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Abstract 

Model projections performed to evaluate the efficacy and impacts of solar geoengineering interventions, such as Stratospheric 
Aerosol Injection (SAI), include multiple sources of uncertainty, namely scenario, model, and natural variability uncertainty. It is well 
accepted that a quantitative uncertainty assessment related to SAI modelling is required to provide robust and policy-relevant infor-
mation on SAI. This study investigates how and to what extent articles using a climate modelling approach on SAI quantify and com-
municate uncertainty sources. We conducted a systematic literature review of a sample of 60 peer-reviewed articles in order to (i) an-
alyse whether uncertainties were addressed, and if yes, which methods were used to characterize uncertainties, and (ii) study how 
the articles communicated assumptions and limits that contribute to the estimation of confidence in the used models and the result-
ing projections. We present statistics on the uncertainty quantification methods used in the articles and we discuss the vocabulary 
employed for conveying these uncertainties and model confidence. In the studied article sample, the attention paid to uncertainty 
estimations in the SAI literature increased with time, and overall, uncertainties were treated using a variety of methods. Model confi-
dence was not always explicitly communicated as the models used are already tested in the literature and their strengths and weak-
nesses are known to the community although this is often implicit. Our results show that it is currently difficult to perform global, 
quantitative assessments of uncertainty related to SAI research, in line with recent review reports on solar geoengineering.

Lay Summary 

We review a sample of 60 articles on literature studying the so-called solar geoengineering method consisting of injecting aerosols into the 
stratosphere (above 10–15 km of altitude) using climate models. We focus on how these articles address and quantify the uncertainties 
related to the model results, and we also study the way the articles justify the use of certain models, the confidence attributed to the models, 
and the vocabulary used to convey all of these aspects. The articles use a variety of methods to address modelling uncertainties, and the at-
tention paid to uncertainty estimation increases with time. Often the used models are implicitly assumed reliable for the purpose they are 
used for as they are well known in the field. The solar geoengineering community has recently called for a more systematic treatment of 
uncertainties that will also enable better estimations of the possible risks of solar geoengineering in future assessment reports.
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Introduction
There is currently a broad scientific consensus that the Earth’s 

climate has experienced human-induced changes over the last 

century. Past, current and future greenhouse gas emissions will 

continue to impact the Earth’s radiative balance and the climate 

[1]. In this context, climate-related risks1 for natural and human 

systems are projected to increase as global temperature increases 

from pre-industrial conditions to þ1.5�C and beyond [2, 3].
The magnitude of these projected risks, the emphasis on the 

inertia of the climate-carbon system as well as pessimistic views 

on humanity’s ability to mitigate greenhouse gas emissions in a 

timely fashion [4] have led a small research community to 

intensify research activities on solar geoengineering methods. 
The research aims at evaluating the feasibility, efficacy and spe-
cific risks of using these techniques as part of the portfolio of pol-
icy options to moderate climate hazards [5–10]. Several review 
reports on solar radiation management (SRM) research have 
been published [1, 11–13]. They also highlight the high (but 
not fully quantified) level of uncertainty involved with 
such techniques.

‘Solar geoengineering’ refers to technologies that could be 
used to intentionally modify the Earth’s radiative balance. One of 
the proposed methods, Stratospheric Aerosol Injection (SAI), con-
sists in injecting aerosol precursors in the stratosphere in order 
to increase the fraction of sunlight reflected back to space and 

1 In this context, ‘climate-related risks’ can be understood as potential adverse consequences of climate hazards for human and natural systems, given the cir-
cumstances that characterize the vulnerability and exposure of these systems to these hazards [2].
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thus inducing a net global cooling at the surface [8, 14–17]. This 
technology has been conceptualized in analogy with volcanic 
eruptions, such as the Mount Pinatubo eruption in 1991, which 
had a discernible (about 0.5 K), relatively short-term (approxi-
mately 1 year) cooling effect on the climate [18]. However, volca-
nic eruptions and intentional injections would not have exactly 
the same impacts as they are not perfect analogues, differing for 
instance in terms of stratospheric aerosol size and composition 
or in the spatio-temporal characteristics of the injection [19–21].

The envisioned scale of SAI deployment is planetary and mul-
tidecadal, up to over a century [22]. However, possibilities for 
obtaining observational data from SAI field experiments are lim-
ited to small-scale experiments. Such experiments might help in 
improving small-scale process descriptions in models and reduc-
ing uncertainties related to such processes [10, 23], but they can-
not inform us on the large-scale climate impacts of SAI nor do 
they allow for an experimental validation of climate responses to 
SAI [24, 25]. Furthermore, recent attempts to proceed to outdoor 
field testing (e.g. tests of the delivery system for the SPICE project 
or the SCoPEx project [26]) have faced systematic opposition 
from parts of the society and have been abandoned. Hence, any 
discussion on using SAI as part of the portfolio of options to re-
duce potential future consequences of climate change has so far 
predominantly relied on climate simulations investigating re-
lated stratospheric processes as well as potential climate re-
sponse and impacts, and it is likely that it will remain so in the 
foreseeable future. These simulations are performed with nu-
merical climate models that can explore how characteristics (e.g. 
global surface temperatures) of the modelled climate system 
would evolve in response to specific forcings (e.g. under green-
house gas and aerosol injection scenarios). These results can also 
be used as input data to other types of models (e.g. crop models, 
hydrological models, etc.) that simulate specific impacts for a 
particular climate scenario.

Due to the unprecedented nature and vast scale of the poten-
tial SAI interventions, related decision-making processes will ne-
cessitate a high level of confidence in model projections [10], 
both those addressing climate change per se and those on the im-
pact of SAI on the climate, so that all options and the associated 
uncertainties can be objectively weighed. However, it is not clear 
how the necessary (‘high’) level of confidence for decision- 
making can and should be defined, but it would require a multi-
disciplinary approach and a constructive dialogue between 
scientists and decision-makers [27]. Generally, the absence of a 
measure of reliability as well as the non-characterization of 
uncertainties make the usability of scientific studies in a 
decision-making context more challenging [28]. In this context it 
is very important that all the underlying assumptions made (e.g. 
methodological, epistemological) in producing these projections 
are discussed and uncertainties systematically characterized to 
provide a measure of the reliability of the projections [29]. Also, 
explicitly communicating underlying methodological assump-
tions and characterizing sources of uncertainty are very impor-
tant in contextualizing the results of these projections [30].

