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Abstract Today, volcanic sulfur emissions into the atmosphere are measured spectroscopically from the
ground, air and space. For eruptions prior to the satellite era, two main sulfur proxies are used, the rock and ice
core records, as illustrated by Peccia et al. (2023, https://doi.org/10.1029/2023gl103334). The first approach is
based on calculations of the sulfur content of the magma, while the second uses traces of sulfur deposited in ice.
Both approaches have their limitations. For glaciochemistry, the volcano responsible for a sulfur anomaly is
often unknown and the atmospheric pathway by which the sulfur reached the ice uncertain. The petrologic
method relies, too, on uncertain estimates of eruption size and a number of geochemical assumptions that are
hard to verify. A deeper knowledge of processes occurring both within magma bodies prior to eruption, and
within volcanic plumes in the atmosphere is needed to further our understanding of the impacts of volcanism on
climate.

Plain Language Summary Volcanic emissions of sulfur gases during large eruptions can change the
global climate. Today, advanced spectroscopic tools allow us to measure sulfur from the ground, air and space.
But to understand the impacts of volcanic activity on climate back through history we need to estimate volcanic
sulfur releases in other ways. Clues can be found in the pumice deposits found around a volcano and, perhaps
more surprisingly, in the ice caps of the polar regions, which receive the eventual fallout from large eruptions.
Both approaches have limitations that are addressed in a recent work by Peccia et al. (2023, https://doi.org/10.
1029/2023gl103334) and that are at the focus of our commentary.

1. Introduction
Volcanic outgassing established the Earth's secondary atmosphere, and all volcanic gaseous emissions contain
sulfur, variously speciated (including S, SO2 and H2S; Oppenheimer et al., 2011, 2014). Native sulfur deposits
often encrust fumarole vents at degassing volcanoes but sulfur may also exist in more (sulfates) and less (sulfides)
oxidized forms. In the atmosphere, both H2S and SO2 oxidize (Figure 1), forming sulfate aerosol, the key pro-
tagonist in the climate forcing associated with volcanism (Marshall et al., 2019, 2022). Interest in the climatic
effects of eruptions can be traced back to the late 18th Century but it accelerated since the 1960 s thanks to
airborne sampling and satellite remote sensing of volcanic plumes, along with advances in historical climatology.
In particular, the eruption of Pinatubo in 1991 fueled our understanding of the generation of stratospheric sulfate
aerosol via oxidation of volcanically emitted sulfur, and the consequences of the resulting “dust veil” encircling
the Earth for atmospheric chemistry and radiation (e.g., Brasseur & Granier, 1992; McCormick et al., 1995;
Minnis et al., 1993).

As the most relevant parameter, the yield of sulfur from an eruption needs to be calculated in order to model and
evaluate climatic variation. While SO2 emissions can be measured from space with increasing sensitivity (e.g.,
Carn et al., 2017; Theys et al., 2013), other sulfur species (notably H2S and sulfate aerosol, which may represent a
significant fraction of total emitted sulfur) are more challenging to quantify from satellite observations. Accurate
measurements can also be hindered by the presence of volcanic ash (leading to underestimated SO2 amounts), and
emitted SO2 can be efficiently scavenged by hydrometeors. Thus, estimates of the total sulfur yield can be subject
to considerable uncertainties, even for “well‐observed” eruptions.

For eruptions that occurred before the instrumental era (i.e., before around 1960), there are two main approaches
to evaluating sulfur yield: the petrologic method based on studies of the rock record, and the ice core method that
draws on measurements of the sulfur that is eventually deposited over the polar regions from airborne aerosol
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veils (Figure 1) (Hammer et al., 1980). The extent to which these two approaches can give different results is
highlighted in a new study by Peccia et al. (2023), who show how petrologic estimates of eruptive sulfur yield can
be a poor guide to the climatically‐effective amount of sulfur that reaches the stratosphere. In particular their
analysis shows that a significant component of emitted sulfur does not cross the tropopause and thus experiences a
much reduced atmospheric lifetime and transport.

The petrologic method relies on sedimentological and stratigraphic fieldwork aimed at determining the erupted
mass (magnitude), as well as evaluation of the proportions of reactive volatiles released to the atmosphere from
the melt (e.g., Schmidt & Black, 2022). The latter demands robust constraints on the volatile budgets of erupting
magmas, which are usually based on analyses of volatile abundances (including sulfur) in melt inclusions (MI),
small aliquots of melt trapped in crystals (Figure 1). The volatile amounts in the MIs are assumed to represent the
pre‐eruptive magma chemistry (Devine et al., 1984). Such calculations of volatile yield are then particularly
sensitive to assumptions made for element partitioning (e.g., Liu et al., 2006; Papale, 2005; Wallace et al., 1995,
1999; Wallace & Gerlach, 1994) and conservation (e.g., Iacovino et al., 2016; Vidal et al., 2016), in addition to
issues concerning MI occurrence and integrity (e.g., volatile leakage).

