriser: le Veillon à
976	Talmont-Saint-Hilaire (Vendée, France). Le Naturaliste Vendéen, 3, 101–103.
977	
978	VIAUD, JM. and DUCLOUS, S. 2003. Journées d'étude des 28 et 29 mars 2002 à Talmont-
979	Saint-Hilaire (Vendée): les sites à traces de pas de vertébrés vers la limite Trias-
980	Jurassique. Le Naturaliste Vendéen 3, 3–11.
981	
982	VIAUD, JM. and GODARD, G. 2008. Edmond Bocquier (1881-1948) et la géologie. Le
983	Naturaliste Vendéen, 8, 57–69.
984	
985	WAGENSOMMER, A., LATIANO, M., MOCKE, H. B. and D'ORAZI, P. 2016. Dinosaur
986	diversity in an Early Jurassic African desert: the significance of the Etjo Sandstone
987	ichnofauna at the Otjihaenamaparero locality (Namibia). Neues Jahrbuch für Geologie
988	und Paläontologie-Abhandlungen, 281, 155–82.
989	
990	WEISHAMPEL, D. B., DODSON, P. and OSMOLSKA, H. 2004. The Dinosauria. University
991	of California Press, 862 pp.
992	WEEMS, R. E. 1987. A Late Triassic footprint fauna from the Culpeper basin northern
993	Virginia (USA). Transactions of the American Philosophical Society, 77, 1–79.
994	
995	WEEMS, R. E. 1992. A re-evaluation of the taxonomy of Newark Supergroup saurischian
996	dinosaur tracks, using extensive statistical data from a recently exposed tracksite near

997	Culpeper, Virginia. Proceedings 26th Forum on the Geology of Industrial Minerals.
998	Virginia Division of Mineral Resources Publication, 119 , 113–127.
999	
1000	WEEMS, R. E. 2019. Evidence for bipedal prosauropods as the likely Eubrontes track-
1001	makers. Ichnos, 26, 187–215.
1002	
1003	WELLES, S. P. 1971. Dinosaur footprints from the Kayenta Formation of northern Arizona.
1004	<i>Plateau</i> , 44 , 27–38.
1005	
1006	WHITESIDE, D. I., DUFFIN, C. J., GILL, P. G., MARSHALL, J. E. A. and BENTON, M. J.
1007	2016. The Late Triassic and Early Jurassic fissure faunas from Bristol and South
1008	Wales: Stratigraphy and setting. Palaeontologia Polonica, 67, 257–287.
1009	
1010	XING, L., BELL, P. R., ROTHSCHILD, B. M., RAN, H., ZHANG, J., DONG, Z., ZHANG,
1011	W. and CURRIE, P. J. 2013. Tooth loss and alveolar remodeling in Sinosaurus
1012	triassicus (Dinosauria: Theropoda) from the Lower Jurassic strata of the Lufeng Basin,
1013	China. Chinese Science Bulletin, 58, 1931–1935.
1014	
1015	XING, L. D., PENG, G. Z., YE, Y., LOCKLEY, M. G., MCCREA, R. T., CURRIE, P. J.,
1016	Zang JP. and BURNS, M. E. 2014. Large theropod trackway from the Lower
1017	Jurassic Zhenzhuchong Formation of Weiyuan County, Sichuan Province, China:
1018	review, new observations and special preservation. Palaeoworld, 23, 285–293.
1019	
1020	

1021 FIGURE CAPTIONS

1022

- **FIG 1.** Simplified geological map of the study area and location of the tracksite of Le Veillon.
- 1025 FIG 2. Biometric measurements taken on tracks from the Lapparent collection. A, for
- 1026 crocodylomorph manus imprint. B, for crocodylomorph pes track. C, for dinosaur footprint.
- 1027 L, length of footprint (for dinosaur tracks); LM and LP, length of manus and pes tracks,
- 1028 respectively (for crocodylomorph tracks); W, width of footprint (for dinosaur tracks); WM
- and WP, width of manus and pes tracks, respectively (for crocodylomorph tracks); LI, LII,
- 1030 LIII, LIV, LV: lengths of digits I, II, III, IV and V, respectively; D, length of the free part of
- 1031 digit III ; I–V I–IV and II–IV, divarication angles between digits I and V, digits I and IV, then
- 1032 digits II and IV, respectively. Scale bars represent: 20 cm (A, B), 2 cm (C–H).