While individual scientific articles are mainly written for 
peers and not for a general audience, these articles might be also 
used in a policy-making context and in communication to a gen-
eral public [29], requiring contextualization in the communica-
tion of scientific knowledge outside the scientific community. 
From this viewpoint, assessing uncertainties on a broad topic to 
be communicated outside the scientific community requires 
making a synthesis of the aggregated information from a large 
spectrum of studies, going beyond the treatment of specific 

uncertainties relevant to a single study. A recent systematic liter-
ature review focused on uncertainty treatment in modelling and 
decision-making research articles on the impact of climate 
change on forests [31]. They identified an inconsistent use of the 
notion of uncertainty and a lack of its systematic characteriza-
tion in the reviewed literature, and showed that modelling and 
decision-making studies addressed different types of uncertain-
ties. The authors concluded that this difference in uncertainty 
treatments could make communication of research to decision- 
makers more difficult, and suggested that the scientific literature 
should address and communicate uncertainties in a clearer and 
more comprehensive manner, so that it can fully play its role on 
providing evidence for decision-making [31]. Two other reviews 
have recently focused on the communication steps following the 
production of scientific knowledge. One of them performed a 
qualitative systematic review of studies in behavioural and cog-
nitive sciences on the communication of uncertainties in 
climate-related scientific findings, focusing on the communica-
tion of climate-related information to its user (e.g. the general 
public) in a decision-making context [32]. The authors identified 
three sources of uncertainty in their literature sample, focusing 
on uncertainty in observations of climate change (the two others 
being deep uncertainty including ignorance and uncertainty on 
how well climate models reproduce observations). One of the 
findings was that presenting ranges to respondents of the studies 
instead of a single numerical value for a climate parameter im-
proved the understanding of the uncertainty [32]. The authors 
also noted that the terms in which the ranges were described 
could modify the perception of the respondents, underlining the 
importance of the vocabulary used in communicating scientific 
uncertainties [32]. The other review focused specifically on com-
municating model uncertainties to policymakers [27]. The 
authors concluded that instead of including all possible uncer-
tainties, the clearest communication is acquired with decision- 
relevant uncertainties that are related to the policymakers’ needs 
and whose relevance is defined through a dialogue [27]. In addi-
tion to the above, communication of results to the general public 
and decision-makers should also take into account inclusivity, 
cultural differences and particularities of the different regions of 
the world [30, 33].

The communication of lines of evidence in the Intergovernmental 
Panel on Climate Change (IPCC) assessment reports provides a good 
example of the transition from scientific knowledge for specialists to 
information targeted to a larger audience. Glossaries and guidance 
that frame the use of key concepts such as uncertainty and risk were 
conceived to homogenize practices among and between the IPCC 
Working Groups [2, 34, 35], and climate scientists were asked to eval-
uate their confidence in conclusions drawn from climate projections, 
using these guidelines to express the elements of communication, 
including, when necessary, a varying degree of expert judgement. In 
the IPCC assessment reports two metrics are produced: (i) the 
‘relative degree of certainty’ defined as a combination of the degree 
of agreement and the consistency of evidence, and (ii) if and when 
possible, estimated likelihood, defined as the probabilistic estimate 
of a specific occurrence or attributed to a range of outcomes [34]. 
These two metrics are the results of informed but subjective pro-
cesses of weighting theory (perceived understanding of the function-
ing of underlying processes), data, model simulations and expert 
judgment. The latter is ‘only made possible by the large amount of 
model-based information which resulted from a concerted and 
timely effort of the climate modeling community’ [34]. This means 
that although individual articles studying climate change might not 
provide thorough uncertainty estimates, the climate research 
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community as a whole has produced sufficient information to en-
able a reliable estimation of these metrics used in the IPCC reports.

In this article, we focus on the production of information by 
the scientific community that is needed prior to informing a 
larger audience.

The SRM research community has recently highlighted the need 
for a better estimation of uncertainties, also in support for decision- 
making, and provided perspectives on how to proceed [10, 36]. But 
how has published research so far established and communicated 
confidence and uncertainties related to modelling studies? The goal 
of our article is to study the treatment of uncertainties and the at-
tribution of confidence in models in the published SAI modelling lit-
erature. We conduct a systematic literature review of a sample of 
60 peer-reviewed research articles to identify the used uncertainty 
characterization methods and the communication of assumptions, 
limits and results in the SAI literature. In the following, we first de-
scribe our methodology (Methodology and terminology section), 
then we present the results (Results of the systematic literature re-
view section) and discuss our findings (Discussion section), and 
conclude (Conclusion section).

Methodology and terminology
This section discusses the methodology we employed in this 
study and provides the context for interpreting common practi-
ces identified in the SAI literature and discussing their implica-
tions on establishing a degree of confidence. We describe the 
main sources of uncertainty in climate projections and the meth-
ods climate modelers use to investigate these uncertainties. We 
also discuss factors used in assigning confidence in models and 
projections.

A Systematic literature review
The questions we try to answer with the systematic literature re-
view method address two topics:

� Confidence and uncertainties in SAI modelling studies: 
� were uncertainties addressed or not? 
� which types of uncertainty were addressed, and with which 

methods? 
� how were model performance and confidence estimated? 

� Communication of confidence in SAI modelling studies: 
� how was confidence communicated, and with which 

terminology? 

We conducted a systematic literature review of a sample of 60 
peer-reviewed articles that study different SAI strategies through 
a climate modelling approach. We used the systematic literature 
review to reveal common practices for communicating uncer-
tainties and underlying assumptions in the SAI literature. The 
methodology of systematic literature review is described in the 
literature [37, 38].