Since Luhr et al. (1984), in an investigation of the 1982 El Chichón eruption, showed that the large sulfur release
to the atmosphere was sourced primarily from a separate fluid phase present in the magma reservoir prior to
eruption (vesicles in Figure 1), much effort has gone into quantifying gas/melt partitioning of sulfur in silicate
melts (DS), in particular for felsic compositions (e.g., Binder et al., 2018; Keppler, 1999, 2010; Masotta et al.,
2016; Scaillet & Macdonald, 2006; Scaillet et al., 1998; Zajacz & Tsay, 2019; Zajacz et al., 2012). These and
other studies have revealed the high sensitivity of DS to the oxygen fugacity ( fO2) and composition of the melt.

Another approach to probing sulfur behavior during magma degassing (e.g., Burgisser & Scaillet, 2007) is the
application of thermodynamic models (e.g., Boulliung & Wood, 2022; Clemente et al., 2004; Ding et al., 2023;
Moretti et al., 2003). However, most of these are calibrated for H2O and S only, and struggle to account for the
complex interplay between different volatiles. In particular, the role of CO2 or Cl on S behavior during magma

Figure 1. Diagram representing key pathways and speciation of sulfur below ground, and the chemistry and transport of
sulfur in the atmosphere and deposition back to the surface. Inset on left depicts pumice clast and melt inclusion within a
crystal. Note that some processes may result in fractionation of sulfur isotopes. Scales shown are indicative only.
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degassing remains underexplored. Similarly, sulfide crystallization (which may sequester a significant part of the
S budget), while reasonably well understood for H2O‐poor mafic systems (O’Neill, 2021), remains something of a
mystery for H2O‐rich silicic magmas. These approaches further assume equilibrium conditions, which may not be
attained due to reaction kinetics. Sulfur diffuses comparatively slowly in silicate melts, such that its partitioning
may not reach equilibrium on the timescales of magma ascent and fragmentation, especially during explosive
eruptions (Su et al., 2016). Ongoing community efforts involving model benchmarking and intercomparison
continue to improve petrological S estimates (https://eartharxiv.org/repository/view/5298).

The primary basis for estimating sulfur yields from ice core glaciochemistry is the relationship between sulfur
concentration in the ice and the amount and dispersal of sulfur released by the eruption into the atmosphere (e.g.,
Sigl et al., 2022). While ice cores represent an exceptional archive of information on global volcanism (Figure 1),
several issues translate into considerable uncertainties in using ice core‐derived estimates of sulfur yield for
modeling climatic impacts of eruptions (Aubry et al., 2020; Toohey & Sigl, 2017), and in relating historical
evidence to volcanic forcing (e.g., Guillet et al., 2023; Pearson et al., 2022). These arise from uncertainties in ice
core dating and in the geographic location (importantly latitude) of the volcano responsible for an anomaly in the
core. They also reflect the extreme leveraging from sulfur deposition measured in ppb in the ice to atmospheric
yields measured in Tg, and ambiguity in the pathways taken by volcanic sulfate aerosol to the ice (i.e., strato-
spheric vs. tropospheric, Figure 1). Additionally, halogen emissions may impact atmospheric chemistry and
radiation (e.g., Brenna et al., 2020; Bureau et al., 2000; Cadoux et al., 2015; Kutterolf et al., 2013) yet are not
readily quantified from polar ice records. These issues are particularly acute for understanding the consequences
of larger eruptions, owing to their rarity, the complexities of volatile behavior in their source melts, and in the
dynamics of their atmospheric plumes, which may be sourced from both buoyant columns and pyroclastic density
currents (Wilson et al., 2021).

An emblematic example of the challenges is the 74 ka Youngest Toba Tuff (YTT) eruption for which estimates of
sulfur yield range from zero (no excess gas, and no melt degassing) to 3,000 Tg S (see: Rampino & Self, 1984;
Scaillet et al., 1998; Oppenheimer, 2002; Chesner & Luhr, 2010). If the YTT signature is eventually definitively
identified in polar ice core records it promises to resolve between these extreme scenarios. The uncertainties in
sulfur yield, along with those in microphysical processes relevant to sulfate aerosol formation and size distri-
bution (e.g., McGraw et al., 2024; Tilmes et al., 2023), are reflected in wide‐ranging scenarios (from regional
effects only to globally catastrophic “volcanic winter”) presented for the environmental and climatic impacts of
the super‐eruption (e.g., Black et al., 2021; Crick et al., 2021; Osipov et al., 2021; Rampino & Self, 1984; Robock
et al., 2009; Timmreck et al., 2012). The climatic significance of the YTTmay turn out to be muted compared with
that of Los Chocoyos eruption (Guatemala), recently dated to circa 74 ka (Cisneros de Leon et al., 2021).
Petrologic estimates suggest it released as much as 500 Tg S (Brenna et al., 2020).

