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Abstract

We introduce “Class Symbolic Regression” (Class SR), the first framework for automatically finding a single
analytical functional form that accurately fits multiple data sets—each realization being governed by its own
(possibly) unique set of fitting parameters. This hierarchical framework leverages the common constraint that all
the members of a single class of physical phenomena follow a common governing law. Our approach extends the
capabilities of our earlier Physical Symbolic Optimization (Φ-SO) framework for symbolic regression, which
integrates dimensional analysis constraints and deep reinforcement learning for unsupervised symbolic analytical
function discovery from data. Additionally, we introduce the first Class SR benchmark, comprising a series of
synthetic physical challenges specifically designed to evaluate such algorithms. We demonstrate the efficacy of our
novel approach by applying it to these benchmark challenges and showcase its practical utility for astrophysics by
successfully extracting an analytic galaxy potential from a set of simulated orbits approximating stellar streams.

Unified Astronomy Thesaurus concepts: Neural networks (1933); Astronomy data analysis (1858); Astronomy
software (1855); Open source software (1866); Analytical mathematics (38)

1. Introduction

Since the beginning of the scientific revolution, researchers
have tried to find repeatable regularities in experiments and
observations. Mathematical structures were used in this
exploration, and many new ones including functions and
differential equations were developed to respond to this need to
model nature. Perhaps because of shared symmetries between
nature and mathematics, these abstract structures have often
been found to work exceedingly well in reproducing and
predicting properties of the world, to the point where some
have even considered whether the Universe is actually
mathematical at heart (Tegmark 2008).

The symbolic regression (SR) that the present contribution is
concerned with has a long pedigree. Perhaps its most famous
application was by Kepler to planetary ephemerides, thereby
finding the fitting law that bears his name (Kepler 1609). This
empirical law gave the observational basis upon which Newton
was able to build the physical theories developed in his
Principia Mathematica (Newton 1687).

Modern SR (Schmidt & Lipson 2009, 2011; Kommenda et al.
2020; Kammerer et al. 2020; Bartlett et al. 2023b; Brence et al.
2021; Jin et al. 2019; Luo et al. 2022; Tohme et al. 2023;
Udrescu & Tegmark 2020; Udrescu et al. 2020; Kamienny et al.
2022; Biggio et al. 2020, 2021; Vastl et al. 2024; Kamienny
et al. 2023; Martius & Lampert 2017; Brunton et al. 2016; Zheng
et al. 2022; Sahoo et al. 2018; Petersen et al. 2021a; Landajuela
et al. 2022; Holt et al. 2023; Scholl et al. 2023; Sousa et al. 2024;
Fiorini et al. 2024; Shojaee et al. 2024; Zhang & Lei 2024;
Cheng & Alkhalifah 2024; He et al. 2024; Makke &
Chawla 2022; Angelis et al. 2023; Faris et al. 2024; Tian et al.
2024; Michishita 2024; Melching et al. 2024; Meidani et al.
2024; Li et al. 2024a, 2024b; Chen et al. 2024) aims to use the
immense computational resources at our disposal to search

through possible analytic descriptions in terms of a set of
functions and operators (e.g., x, +, −, ×, /, sin, cos, exp log, ...)
to best fit some numerical data set (x, y) we wish to model.
Concretely, one seeks some analytic function  f : n ⟶ that
fits y= f (x) given those data. It is worth pointing out here
that the search space becomes exponentially larger the longer
the analytic expression is that we seek to find. Hence the key
to SR is to develop efficient schemes to search through
the possibilities, and most importantly, to prune out poor
choices.
Our modern computational abilities have allowed us to

examine nature in unprecedented quantitative detail, with
cameras, spectrographs, and other detectors amassing vast
quantities of numerical data. It is likely that the clues to next-
generation physics and understanding lie therein, and so we are
tasked to devise methodologies capable of handling this wealth
of information and translating it into coherent, interpretable,
and intelligible physical models. The promise of SR is that it
may allow us in part to answer this need to find accurate and
intelligible empirical laws in giant data sets to best capitalize on
the community’s observational investments.
While SR has been extensively applied in scientific research,