We used the Scopus database to search for peer-reviewed re-
search articles published in English with the following search 
terms: (TAK¼Title-Abstract-Key Words) TAK (solar AND geoengin-
eering) OR TAK (strato� AND aerosol AND geoengineering) OR TAK 
(strato� AND aerosol AND injection) OR TAK (solar AND radiation 
AND management AND geoengineering). This research string takes 
into account that different terms are commonly used when refer-
ring to these techniques (e.g. solar geoengineering, solar radiation 
management, stratospheric aerosol injection). The search string 
we used might exclude some articles not using the term 
‘geoengineering’ at all, but the search substring TITLE-ABS-KEY 

(strato� AND aerosol AND injection) ensures that SAI articles are in 
any case included. We did not limit the temporal range of our 
search so that we sample the full corpus of SAI publications. The 
search in the Scopus database was conducted on 15 February 2021. 
These search terms yielded 656 articles. Based on the abstracts, we 
excluded off-topic articles (e.g. those only mentioning stratospheric 
aerosol injections but not studying them, articles on other solar 
geoengineering methods) and only kept primary research studies 
using a climate modelling approach, also including the ones mim-
icking the impact of stratospheric aerosol injections with a reduc-
tion of the solar constant. With these inclusion/exclusion criteria, 
the sample was reduced to 193 articles. From the remaining 193 
articles, 60 were randomly selected in order to have a sample size 
that allowed an in-depth text analysis. Information collected in this 
analysis was coded in an Excel sheet (provided as a Supplementary 
File). The Scopus database provided information on the year of pub-
lication, the authors, the journal and the abstract. We downloaded 
the full articles as PDF files. Through an in-depth analysis of the en-
tire text and Supplementary materials of the reviewed research 
articles, we collected information on the different elements of 
uncertainty and confidence that will be discussed more in detail in 
the following section.

Specifically, for all articles, we coded the following informa-
tion (see also the Supplementary Excel file):

� the types of uncertainty addressed, and how they were 
estimated; 

� how model performance was estimated; and 
� the way confidence was communicated, and the terminology 

that was used. 

The coding was performed by one of the co-authors, reducing the 
risk for an inhomogeneous treatment of different articles if made 
separately by several co-authors.

The assumptions and limitations of our study need to be 
kept in mind while interpreting the results. We searched only 
one database, used a certain selection of key words and search 
strings, and our search was made only on articles in English. 
We reduced the outcome of the search and exclusion process of 
193 articles into a random sample of 60 articles. The 60-article 
sample we analysed represents only a part of the entire SAI liter-
ature. To make sure the sample is representative, we checked 
that the temporal distribution of the sample (i.e. number of 
articles per publication year) follows that of the original 193 
articles (Fig. 1). We also verified that the first authors of the 
articles in the sample reflect well the diversity of the field 
(the number of different first authors over the total number of 
articles was 116/193 in the original sample and 47/60 in the 
reduced sample). The entire SAI literature should be studied 
further in future studies and assessment reports with more 
efficient methods, such as machine learning for text data mining 
(e.g. [39]).

Three types of modelling uncertainty and how to 
deal with them
The notion of uncertainty has many definitions, depending on 
the field of research. Addressing uncertainties is an integral part 
of research in natural sciences: their sources need to be defined 
and the uncertainties quantified in the best possible way in order 
to assess the robustness of the results. In this article, we will re-
fer to uncertainty as ‘any departure from the unachievable ideal 
of complete determinism’ [40]. This definition emphasizes the ex-
istence of irreducible components of uncertainty in our 
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understanding of the climate system and thus in decision- 
making about climate change.

Different categorizations are proposed to define sub-classes of 
the broader concept of uncertainty in the specific context of 
model-based decision support [40–42]. In this article, we follow 
the climate modelling community in distinguishing three main 
sources of uncertainty: model uncertainty, scenario uncertainty, 
and uncertainty related to internal climate variability [42–45]. 
These sources of uncertainty are common to all fields using the 
climate modelling approach, and many of the uncertainties in 
SRM modelling are the same that arise in modelling future cli-
mate change. Moreover, the uncertainties related to aerosol and 
cloud processes in climate research are very high [1], and as 
these are the key processes involved in SRM, there is a very 
strong link between uncertainties in climate and SRM research.

First, model uncertainty arises from the difference between 
the real climate system and the model used to represent it. There 
are two main sources of model uncertainty. Our incomplete 
knowledge about the functioning of the climate system and its 
processes as well as simplifications made in the representation 
of the system (e.g. included processes, resolution, parametriza-
tion of sub-grid scale processes) produce uncertainty arising 
from the model structure (model structure uncertainty). The a 
priori values assigned to model parameters also generate param-
eter uncertainty [46]. Further uncertainty (unknown unknowns) 
could arise from processes that are not currently considered but 
that could play an important role in future climate conditions.

Second, scenario uncertainty, also called driving force uncer-
tainty, reflects the inherent uncertainty on the possible futures 
described by the used scenarios. A climate scenario is a ‘plausible 

description of a possible future state of the world’ composed of dif-
ferent radiative forcing factors (e.g. forcing corresponding to a par-
ticular greenhouse gas emission path, forcing corresponding to the 
injection of stratospheric aerosols) [47]. When exploring the effects 
of a certain scenario of solar geoengineering deployment, assump-
tions are made about (i) the context in which this particular strat-
egy would be deployed (future emission pathways, future radiative 
forcings, etc.) and (ii) the feasibility of the deployment (technically, 
politically, socially, economically, etc.). Particularly, the political 
and social components of feasibility are subjected to a particular 
type of uncertainties that are difficult to anticipate and quantify. 
Political and social acceptability is a construct highly dependent on 
national politics and cultural features. Therefore, a scenario is a 
single combination of ‘what-if’ conditions among the infinite range 
of possible future states of the world [46]. Scenario uncertainty is 
difficult to quantify, inherently irreducible, and increases the 
farther we are from present-day conditions.

Third, uncertainty related to internal climate variability reflects 
that, even in the absence of external forcing, the climate system 
varies naturally, due to the existence of non-linear dynamic pro-
cesses. It is therefore also necessary to differentiate internal climate 
variability and forcing response in climate projections by using long 
time scales and different initial conditions [48].

There are different ways to quantify each type of uncertainty. 
First, model uncertainty (model structure and parameter uncer-
tainty) can be explored through different methods. The discussion 
on and quantification of these uncertainties in sulphate aerosol 
models, relevant to both climate modelling and SAI started over 
25 years ago [49]. The ‘Multiple Model Ensemble’ (MME) method 
performs simulations with multiple climate models that 

Figure 1. Number of articles in the full corpus of 193 articles (orange, upper curve) and in the sample of 60 articles (blue, lower curve) as a function of 
publication year.
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incorporate similar climate processes and use the same set of sce-
narios and simulate the same time period. This method addresses 
uncertainty originating from the model structure and parameter 
values [50]. Using different models with alternative structures and 
specifications to simulate the functioning of the climate system 
allows to partially distinguish their consequences on model out-
puts. These alternative model structures can be seen as different 
approximations of the real climate system, constrained by com-
plexity and computational cost. However, the extent to which this 
approach can contribute to the characterization of uncertainty 
depends on different elements; for instance, interdependence of 
the chosen models and choices made to build the ensemble [46]. 
Model ensembles are often opportunistic and rarely designed 
through a well thought-through approach. The Geoengineering 
Model Intercomparison Project (GeoMIP) designed standardized sce-
narios to perform these MME studies on solar geoengineering [51].