- **FIG 3.** *Grallator olonensis*. A–B, slab ULB-04D19 bearing the type trackway T1-Go;
- 1035 photograph (A) and interpretative sketch (B). C–E, track 04D19_A_4 of the type trackway
- 1036 T1-Go, photograph (C), DEM in false-colour depth map (D) and interpretative sketch (E).
- F–H, paratype, ULB-04C11_A_6, photograph (F), DEM in false-colour depth map (G) and
 interpretative sketch (H).
- 1039
- FIG 4. Footprints from Le Veillon compared to tridactyl tracks from the Early Jurassic of the
 Causses Basin (based on data from Demathieu *et al.* 2002; Moreau *et al.* 2021) and the Early
 Jurassic of the eastern USA (based on data from Weems 1992, 2019; Gand *et al.* 2018). A,
 bivariate diagram L vs (L– D)/D (A). B, bivariate diagram L vs L/W (B). L in metres.
- 1044

1045	FIG 5. Grallator variabilis. A-C, plastotype, ULB-04C08_D, photograph (A), DEM in false-
1046	colour depth map (B) and interpretative sketch (C). D–F, paratype, ULB-04C05_A,
1047	photograph (D), DEM in false-colour depth map (E) and interpretative sketch (F). G–I, track
1048	ULB-04C13_A, photograph (G), DEM in false-colour depth map (H) and interpretative
1049	sketch (I). Scale bars represent 5 cm.

1051 **FIG 6.** *Anatopus palmatus* that is here invalidated. A–C, ULB-04C15_B (=holotype of A.

1052 *palmatus*); photograph (A); interpretative sketch of Lapparent & Montenat (1967) (fig. 16A

and pl.XII.3 of Lapparent & Montenat 1967) (B); our interpretation (C). D-F, ULB-

1054 04C15_C; photograph (D); interpretative sketch of Lapparent & Montenat (1967) (fig. 16B1

1055 of Lapparent & Montenat 1967) (E); our interpretation (F). Scale bars represent 5 cm.

1056

FIG 7. *Batrachopus deweyi*. A–C, trackway ULB-04C10_E, photograph (A), DEM in falsecolour depth map (B) and interpretative sketch (C). D–F, pes/manus set 04C10_A_1 (=
holotype of *B. gilberti* that is here invalidated), photograph (D), DEM in false-colour depth
map (E) and interpretative sketch (F). G–I, pes/manus set 04C14_C, photograph (G), DEM in
false-colour depth map (H) and interpretative sketch (I). J–L, pes/manus set 04C14_C,
photograph (J), DEM in false-colour depth map (K) and interpretative sketch (L). Scale bars
represent: 10 cm (A–C), 1 cm (D–L).

1064

FIG 8. Tracks ascribed to *Dahutherium* sp. by Lapparent & Montenat (1967) and that is here

1066 invalidated. A–C, two superimposed tridactyl grallatorid footprints, ULB-04C18_B;

1067 photograph (A); interpretative sketch of Lapparent & Montenat (1967) (B); our interpretation,

showing a small footprint (dark grey) and larger footprint (light grey) (C). D-F, Batrachopus

isp., ULB-04C15_A; photograph (D); interpretative sketch of Lapparent & Montenat (1967)
(E); our interpretation (F). Scale bars represent: 5 cm (A–C), 2 cm (D–F).

1071

FIG 9. *Eubrontes giganteus*. A–C, track ULB-04D21_A (= plastotype of *E. veillonensis* that
is here invalidated), photograph (A), DEM in false-colour depth map (B) and interpretative
sketch (C). Scale bars represent 10 cm.

1075

- **FIG 10.** *Grallator minusculus*. A–C, track ULB-04C13_B (= plastotype of *G. maximus* that is
- 1077 here invalidated), photograph (A), DEM in false-colour depth map (B) and interpretative
- sketch (C). D–F, track ULB-04C10_B, photograph (D), DEM in false-colour depth map (E)
- and interpretative sketch (F). Scale bars represent 10 cm.

1080

FIG 11. Plaster cast of one footprint from the type trackway of *Saltopoides igalensis* that is
here invalidated. A–C, track ULB-04C01_B, photograph (A), DEM in false-colour depth map
(B) and interpretative sketch (C). Scale bars represent 5 cm.