its focus has largely been on single data set analysis,
overlooking the rich potential in examining multiple data
sets linked to a singular physical phenomenon. The present
article extends our Physical Symbolic Optimization framework
(Φ-SO; presented in Tenachi et al. 2023a, 2023b) further by
allowing the search for a functional form that can simulta-
neously fit several data sets at once, each realization having
(possibly) different fitting parameters. This opens up the new
possibility of implementing a functional search on the proper-
ties of a class of objects. This approach is relevant across
various natural sciences, but it particularly shines in astro-
physics, where multiple observations of a single phenomenon
are often available, providing a rich multi–data set setup
enabling us to devise “universal” laws that apply to a range of
celestial objects of interest.
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In particular, we apply this new framework to the recovery
of a milky Way–like analytic Galactic potential from simulated
orbits that can be inferred from stellar streams. Specifically, our
approach recovers a single analytical form for the energy of
stellar stream members, incorporating a “universal” term that
encapsulates the dark matter distribution alongside a nuisance
term that accounts for the specifics of individual streams—
containing parameters allowed to have object-specific values.
Unlike traditional black-box deep learning methods, such as
autoencoders, our method generates a physically meaningful,
low-dimensional model in the form of an analytical model.

The layout of the paper is as follows: in Section 2, we
present the methodology of our approach. In Section 3 details
the first benchmark for Class SR, consisting of a series of
physics problems designed to assess the performance of Class
SR systems; here, we also evaluate our method against these
benchmarks. In Section 4, we illustrate the practical application
of our method in the more complex scenario of a Milky Way–
like potential recovery from orbits. Finally, Section 5, offers a
discussion and a conclusion.

2. Method

We build our “Class Symbolic Regression” (Class SR)
framework on the Φ-SO framework for SR. This framework
combines deep reinforcement learning with in situ dimensional
analysis constraints to construct solutions that avoid physically
nonsensical combinations of units. This algorithm currently
achieves state-of-the-art performance on physics data sets, and
significantly outperforms competitors on the standard Feynman
SR benchmark (La Cava et al. 2021) in exact symbolic recovery
in the presence of even slight levels of noise (exceeding 0.1%).

Figure 1 gives an overview of our Class SR framework.
Using Φ-SO we generate a batch of analytical expressions via a
recurrent neural network (RNN). In these expressions, class
parameters (c)—which are shared across the entire class and
have consistent values across all data sets—can appear
alongside realization-specific parameters (k). Subsequently,
we optimize the free parameters appearing in each expression

c k,( ), assigning unique values to realization-specific para-
meters ki i Nr<{ } for each of the Nr data sets.
This optimization is conducted using the L-BFGS nonlinear

optimization routine (Zhu et al. 1997). Encoding our mathematical
symbols with PyTorch (Paszke et al. 2019) enables us to use
PyTorchʼs implementation of the L-BFGS routine, which
benefits from PyTorchʼs autodifferentiation capabilities to
efficiently and simultaneously optimize both class and realiza-
tion-specific parameters employing a mean squared error (MSE)
cost function: c k xy fMSE , ,
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where xij are the input variables, yij are the target values, and N(i)
is the number of samples, which depends on the data set.
We then use reinforcement learning to update the RNN’s

parameters following a risk-seeking gradient policy (Petersen et al.
2021a), as detailed in Tenachi et al. (2023a). This update is based
on a reward R= (1+NRMSE)−1 that is representative of the fit
quality of the trial functional form f across all data sets—evaluated
using a normalized root mean squared error (NRMSE):
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( ) , where σy

is the standard deviation of target values evaluated across all data
sets. We repeat this process until the RNN converges to a unique
high-quality expression and its associated parameter values
simultaneously fitting all data sets.
Furthermore, the sequential nature of expression generation

in our Φ-SO framework enables the incorporation of various
priors regarding the resulting expressions as demonstrated in
Tenachi et al. 2023a, Bartlett et al. 2023a, Petersen et al. 2021b,
and Kim et al. 2021. This allows for customized constraints on
the generated expressions such as adherence to the rules of
dimensional analysis (which was one of the focal points of our
previous study, Tenachi et al. 2023a) but also simpler priors
such as constraints on the number of occurrences of given
parameters, the length of the expression, and more.