Specific sensitivity analysis explores the sensitivity of projections 
to changes in elements of the model structure or in parameter val-
ues. This definition does not include exploration of the sensitivity of 
projections to changes in scenario parameters. Perturbed Physics 
Ensemble (PPE) modelling, a subcategory of sensitivity analysis, also 
sometimes addresses model structure uncertainty, and more spe-
cifically, uncertainty regarding parameter values (Parameter uncer-
tainty). PPE uses a single model, and proceeds to multiple model 
runs differing from one another by perturbations of a limited num-
ber of model parameters, under similar scenarios, preferably with 
large ensemble size and systematic sampling [52]. As the size of the 
space representing all the combinations of model parameters is tre-
mendous, sampling the full parameter uncertainty in climate mod-
els is impossible because of the computational cost and human 
time required for result analysis. Hence, simpler versions of climate 
models or emulators are often used in exploring this uncertainty. 
As PPE are conducted with a single model, the interpretation of 
results from PPE are constrained by the structural characteristics of 
the model used [53]. Both approaches, PPE and MME, can be com-
bined to improve the understanding of key uncertainties in model-
ling. In SAI literature, one study combined and compared MME and 
PPE to investigate the different types of uncertainties using stan-
dardized GeoMIP scenarios and models, and they called for future 
studies building upon their approach to better understand the 
uncertainties in modelling of solar geoengineering [54].

Second, scenario analyses address scenario uncertainty. They 
explore a broad range of possible future conditions [47]. The com-
putational cost and the time needed to analyse the data limit the 
possibilities to analyse a large number of scenarios. A systematic 
sampling of the space of possible futures is not possible, but using 
multiple scenarios allows to explore degrees of freedom and how 
they might impact the modelled response. Nevertheless, standard-
izing scenarios, such as those of GeoMIP, or others that have been 
recently proposed, are also important in order to facilitate the 
comparison between models and to assess if a certain feature is 
recurrent in these projections [51, 55, 56]. It should be mentioned 
that there are SAI studies that specifically focus on scenario 
uncertainties by exploring multiple SAI scenarios (e.g. [55, 57]).

Third, to further explore uncertainty arising from the internal 
natural variability of the climate system in the models and try to 
separate the climate response to forcing from this internal cli-
mate variability, several model runs can be carried out with the 
same model but with different initial conditions. This is called 
Single-Model Initial Condition (Large) Ensemble Modelling. It 
allows to quantify the natural climate variability uncertainty 
with ensemble statistics. The ensemble size is a primordial crite-
rion for the interpretation of the ensemble results as it is 

considered to determine their significance. However, there is no 
unique, ideal ensemble size; the necessary ensemble size 
depends on many aspects, such as the studied variable and the 
acceptable level of error [58]. Large ensembles are particularly 
important for the assessment of regional climate responses, yet 
the computational cost of this approach limits the extent to 
which large ensembles are employed [42]. The stratospheric 
aerosol Geoengineering Large Ensemble Project (GLENS) was cre-
ated for the purpose of quantifying the natural variability in the 
modelled climate response to SAI [59]. A more recent effort with 
a similar approach has been conducted in the ARISE-SAI project 
[60]. Other, computationally less expensive approaches can be 
used as well. These generally look at the statistical significance 
of the change or difference of a mean value of a parameter with 
respect to internal climate variability.

These different methods make it possible to quantify the 
different types of uncertainties. They provide a lower bound of 
the total uncertainty, but computational cost often limits their 
extensive use.

Model performance and perceived accuracy in 
climate projections
The characterization of uncertainties and the explicit communi-
cation of known limits and assumptions contribute to the per-
ceived accuracy of modelled projections [29]. We distinguish here 
two dimensions of the model performance: model fit to past and 
present observations and ‘robustness’.

First, model fit is widely used to estimate confidence in the 
model [61]. This hypothesis consists in extrapolating a model’s 
ability to produce results for past and present-day conditions 
that fit well the available observational data (model fit) as an 
indication of its projection skills for multidecadal and century- 
timescales in the future. Different indicators of model perfor-
mance (instances of fit) are used to estimate this empirical 
accuracy and to compare performance between models [62]. 
A debate exists on whether these different instances of fit should 
be considered as a confirmation of the entire model or of its ade-
quacy for particular purposes [63]. In this adequacy-for-purpose 
perspective, climate modellers often justify the choice of a model 
for a given purpose by its ability to represent particular processes 
that they consider relevant for the study. This ‘empirical accu-
racy’ factor is crucial in the confidence for interpreting climate 
projections, but it cannot be verified. The inference from model 
fit has other known limitations, such as the possible existence of 
compensating biases introduced during the model calibration 
process to fit the data, and the fact that future climate conditions 
could be significantly different from those for which the model 
has been calibrated [61, 64].

Second, the ‘robustness’ of results from a model projection 
corresponds to how well these results agree with those obtained 
with other models or reported in other studies in the literature. 
In order to be able to state that a result from a model projection 
is robust thanks to a good agreement with results from other 
studies, it is necessary to explain why alternative explanations 
for the agreement are ruled out. For instance, it could be clarified 
why the agreement between models in a multi-model ensemble 
is not a result of models sharing common biases due to interde-
pendence between models [46, 65]. In fact, obtaining consistent 
results from different models does not necessarily mean that 
they are accurate. The concept of climate model robustness and 
its different usages have also been discussed in the field of 
philosophy of science (see e.g. [66]).
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In summary, climate model projections are inherently uncer-
tain, as a result of model structure uncertainty, scenario uncer-
tainty, and uncertainty related to internal climate variability. 
These uncertainties can be characterized and quantified through 
different methods, helping to establish confidence in the mod-
elled results. Confidence is also related to model performance, 
expressed as model fit and robustness. Finally, it is also impor-
tant how uncertainty and confidence are communicated: that is, 
which terminology is used, and how. All of the above applies to 
both climate change projections and to other topics, such as SAI, 
studied with the climate modelling approach.

Results of the systematic literature review
In this section, we provide quantitative and qualitative evidence 
on the different factors used in the discussion on the confidence 
and uncertainties in SAI simulations in the studied articles of our 
sample. We first discuss if and how the different types of uncer-
tainties were studied. Then we address how model confidence 
was expressed in the studied articles. Finally, we map the vocab-
ulary used for conveying these aspects in the reviewed literature. 
The full dataset with further details can be found in 
Supplementary materials.