In their new study, Peccia et al. (2023) employed the petrologic approach to probe the sulfur budget of a less
renowned explosive eruption that of Okmok volcano in Alaska, dated to 43 BCE. Of note, they argued that only
around a quarter of the estimated 62 Tg of gaseous sulfur released on eruption crossed the tropopause. This is
significant because if all the sulfur been injected into the stratosphere, the climatic impacts would likely have been
substantially stronger. By comparing sulfur yields for several other eruptions estimated both from eruption
magnitude and petrologic evidence and from ice core glaciochemistry, Peccia et al. (2023) go on to suggest that
this sequestration of sulfur in the lower atmosphere (including by adsorption on to tephra) is typical for larger
explosive eruptions, whose ash plumes tend to collapse episodically, generating pyroclastic density currents.
Another, more recent, example is provided by the 2011 eruption of Grímsvötn in Iceland. Observations for this
much smaller eruption suggest that only ∼20%–30% of the petrologic sulfur load reached the stratosphere
(Sigmarsson et al., 2013). The clear lesson here is that the total sulfur yield of an eruption may not represent a
reliable input for climate models, which are predicated on stratospheric sulfur burdens, a conclusion that re-
capitulates findings of much earlier modeling studies of the chemical and physical processing of gaseous species
in volcanic plumes by silicate ash and hydrometeors (e.g., Pinto et al., 1989; Textor et al., 2003). Even with robust
measurements of stratospheric sulfur burdens, disambiguating the climatic signatures of external forcing (e.g.,
volcanism) from internal variability is fraught with difficulties (e.g., Bengtsson & Hodges, 2019; DallaSanta &
Polvani, 2022; Mann et al., 2022).

Peccia et al. (2023) relied on maximum concentrations of sulfur recorded in MI to constrain their volatile budget.
However, a critical challenge for such petrologic approaches is our still limited knowledge of the pre‐eruptive
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behavior of volatiles during magma storage in the lithosphere. In this respect, the timescales of reservoir evolution
and incubation become important, since longer intervals promote volatile accumulation toward the top of a
reservoir while simultaneously favoring volatile escape (Figure 1) (e.g., Mittal & Richards, 2019). The balance of
accumulation and loss will determine the quantities of volatiles immediately accessible once an eruption is un-
derway. Estimates of bulk volatile contents based on element conservation (i.e., preservation of a given element
during magma evolution from mafic to felsic compositions) will represent upper limits (e.g., Vidal et al., 2016)
since they neglect potential pre‐eruptive volatile loss. A reassessment of the sulfur budget for the 946 CE Mil-
lennium Eruption of Paektu‐Changbaishan has suggested that up to half of the volatiles in the reservoir could have
escaped the upper crustal reservoir prior to eruption (Scaillet & Oppenheimer, 2023).

Mismatches between petrologic and ice core‐based estimates of sulfur yields can arise for other reasons. One is
that it may be oversimplistic to regard an eruption being sourced from a single reservoir. For instance, detailed
geochemical modeling for the YTTmagma suggests that such large eruptions are fed by separate magma bodies in
the crust (e.g., Naen et al., 2023; Pearce et al., 2020), adding further complexity to assessments of volatile yields.
Furthermore, as noted above, any petrologic calculations of volatile yields depend on estimates of the eruption
magnitude, that is, the mass of magma are discharged. Sizing an eruption is not straightforward, and disparate
estimates for the same deposit often vary significantly. For instance, the YTT “dense rock equivalent” volume
was revised from around 3,000 km3 up to 5,000 km3 (Costa et al., 2014), and even estimates for the 1991 Pinatubo
eruption have a factor of two uncertainty (Holasek et al., 1996). Tephra deposits are readily eroded and redis-
tributed (Figure 1), and may be hard to quantify owing to lack of basal exposure or sedimentation across wide
areas of the deep ocean subject to very limited sampling. A factor of two difference between ice core based and
petrologic estimates of sulfur yield can, frankly, be accommodated in most cases by uncertainty in erupted
volume.

For very ancient volcanic episodes, erupted volumes may perhaps be best gauged from their exposed plutonic
systems. This requires improved understanding of how and on what timescales batholiths develop (e.g., Szy-
manowski et al., 2023), so that we can better evaluate the tempo of volatile accumulation (and loss) in the upper
reaches of magma reservoirs. In addition, computational approaches might consider not only the dynamics of ash
plumes, but also the complex chemical and physical interactions of volcanogenic and atmospheric constituents,
which remain poorly understood owing in part to the difficulty of in situ observations of the interiors of volcanic
plumes. Going forwards, we believe that integration of all these parameters and their feedbacks is required, and
this calls for concerted interdisciplinary engagement of petrologists, geochemists, volcanologists, (paleo) cli-
matologists, and atmospheric scientists.

Data Availability Statement
No new data have been used in this paper.
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