3. Multi–Data Set SR Challenges

Despite existing research efforts to establish benchmarks for SR
(La Cava et al. 2021; Matsubara et al. 2022; Marinescu et al. 2023;

Figure 1. Class symbolic regression framework sketch: searching for a unique functional form simultaneously fitting multiple data sets. The process starts at the left-
hand side; a batch of trial class analytical expressions are generated using our Φ-SO framework (Tenachi et al. 2023a). The free parameters appearing in those
expressions are then optimized in a data set–specific manner i.e., allowing each data set to have its own unique associated values for each parameter. The neural
network used to generate the trial expressions is then reinforced based on the fit quality of the trial symbolic functions. This process is repeated until convergence.
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Graham et al. 2013), a benchmark tailored specifically for Class
SR has yet to be developed, reflecting the innovative nature of this
approach. To address this, we introduce our own Class SR
challenges, designed to evaluate a system’s ability to analyze
multiple data sets. These data sets represent varied observations of
a similar phenomenon occurring at different scales but governed
by a consistent functional form. Table 1 outlines these challenges,
each focusing on accurately recovering the symbolic expression
from synthetic data sets having varied scale parameter values. To
heighten the challenge, we include multiple scenarios incorporating
class parameters that are common to all realizations in addition to
other realization-specific parameters.

We evaluate our algorithm by randomly sampling 10 data
sets of 102 samples for each of the eight challenges described in
Table 1 and allowing a maximum of 200,000 expressions to be
explored during each run. In order to ensure robustness, for
each challenges, this procedure was repeated five times, each
with a unique random seed, and the recovery rates were
subsequently averaged. The whole benchmark tests were
conducted across four noise levels: 0%, 0.1%, 1%, and 10%
with noise being added individually to each data set as per the
SRBench (La Cava et al. 2021) standardized SR benchmark-

ing protocol :   y y y, 0,
N i inoise
1 2g= + ~ å( ), where

γ is the level of noise. We conduct runs having access to a
single data set (SR) and having access to all 10 data sets (Class
SR), leading to the total evaluation of 64,000,000 expressions
through 320 runs.

We run our algorithm using the hyperparameters detailed in
Tenachi et al. (2023a), but with dimensional analysis disabled to
ensure a fair comparison with other algorithms (as a consequence
the batch size is lowered to 2000). This adjustment allows future
comparisons with our system to be focused solely on the machine-
learning technique used (here reinforcement learning), rather
than the problem simplification achieved through dimensional

analysis. We allow the use of the following operations:
/    , , , , 1 , , , , exp,log,cos,sin2+ - ´ -{ }, a con-

stant equal to one {1}, two adjustable realization-specific free
constants k= {k1, k2} allowed to have data set–specific values and
one adjustable class free constant c= {c1}. The recovery rate is
evaluated by examining each expression in the Pareto front, which
contains optimum expressions found in conciseness/accuracy, i.e.,
best-fitting expressions at each level of complexity generated by
our algorithm. Successful recovery is noted if an expression on the
Pareto front is symbolically equivalent to the target expression.
Exact symbolic recovery is assessed by formally comparing these
expressions with the target expression using the SymPy library for
symbolic mathematics (Meurer et al. 2017), following a methodol-
ogy similar to the one in the SRBench (La Cava et al. 2021).
Specifically, expressions are deemed equivalent if their fraction is
symbolically equivalent to 1 or a constant or if their difference is
symbolically equivalent to 0 or a constant.
Figure 2 presents a comparison of exact symbolic recovery

rates between our Class SR framework and the traditional SR
approach under both noiseless and noisy conditions using an
SRBench-style benchmarking pipeline, with detailed chal-
lenge-by-challenge results published online (see Section 5).
Our results demonstrate the superiority of Class SR over
traditional SR in exact symbolic recovery, particularly in noisy
scenarios where noise overfitting is generally an important
concern (La Cava et al. 2021).
While one might consider employing traditional SR

individually on each data set and subsequently aggregating
the results, this approach would not only be substantially more
computationally demanding, but it would also fail to
differentiate class constants from realization-specific scale
parameters, thus yielding a less interpretable model. Further-
more, our analysis uncovers several instances where traditional
SR did not successfully identify the correct expression in
any of the five attempts but in which Class SR effectively

Table 1
Class Symbolic Regression Challenges

# Challenge Formula Variables Realization-specific Free Parameters

1 Harmonic Oscillator A tcos wF +( )


t 0.0, 9.4Î [ ] A 0.6, 1.2
0.2, 1.5
0.9, 1.1

w
Î
Î

F Î

[ ]
[ ]
[ ]

2 Radioactive Decay n e0
t

T
-


t 0.5, 6.0Î [ ] n

T
0.4, 2.0
0.9, 1.4

0 Î
Î

[ ]
[ ]