Types of uncertainties and how they were 
dealt with
As the sample of analysed articles contained a large variety of non- 
standardized scenarios and experiments and the articles did not 
perform quantitative scenario uncertainty estimations, we are not 
discussing scenario uncertainty in this analysis. Only results 
concerning model uncertainty and natural climate variability 
uncertainty are presented in the following, and show that, when 
uncertainties are discussed, the SAI studies apply a large variety of 
methods to estimate the different types of uncertainties.

Model structure uncertainty was mainly investigated with 
Multiple Model Ensemble (MME) using similar scenarios. Among 
the 60 reviewed articles, 21 performed MME modelling with 2–13 
models (Table 1). Sixteen studies shared common methodologies 
(e.g. similar set of models and scenarios) as they were part of the 
Geoengineering Model Intercomparison Project (GeoMIP). In par-
ticular, four articles (see Table 1) used results of eight Earth 
System Models from GeoMIP [67–70]. Results from MME model-
ling were communicated and represented in different ways: (i) by 
focusing on the unweighted multi-model mean with different 
complementary metrics on the spread of the results, such as the 
across-model spread (range, under the form of shading, paren-
theses), the ensemble standard deviation (in the form of an error 
bar, or ±) as well as stippling on maps to represent areas where a 
certain proportion of the involved models agree on the sign of 
change; and (ii) by representing results of the individual models 
separately to better identify differences between models.

Ten of the 60 reviewed articles explicitly conducted sensitivity 
analyses. These sensitivity analyses were implemented by re-
moving (in four articles) entire modules from the climate/impact 
model structure (e.g. projections with or without interactive 

chemistry [71]), or processes (with or without heat and water 
stress in crop modules [72]), as well by changing (in six articles) 
parameter values (e.g. sensitivity of crop yields to temperature 
and precipitation changes, crop failure threshold [73, 74]). 
Results were often presented through comparing the results of 
the model runs with varied parameters (e.g. global mean radia-
tive forcing for the different model runs) as curves in a plot or as 
values tabulated in tables for easy comparison.

Two of the 60 reviewed studies explicitly used a Perturbed 
Physics Ensemble (PPE) in order to explore the parameter uncer-
tainty. One of them used a crop model with perturbations of 20 
parameters [72]. The resulting ensemble grouped 19 parameter 
sets for the historical climate and 76 for projections (19 parame-
ter sets for 4 different parametrizations of the response to CO2). 
The other PPE was conducted with HadCM3, an older generation 
climate model (CMIP3), with a PPE ensemble size of 20 members, 
perturbing 8 parameters [54]. The authors explicitly stated that 
the small ensemble size, the small number of perturbed parame-
ters and the shared model structure undermined the strength of 
the interpretation of the PPE results [54]. This also applies to the 
capability of the PPE to inform us on the climate response in a 
Multiple Model Ensemble [54]. In both PPE articles, methodolo-
gies to select tested parameter sets and choose which parameter 
to perturb were extensively communicated. Results from the PPE 
using HadCM3, such as the surface air temperature change be-
tween geoengineering and control scenarios, were communi-
cated with the ensemble mean complemented with the 
ensemble standard deviation as well as the range (minimum and 
maximum of the ensemble) [54]. For graphical representations, 
the PPE ensemble mean was sometimes shown alone (with or 
without standard deviation and range) or along with individual 
PPE members.

Eighteen articles addressed uncertainty related to internal cli-
mate variability by carrying out several model runs with the 
same model but with differing initial conditions. These articles 
have more than one Single Model Initial Condition Ensemble 
member with ensemble sizes from 2 to 30 members. Six articles 
use a Large Ensemble with at least 10 ensemble members. Three 
of these studies used a large ensemble generated in the context 
of the Stratospheric Aerosol Geoengineering Large Ensemble 
(GLENS) Project [9, 75, 76]. Results corresponding to the different 
ensemble members were represented either (i) by regrouping 
them with the ensemble mean, complemented by information 
about the spread (with the range, standard deviation or standard 
error in shading); or (ii) by communicating the results individu-
ally. Other, computationally less expensive methods were used 
in a majority of publications (42 articles) looking at the statistical 
significance of the change or difference of a mean value of a pa-
rameter providing a significant enough signal with respect to in-
ternal climate variability (noise). In some cases, both methods 
were used (15 articles).

The statistics on the uncertainty estimation methods are 
given in Table 2. None of the articles systematically addressed all 
of these different sources of uncertainty. As our sample spans 
two decades of SAI modelling research, we have also taken a look 
at the temporal evolution of uncertainty estimation in the 
articles (Fig. 2). We note that, in the studied articles, there has 
been an increase in interest concerning parameter and model 
structure uncertainty especially since 2010, the earlier studies 
(before 2010) looking nearly exclusively at natural variability un-
certainty. This points to an increasing importance of uncertainty 
quantification in the field.

Table 1. Number (and percentage) of models used per article in 
the full sample

Number of models 1 2 4–7 8 9–10 12–13

Number of 
articles (%)

39 (65.0) 5 (8.3) 4 (6.7) 4 (6.7) 4 (6.7) 4 (6.7)
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Estimation of model performance and confidence
In the reviewed publications, indications of model performance 
were given in three forms. First, articles generally stated that (i) 
relevant processes were included in the model configuration, 
and/or (ii) the used model could be considered as being ‘state-of- 
the-art’, as it was participating in intercomparison works (CMIP) 
and assessment reports of the IPCC. Second, 27 articles referred 
to other publications in which some form of model evaluation in 
past or present-day conditions had been conducted. Third, 15 
articles stated that the study included a comparison of model 
results to past or present-day observational data or to results 
from other studies performed with another model of similar or 
higher complexity. These elements were sometimes communi-
cated with figures (e.g. Fig. 2 in [77]; Fig. 1 in [78]) showing the 
comparison between a simulation of historical baseline and ob-
servational data, sometimes with error bars to show the statisti-
cal significance and correlation factor. More often, the 
indications were expressed with qualitative statements (using 
terms such as ‘good agreement’, ‘realistic’, ‘reproduce reasonably 
well’, ‘accurately simulate’, ‘simulate consistently’, ‘compares 
very well’). Twenty of the reviewed articles (33% of the sample) 
did not include any explicit elements about model performance. 
Furthermore, the reviewed articles mentioning the model perfor-
mance for past or present-day conditions did not explicitly state 
that the inference from model fit hypothesis was the basis for 
the extrapolation to the model’s ability to produce reliable pro-
jections of the future. Both the lack of explicit elements on model 
performance and the lack of statements on model fit hypothesis 
can be explained by the fact that the extent to which models that 
have been used for a long time in the field are reliable or consid-
ered to be reliable for a particular purpose is known to the 

authors and to the community as it has been extensively tested 
and documented in different settings.