- FIG 12. *Kayentapus* isp. A–C, track ULB-04C02_A (= holotype of *Talmontopus tersi* that is
 here invalidated), photograph (A), DEM in false-colour depth map (B) and interpretative
 sketch (C). Scale bars represent 10 cm.
- 1088
- 1089 FIG 13. Other problematic tracks in Lapparent & Montenat 1967. A–C, Batrachopus isp.,
- 1090 ULB-04C14_I; A, photograph; B, interpretative sketch of Lapparent & Montenat (1967) (=
- 1091 Unnamed track n°1 in fig. 18 of Lapparent & Montenat 1967). C, our interpretation. D–F,
- 1092 *Grallator* cf. *variabilis*, ULB-04D22_A; D, photograph; E, interpretative sketch of Lapparent

1093	& Montenat (1967) (= Unnamed track n°2 in fig. 18 and pl.XIII.5 of Lapparent & Montenat
1094	1967); F, our interpretation). Scale bars represent: 1 cm (A–C), 5 cm (D–F).
1095	
1096	
1097	
1098	
1099	
1100	
1101	
1102	
1103	
1104	
1105	
1106	
1107	
1108	
1109	
1110	
1111	
1112	
1113	
1114	
1115	
1116	

Table 1. Biometric values measured on Hettangian crocodylomorph tracks from Le Veillon.

1118 LM and LP: length of manus and pes tracks, respectively; WM and WP, width of manus and

1119 pes tracks, respectively; I–V, divarication angle between digit I and digit V; I–IV, divarication

angle between digit I and digit IV (all in cm except II–IV in degrees).

Specimens	Lapparent & Montenat 1967	This study	Pes/manus	LM	WM	I–	LP	WP	I–IV
						v			
04C02_B_1	B. gilberti (Pl. I.3)	B. deweyi	Pes	-	-	-	3.9	-	-
04C02_B_2	B. gilberti (Fig. 4A; Pl. I.3)	B. deweyi	Pes	-	-	-	3.1	3.2	-
04C02_B_3	B. gilberti (Pl. I.3)	B. deweyi	Pes	-	-	-	3.5	3.1	73
04C02_B_4	B. gilberti (Pl. I.3)	B. deweyi	Manus	1.7	1.8	-	-	-	-
04C04_A_2	B. gilberti (Fig. 4Bb; Pl. VIII)	B. deweyi	Pes	-	-	-	3.9	3.1	57
04C04_A_3	B. gilberti (Pl. VIII)	B. deweyi	Manus	1.3	1.8	-	-	-	-
04C09_B	-	B. deweyi	Pes/manus set	2.1	2	-	-	-	-
04C10_A_1	B. gilberti (Fig. 4A; Pl. I.1)	B. deweyi	Pes/manus set	2	1.9	-	3.8	3.1	60
	HOLOTYPE								
04C10_A_2	B. gilberti (Fig. 4A; Pl. I.1)	B. deweyi	Pes/manus set	-	-	-	3.1	2.9	64
	HOLOTYPE								
04C14_A	B. gilberti (Fig. 4Bc)	B. deweyi	Manus	1.1	1.6	-	-	-	-
04C14_C	B. gilberti (Pl. I.2)	B. deweyi	Pes/manus set	1.7	-	-	3	3.8	44
04C14_D	-	B. deweyi	Pes	-	-	-	2.7	2.4	
04C14_F	-	B. deweyi	Pes/manus set	1.9	1.6	-	3.4	2.8	36
04C14_G	-	B. deweyi	Pes/manus set	1.8	1.7	-	2.9	2.1	-
04C14_H	-	B. deweyi	Pes	-	-	-	3.1	-	-
ULB-	-	B. deweyi	Pes P1	-	-	-	2.9	3.2	79
04C10_E									
ULB-	-	B. deweyi	Pes P3	-	-	-	3	3	80
04C10_E									

	ULB-	-	B. deweyi	Manus M4	2.2	2.2	-	-	-	-
	04C10_E									
	ULB-	-	B. deweyi	Pes P5	-	-	-	2.9	3.2	82
	04C10_E									
	ULB-	-	B. deweyi	Manus M5	2.4	-	-	-	-	-
	04C10_E									
	ULB-04C14_I	Unnamed track n°1 (Fig. 18)	Batrachopus	Pes	-	-	-	3.3	3.2	-
			isp.							
	ULB-	Unnamed track n°1 (Fig. 18)	Batrachopus	Pes	-	-	-	3.6	2.8	-
	04C17_A		isp.							
	ULB-	Dahutherium sp. (Fig. 5bis)	Batrachopus	Pes	-	-	-	3	3.9	83
	04C15_A		isp.							
1122										
1123										
1174										
1124										
1125										
1126										
1127										
1128										
1120										
1129										
1130										
1131										
1132										
1133										
113/										
1104										

Table 2. Biometric values measured on Hettangian tridactyl theropod tracks from Le Veillon.
L: length of the trace; W: width of the trace; D: length of the free part of digit III; II–IV,
divarication angle between digit II and digit IV (all in cm except II–IV in degrees).