Terminology used to communicate uncertainty 
and confidence
Finally, we also explored how the articles used different notions 
when speaking about uncertainty and confidence in their results. 
A variety of terms were employed and we have classified them 
into three categories: terms related to the methodology of the 
studies, to the effects of SRM, and to the uncertainty met-
rics (Fig. 3).

The first category on methodology (red bars in Fig. 3) is also re-
lated to the above discussion on model confidence, as terms such 
as ‘assumptions’, ‘approximation’ and ‘hypothesis’ are found in 
this category. The results show (blue bars in Fig. 3) that nearly all 
of the articles refer to effects and impacts of SRM, more than half 
mention risks, and more detailed terms such as damage and 
harm were used in 10–20% of the articles. Statements about the 
effects of SRM could be expected to be accompanied by, for ex-
ample, an estimation of the probability of such effects taking 
place or the uncertainties related to the impacts and risks (violet 
bars). In what follows, we analyse the way the articles use the 
notions related to uncertainty to back up statements on the 
effects of SRM.

The adverbs ‘likely’ and ‘unlikely’ were used in a qualitative 
manner in the great majority (54) of the reviewed articles. First, 
they were used to express authors’ confidence in the results of 
the projections (examples: ‘In particular, it is likely that ice loss 
will be greater than predicted by the icesheet model, resulting in 
a higher level of SRM geoengineering needed to avert a given sea- 
level rise’ [79]; ‘hence the main conclusions reached in this study 

Table 2. Number/percent of articles using different uncertainty analysis methods

Method MME PPE Sensitivity analysis Internal variability (ensembles) Internal variability (signal-to-noise)

Number (%) 10 (16.7) 2 (3.3) 10 (16.7) 18 (30) 42 (70)

Figure 2. Evolution of uncertainty estimation methods in the articles as a function of publication year. The total number of articles (dark blue) is 
plotted in addition to natural variability (grey), parameter (yellow) and model structure uncertainty (light blue).
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are unlikely to be altered by distributing the aerosols within the 
stratosphere’ [80]). Second, they could also indicate a probable 
(but not directly demonstrated) explanation for a certain phe-
nomenon showing up in the studied experiments (examples: 
‘Decreasing plant water use due to a decrease in transpiration is 
likely driving the increase in global soil moisture’ [81]; ‘This is 
likely due to the following reason’ [82]).

The term ‘Consistent’ was used in 44 studies, also with differ-
ent usages. This term was mainly used (30 articles) to describe 
how the results agreed with results of other studies in the litera-
ture, with (28) or without (2) reference to precise studies. This 
term was also employed to indicate when there seemed to be an 
agreement between models on the effects or climate responses 
that were considered significative (8), sometimes with a defined 
threshold (e.g. consistency for at least 75% of all models). 

Another usage of ‘consistent’ was to highlight that projected 
effects and climate responses were coherent between each other 
in light of expected relationships between them (10) based on 
our understanding of physics (e.g. ‘physically consistent’ [75]; 
‘consistent with Clausius-Clapeyron relation’ [83]).

‘(Statistical) significance’ (38 articles) and ‘confidence’ (22) 
were used to describe the statistical significance of the results. 
Among the 60 reviewed articles, 34 used at least one statistical 
procedure to test the statistical significance of the results. The 
procedures included Student’s t-test (16), Kolmogorov-Smirnov 
test (3), Wilcoxon signed-rank test (2), Mann–Whitney U-test (1), 
Kappa statistics (1), and tests not explicitly described in the arti-
cle. Metrics communicated in relation to the tests were the 
p-value interpreted as the ‘confidence level’ on the statistical 
significance of the results, for example, P≤0.05 interpreted as a 

Figure 3. Number (top x-axis) and percentage (bottom x-axis) of articles using the listed terms related to uncertainty. The terms are grouped in three 
categories: Methodology (red, top group), effects (blue, middle group) and uncertainty metrics (violet, bottom group).
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confidence level of 95%. Different p-values were used: most fre-
quently 0.05, and rarely 0.01 or 0.1. In most of these studies, only 
the differences that were deemed statistically significant were 
further analysed and interpreted.

The notion of ‘robustness’ of results is one of the most fre-
quently used terms, being mentioned in half of the reviewed pub-
lications (30 articles), and associated with different criteria. The 
term is commonly used in climate sciences, especially when de-
scribing converging lines of evidence, including but not restricted 
to convergent predictions of a group of more or less independent 
models, and has sparked a discussion among philosophers of sci-
ence. A study has reviewed the philosophical literature on types 
of robustness, in particular related to climate modelling [66]. 
They describe a distinct type of ‘model robustness’ that is not 
only supported by the converging results of the models sharing a 
common causal core, but also by the independently and empiri-
cally verified parameterizations in these models [66]. In practice, 
this term was used in various ways in the studied articles. 
‘Robustness’ was most commonly used in association with 
results from multi-model ensembles, when there seemed to be a 
good agreement on a particular climate response between mod-
els (15 articles). This was done either without mention of criteria 
of ‘good’ agreement, or with explicitly mentioned criteria (e.g. 
75% of the models [84], or 10 out of 13 models agreeing on the 
sign of change [85]). This usage of ‘robustness’ was found mainly 
for results from the GeoMIP project that included up to 13 mod-
els, but also in studies using only two models. In contrast, seven 
studies, particularly those using a single model, mention that 
further work, with other models, is needed to determine whether 
the effects produced in their individual study can be considered 
as ‘robust’. Another usage of ‘robustness’ to describe results on 
climate response to SAI scenarios is related to the perceived re-
currence of projected climate response in other studies in the lit-
erature (7 articles), with or without direct references to particular 
studies. The use of the term ‘robust’ was also found in associa-
tion with characteristics of the model (e.g. the model resolution, 
or the model configuration including aerosol microphysics pre-
sented as ‘realistic’ [86]), characteristics of the simulation (e.g. 
long simulations [87]), and of the initial condition ensemble size. 
For example, a study may have ‘robustly’ separated signal from 
internal variability (‘noise’), where ‘robust’ is used as synonym to 
‘statistically significant’ for differences between projections us-
ing control and SRM scenarios (‘This experiment thus depicts a 
strongly forced case of geoengineering with carbon dioxide con-
centrations at 1139 ppm, providing a robust signal-to-noise ratio 
relative to internal variability’ [84]). Seven studies explicitly men-
tion limitations to the ‘robustness’ of their results for different 
reasons. These included large uncertainties in the representation 
of particular processes (e.g. El Ni~no—Southern oscillation [87]; 
changes in precipitation patterns [88]), current disagreement 
among studies in the literature, dependence on the climate sensi-
tivity of the model or on the assumptions of the SRM termination 
[88], the large disagreement between different models used in 
the study [89], and the small ensemble size of a Perturbed 
Parameter Ensemble [54]. Six studies used complementary terms 
(conditional, modal verbs) to moderate the statement about the 
‘robustness’ of the results (e.g. ‘is likely to be robust’, ‘relatively 
robust’, ‘could be robust’, ‘reasonably robust’, ‘If the results and 
reasoning described above are robust’). The other studies did not 
use such complementary terms, but included stronger state-
ments (e.g. ‘a robust result is’, ‘is a robust climate response’).

Quantitative ‘likelihoods’ (one article) or ‘probabilities’ (five 
articles) of the outcomes were rarely produced in these articles, 

resulting from the numerous uncertainties and the deterministic 
nature of the projections [70, 76, 84, 88, 90].

Discussion
As we have seen, the SAI modelling literature deploys a variety of 
uncertainty estimation methods focusing on the different types 
of modelling uncertainties. When discussing these uncertainties, 
we need to keep the nature of the uncertainty sources in mind.

Model uncertainty
Around one third (21 articles) of the reviewed articles were using 
more than one model in order to explore model uncertainty. 
However, the multi-model spread is an imperfect measure of un-
certainty and should not be overinterpreted, as the spread is a bi-
ased estimate of the uncertainty because climate models used in 
these experiments are generally not independent, sharing more 
or less important similarities and thus, they can have similar 
biases (same model structure, same unknowns) [91, 92]. The 
spread can also result from individual models lacking sufficient 
descriptions of the relevant processes. Thus, results of individual 
models are also important to analyse because they can contrib-
ute to identifying sources and locations of model uncertainty. 
This is particularly important in SAI studies where the models 
represent some of the relevant processes (e.g. aerosol injection) 
in a simplified way, leading to difficulties in interpreting the 
inter-model spread in a meaningful way [36, 93, 94]. Also, a suffi-
cient multi-model ensemble size depends on the research ques-
tion [58]. These ensemble sizes are often limited due to practical 
reasons, such as computational constraints and available human 
resources, and as a result of the number of models available to 
the scientists performing these studies. The ensembles are 
largely opportunistic in nature rather than constructed in a sys-
tematic way to sample model uncertainty, although in relatively 
large multiple model ensembles, such as GeoMIP, the models in-
clude different parametrizations [51]. Thus, the strength of the 
statements on robustness arising from agreement between mod-
els depends on the independence and the diversity of the used 
models. Furthermore, interpreting equally-weighted multi-model 
mean as providing more robust projections than individual mod-
els relies on the implicit assumption that individual biases of the 
different models are partially cancelled out in the averaging pro-
cess. This assumption is an extrapolation of results showing that 
a multi-model mean generally provides better results for simula-
tion of present-day climate than individual models [46, 95]. It 
may not be always true: for instance, if weaker models are in-
cluded in the multi-model ensemble, it could also be that the 
model spread overestimates the actual uncertainty.

Perturbed Physics Ensemble (2 articles) and Sensitivity 
Analysis (10 articles) were occasionally used in the reviewed 
articles to explore uncertainty in model parameters or structure. 
These methods were only used to explore a limited number of 
parameters and model features, and did so with older generation 
models, mainly because of computational constraints. Perturbed 
physics ensemble may gain back some popularity with the ad-
vent of automatic (or machine-assisted) model tuning methods. 
It has been shown [96] how iterative waves of short simulations 
could be used to train an emulator to predict a range of model 
performance metrics. The emulator is thus a key element of this 
‘history matching’ procedure to explore the parameter space 
more systematically and select parameter combinations for 
which the model emerging properties satisfy some set criteria. 
Perturbed physics ensemble can then be focused on a small set 
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of configurations that are equally plausible rather than on a large 
and arbitrary sample of the parameter space as it is often cur-
rently done. This method could be applied to investigate para-
metric uncertainties on the climate sensitivity [97] but other 
types of uncertainties (e.g. those related to stratospheric aerosol 
processes) could be investigated in a similar way.

Natural variability uncertainty
For the investigation of the natural variability uncertainty, initial 
condition large ensembles remained rare in the sample (only 6 
articles with at least 10 ensemble members). Initial condition 
ensembles require further computing and storage resources and 
human time for analysing results. These are necessary when 
there is insufficient signal-to-noise ratio in a single simulation ei-
ther because the signal is small or the simulation not long 
enough (e.g. because it is part of a scenario). A key question, 
which is rarely addressed, is whether such an ensemble is re-
quired or not. Furthermore, it is important to remember that in-
ternal variability uncertainty also varies from one model to 
another and is thus impacted by model uncertainty. Any esti-
mates of internal variability uncertainty for a model are there-
fore biased but nonetheless useful in characterizing different 
dimensions of uncertainty [98].

Scenario uncertainty
Although scenario uncertainty was not analysed in this study, we 
note that implications of the different assumptions made in the 
design of the SAI scenarios were not systematically discussed in 
the studied literature. However, these scenarios entail assump-
tions about the technical feasibility (e.g. ability to deliver a pro-
jected intervention, no technical failure), human dimensions of 
uncertainty (e.g. emission trajectories, social/political acceptabil-
ity of the interventions, global agreement to proceed to an inter-
vention, no disruption of the intervention) as well as other 
climate forcings such as volcanic eruptions. The reviewed 
articles using a modelling approach on SAI mainly aimed at 
gaining a better understanding of the physical aspects of these 
deployments. However, the assumptions included in the SAI 
scenarios also create further uncertainty in the interpretation of 
the projected outcomes. A community approach for producing 
a range of plausible SAI scenarios to be systematically used 
in SAI modelling will be helpful for investigating the uncertainties 
[36, 51, 55, 56].