Specimens	Lapparent & Montenat 1967	This study	L	W	D	II–IV
ULB-	-	G. olonensis	3.7	3	2	35
04C03_B_1						
ULB-	-	G. olonensis	3.9	2.5	1.7	37
04C03_B_2						
ULB-	-	G. olonensis	-	-	-	-
04C03_B_3						
ULB-	-	G. olonensis	4.6	3.2	1.9	37
04C03_C						
ULB-	-	G. olonensis	4.4	2.2	2	36
04C03_D_1						
ULB-	-	G. olonensis	-	-	-	-
04C03_D_2						
ULB-	-	G. olonensis	-	-	-	-
04C03_E						
ULB-	-	G. olonensis	4.5	2.7	2.2	44
04C03_F						
ULB-	-	G. olonensis	3.8	2.5	1.6	42
04C05_C						
ULB-	G. olonensis (Fig. 6B)	G. olonensis		2.4	2	24
04C07_A_1						
ULB-	-	G. olonensis	4.2	2.4	1.9	40
04C07_A_2						
ULB-	-	G. olonensis	4.9	2.9	2.6	35
04C08_C						

ULB-	-			G. olonensis		3.8			
04C08_E_1									
ULB-	-			G. olonensis		4.4	2	2.1	25
04C08_E_2									
ULB-	-			G. olonensis		-	-	-	-
04C08_G									
ULB-	-			G. olonensis		-	-	-	-
04C09_A									
ULB-	-			G. olonensis		-	-	-	-
04C09_C									
ULB-	-			G. olonensis		3.3	2.3	1.7	36
04C11_A_1									
ULB-	-			G. olonensis		4	2.6	2	44
04C11_A_2									
ULB-	-			G. olonensis		3.6	1.8	1.5	25
04C11_A_3									
ULB-	G. olonensis (Fig.	6A; Pl.	III.3)	G. olonensis			2.5	1.5	33
04C11_A_4	PARATYPE								
ULB-	G. olonensis (Fig.	6A; Pl.	III.3)	G. olonensis		4	2.5	2	31
04C11_A_5	PARATYPE								
ULB-	G. olonensis (Fig.	6A; Pl.	III.3)	<i>G</i> .	olonensis	4.8	3.1	2.3	40
04C11_A_6	PARATYPE			PARATYPE					
ULB-	G. olonensis (Fig.	6A; Pl.	III.3)	G. olonensis			2.7	1.5	41
04C11_A_7	PARATYPE								
ULB-	-			G. olonensis		4.5	2.4	2.2	27
04C11_A_8									
ULB-	-			G. olonensis		4.5	2.8	2.1	33
04C11_A_9									
ULB-	-			G. olonensis		4.4	2.5	2.1	34
04C17_E									

ULB-	-	G. olonensis	4.8	3.3	2.2	41
04C19_A_1						
ULB-	-	G. olonensis	3.5	2.7	1.7	40
04C19_A_2						
ULB-	-	G. olonensis	3.6	1.8	2	36
04C19_A_3						
ULB-	-	G. olonensis	4.4	2.4	2.2	33
04C19_A_4						
ULB-	-	G. olonensis	4.3	2.4	2	36
04C19_A_5						
ULB-	-	G. olonensis	4.7	2.4	2.1	34
04C19_A_6						
ULB-	-	G. olonensis	4.5	2.5	2.4	38
04D17_A_1						
ULB-	-	G. olonensis	4.3	2.9	1.9	39
04D17_A_2						
ULB-	-	G. olonensis	4.6	2.4	2	31
04D17_A_3						
ULB-	-	G. olonensis	4.5	2.6	2.2	29
04D17_A_4						
ULB-	-	G. olonensis	4.6	2.8	2.2	37
04D17_B_1						
ULB-	-	G. olonensis	4.3	2.5	2.2	37
04D17_B_2						
ULB-	-	G. olonensis	3.4	1.5	1.7	24
04D17_C_1						
ULB-	-	G. olonensis	4.5	2.7	2	
04D17_C_2						
ULB-	-	G. olonensis	4	2.7	1.8	38
04D17_C_3						

ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	4.8	2.5	2.4	34
04D19_A_1	HOLOTYPE					
ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	4.2	2.5	1.9	31
04D19_A_2	HOLOTYPE					
ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	4.6	2.8	2	33
04D19_A_3	HOLOTYPE					
ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	4.3	2.5	2.2	25
04D19_A_4	HOLOTYPE	HOLOTYPE				
ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	4.5	2.3	2.1	34
04D19_A_5	HOLOTYPE	HOLOTYPE				
ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	3.7	1.9	1.8	25
04D19_A_6	HOLOTYPE					
ULB-	G. olonensis (Fig. 6A; Pl. III.1)	G. olonensis	-	-	-	-
04D19_A_7	HOLOTYPE	HOLOTYPE				
ULB-	-	G. olonensis	4.2	2.5	2	30
04D22_B_1						
ULB-	-	G. olonensis	4.2	2.5	1.8	34
04D22_B_2						
ULB-	G. variabilis (Pl. III.3) PARATYPE	G. variabilis	12.3	6.6	4.4	34
04C05_A		PARATYPE				
ULB-	-	G. variabilis	8.6	5.2	4.1	40
04C05_B						
ULB-	G. variabilis (Pl. IV.1) PARATYPE	G. variabilis	13.1	7.2	4.6	42
04C08_A		PARATYPE				
ULB-	G. variabilis (Pl. V.1b)	G. variabilis	9.7	6.5	4.1	33
04C08_B						
ULB-	G. variabilis (Fig. 7A)	G. variabilis	-	-	-	-
04C08_D	PLASTOTYPE	PLASTOTYPE				
ULB-	G. variabilis	G. variabilis	-	-	-	-
04C08_F						

ULB-	G. variabilis (Pl. XIII.2)	G. variabilis	8.8	5.5	4.1	33
04C13_A						
ULB-	-	G. variabilis	10	7.7	4.5	35
04C14_J_1						
ULB-	-	G. variabilis	10.5	7.3	4.4	33
04C14_J_2						
ULB-	-	G. variabilis	-	-	-	-
04C15_D						
ULB-	G. variabilis (Pl. IV.2)	G. variabilis	11.3	8	4.5	45
04C15_E_1						
ULB-	-	G. variabilis	12			29
04C17_C						
ULB-	-	G. variabilis	10.6	6.8	4.6	30
04C17_D						
ULB-	-	G. variabilis	10.4	6.5	4.3	24
04C17_G						
ULB-	Dahutherium sp. (Fig. 5; Pl. II)	G. variabilis	12.2	7.2	5.1	40
04C18_B						
ULB-	-	G. variabilis	11.3	7.6	4.5	46
04C18_C						
ULB-	G. variabilis (Pl. V.1a)	G. variabilis	8.6	6.2	4.8	27
04D18_A						
ULB-	-	G. variabilis	12.9	7.5	4.3	31
04D18_B						
ULB-	G. variabilis (Pl. XIII.1)	G. variabilis	13.6	8	4.8	36
04D18_C						
ULB-	-	G. variabilis	11.7	7.2	4.7	38
04D18_D						
ULB-	Unnamed track n°2 (Fig. 15C; Pl.	G. cf. variabilis	≈11	≈ 7	-	29
04D22_A	XIII.5)					

ULB-	-	G. minusculus	26.2	17.7	8.2	37
04C04_A_1						
ULB-	-	G. minusculus	27.5	17.5	9.4	32
04C06_A						
ULB-	-	G. minusculus	26	15.5	8.3	30
04C10_B						
ULB-	G. maximus (Fig. 11B; Pl. XXI.1)	G. minusculus	27.7	15.9	9.2	33
04C13_B	PLASTOTYPE					
ULB-	Dahutherium sp. (Fig. 5; Pl. II)	Grallator isp.	≥14	12	-	41
04C18_B						
ULB-	T. tersi (Fig. 17; Pl. XXII.1)	Kayentapus isp.	26	21.5	9.3	64
04C02_A	HOLOTYPE					
ULB-	E. veillonensis (Fig. 12B; Pl. XXI.3)	E. giganteus	34	26.5	10	40
04D21_A	PLASTOTYPE					
ULB-	A. palmatus (Fig. 16B2)	nomen dubium	-	-	-	-
04C10_C						
ULB-	A. palmatus (Fig. 16A; Pl. XII.3)	nomen dubium	8.5	9.5	5.2	-
04C15_B	HOLOTYPE					
ULB-	A. palmatus (Fig. 16B1)	nomen dubium	-	7.5	-	55
04C15_C						
ULB-	S. igualensis (Fig. 15C; Pl. XII.4)	nomen dubium	16.5	12.5	6.4	54
04C01_A.						
ULB-	S. igualensis (Fig. 15A–B)	nomen dubium	15.5	11	5	49
04C01_B	PLASTOTYPE					