Model confidence
The terms used for communicating the reliability of the used 
models and the degree of confidence in the projections are im-
portant to choose in a way that adequately reflects the scientific 
basis of the statements.

Different factors contribute to the communication and thus 
the perception of the degree of confidence in climate projections, 
resulting in the use of specific adjectives (e.g. robust, consistent, 
significant) or adverbs (e.g. likely, unlikely). The meaning of these 
words and notions used to describe the results of climate projec-
tions is of high importance and it is not always clear if they are 
used in a qualitative or quantitative manner (e.g. using ‘likely’ 
with an associated likelihood as is done in the latest IPCC reports, 
[34]). These words related to the stated degree of confidence can 
strongly impact the interpretation made of the model projections 
and thus, the perceived informational value attributed to their 
results.

A common assumption, not only in the solar geoengineering 
community but also more generally in climate change research, 

is that good model performance for observed past and present- 
day conditions is an indication of the model’s ability to make 
accurate projections in the future (extrapolation of the model 
performance). It appears that as the degree of reliability of com-
monly used and continuously developed models is implicitly 
known and acknowledged in the field, many (more than a third) 
of the reviewed articles did not mention the model performance 
for present-day or past conditions to justify that the model cho-
sen to perform these particular projections was adequate. This is 
very probably not dissimilar to what is done in modelling studies 
on climate change. Despite the implicit knowledge in the field, it 
would be important to explicitly mention and discuss the ade-
quacy of the models for this particular purpose, as the ability of 
climate models to provide accurate long-term projections cannot 
be verified and models are calibrated for present-day conditions. 
Such a discussion could include explanations about (i) the choice 
of model performance metrics (instances of model fit) used to as-
sess the empirical accuracy of the model for present-day condi-
tions and (ii) the link between these instances of model fit and 
the assumptions made on the model quality for projecting sce-
narios in the future [61, 63]. Another element used in justifying 
the adequacy of a model for this purpose was to state that model 
configurations included processes that were considered crucial 
for the quality of the SAI projections (e.g. detailed aerosol chem-
istry and microphysics). This argument relies on the support 
from background knowledge about the climate system to 
strengthen the confidence in the quality of the projections and 
on the assumption that we have already identified and included 
all of the processes that could significantly impact results of the 
climate projections based on SAI scenarios. As a counterexample, 
most of the current models are missing a detailed treatment of 
the small-scale physics related to the injection strategy, such as 
what happens in the plume after the injection, showing that 
more research and model development is still needed.

Conclusion
Recent assessment reports mention a ‘high’ level of uncertainty 
related to SRM, but do not provide systematic or quantitative 
estimates of the uncertainties [1, 11–13]. The SRM community 
has called for a more comprehensive investigation of modelling 
uncertainties (see e.g. [10, 36]). As the field is rapidly evolving 
there is no doubt that these questions will be investigated. A 
stocktake of the published literature can provide a baseline for 
future studies and assessments. Our study provides a quantita-
tive assessment of if and how the uncertainties have typically 
been estimated in the published literature through a systematic 
literature review using a representative sample of the SAI model-
ling literature. Our results show that, overall, the identification 
and quantification of uncertainties greatly varies between stud-
ies, but over time, the SAI literature has started paying increasing 
attention to uncertainty estimation. We also noticed that 
assumptions made in the interpretation of results are sometimes 
considered implicitly known instead of being reported. The rea-
sons for the varying methods of reporting uncertainties and 
assumptions are probably related to, for example, the computa-
tional cost associated with uncertainty quantification, the pre-
liminary and exploratory character of some studies, and implicit 
knowledge in the community on the adequacy and validity of the 
models and protocols being used. These elements are important 
factors to back up statements on the confidence in modelling 
results and thus in the ability to estimate potential impacts of 
SAI interventions. Our study is by no means an exhaustive review 
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and needs to be complemented by others. Moreover, our study 
does not provide a quantitative assessment of the uncertainties 
related to SRM: such a full assessment should be accomplished 
in the future through a wide effort of the whole research commu-
nity [10, 36].

In the growing community, more studies aim to identify the 
knowledge gaps. This provides a step towards specifically designed 
projects that will address the uncertainties in a systematic and 
comprehensive manner, also ensuring that uncertainties will be 
more systematically estimated in the literature (see e.g. discussion 
in [36]). This does not mean that every single article needs to have a 
comprehensive uncertainty treatment, since some topics are still 
exploratory (such as the physics that takes place in the injection 
plume) and their uncertainties can be more comprehensively quan-
tified in later work. In addition, other means of reducing the uncer-
tainties should be kept in mind [10, 23, 24]. Observations of 
analogous phenomena and their impacts, such as volcanic erup-
tions or significant changes in tropospheric particle mass (e.g. air 
pollution measures or reduction of particle emissions by marine 
transport), can also provide a means to reduce the uncertainties. 
Better estimates of uncertainties can be acquired with targeted 
small-scale or laboratory experiments of relevant processes, such 
as microphysical processes related to aerosol-cloud interactions 
and the ensuing radiative impact at local scale, or impacts of differ-
ent materials on atmospheric chemistry. However, such small- 
scale experiments will not address the question of uncertainties in 
global scale climate response to solar geoengineering. Moreover, 
there is no consensus on whether such experiments, specifically 
targeting solar geoengineering goals, should be performed [99].

Beyond the production of scientific knowledge, in future 
meta-analyses and assessments, including a discussion on model 
confidence and establishing a common framework similar to the 
IPCC guidelines on communication of uncertainties will be of 
great added value, especially if and when SAI modelling results 
are to be used in the political arena.

Other types of uncertainties that are somewhat outside the 
scope of purely climate modelling studies of SRM should not be 
downplayed. For instance, to avoid any problems related to rapid 
temperature changes caused sudden discontinuation of SRM 
(‘termination shock’, [100, 101]), a resilient SRM infrastructure 
would be needed for effective global deployment [100]. This could 
be achieved with a commitment through, for example, interna-
tional agreements to oversee SRM in the long run and at the plan-
etary scale. Not only scientific but also geopolitical and political 
uncertainties, such as the emergence of a coalition supporting a 
non-use agreement, have thus to be evaluated when considering 
SRM [99, 102, 103]. These issues are also intertwined with the im-
portant ethical questions that are raised by SRM [104]. It is of 
course not expected that all studies address all types of uncer-
tainties. How to combine such uncertainties from a range of 
studies is thus an important topic for future research and 
assessments.
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