3 Free Fall t tv z9.811

2
2

0 0+ +


t 0.0, 1.0Î [ ] v
z

2.0, 8.0
3.0, 3.0

0

0

Î -
Î -

[ ]
[ ]

4 Damped Harmonic Oscillator A e tcos 1.389kt F +- ( )


t 0.0, 9.4Î [ ] k 0.2, 1.0
0.2, 0.3

Î
F Î -

[ ]
[ ]

5 Damped Harmonic Oscillator B e tcost0.345 wF +- ( )


t 0.0, 9.4Î [ ] 0.6, 1.4
0.2, 0.3

w Î
F Î -

[ ]
[ ]

6 Black Body Photon Count
e

1

1T5.9 -n 
1.0, 5.0n Î [ ]


T 1.0, 5.0Î [ ]

7 Ideal Gas Law n T

V

8.314 T
V

1.0, 5.0
1.0, 5.0

Î
Î

[ ]
[ ] 

n 1.0, 5.0Î [ ]

8 Free Fall Terminal Velocity m

A

2 9.807

0.47 r
m
A

1.0, 10.0
1.0, 5.0

Î
Î

[ ]
[ ] 

1.0, 6.0r Î [ ]

Note. Each row details a distinct challenge, with the objective being the exact symbolic recovery of the designated target expression using multiple synthetic data sets.
Each data set being generated using unique realization-specific parameter sets sampled from the given parameter ranges by sampling from the target expression within
the given variable ranges.
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discovered the correct expressions. This concerns Problem #3
and #6 at 10% noise level scenarios, as well as Problem #5
across all noise levels. These findings highlight the superior
robustness and efficiency of Class SR over traditional methods.

Following the SRBench protocol, we also include, on
Figure 2, the rate of accurate expressions (having R2> 0.999)
with the R2 metric defined as R 1

y f

y y

x2 i
N

i i

i
N

i

1
2

1
2= - å -

å -
=

=

( ( ))
( ¯)

. We

evaluate fit quality by refitting all constants of candidate
expressions on newly generated previously unseen test data
sets. This approach ensures a fair comparison between Class
SR expressions, whose numerical parameters must accommo-
date multiple observations, and expressions derived from
traditional SR, which only fit a single observation. Our results
demonstrate that Class SR is not only more efficient at
recovering the exact expressions but also more effective at
deriving accurate approximations than traditional SR, in
scenarios with noise levels exceeding 0.1%.

4. Recovering an Analytic Potential from Stellar Streams

We now turn to an astrophysical application of the
algorithm: to try to find the underlying potential of a
gravitational system from a set of orbit segments within it.
This could be practically applicable for finding an analytic
potential model of a galaxy from a set of stellar streams. These
linear structures form from the tidal dissolution of globular
clusters and dwarf satellite galaxies. When their progenitors are
of low mass, the escaping stars have similar energy to the
progenitor, and therefore follow a similar orbit. Hence stellar
streams approximate orbits in the host galaxy. As has recently
been shown by Ibata et al. (2024), for many real streams one
can calculate a “correction function” to convert an orbit model
into a stream track, and these functions are relatively
insensitive to the adopted potential. This procedure can be
inverted to give the orbit from the stream.

For this test we imagine having access to full six-
dimensional phase-space measurements of a sample of streams.

For each structure i, the kinetic energy per unit mass Ei,kin(x) is
simply

v xE
1

2
. 1i2

t= - F( ) ( )

The total energy per unit mass E i
t , which is constant, but

different, for each stream, can be considered to be nuisance
terms in our search for the underlying potential Φ.
We run our algorithm with the objective of recovering the

analytic form for Ei,kin(x). We use the the hyperparameters detailed
in Tenachi et al. (2023a), allowing the use of the following
operations: /    , , , , 1 , , , , exp,log,2+ - ´ -{ }, a constant
equal to one {1}, one adjustable realization-specific free constant
(having units of energy), and three adjustable class free constants
(one having units of energy, one having length units, and the other
having dimensionless units).
Again we conduct runs at four noise levels (0%, 0.1%, 1%,

and 10%), having access to a single orbit (SR), 25% of the
orbits, 50% of the orbits, and 100% of the orbits (Class SR),
repeating experiments 16 times with different random seeds
and allowing a maximum of 250,000 expressions to be
explored during each run, leading to the total evaluation of
64,000,000 expressions through 256 runs.
For the present analysis we generated a sample of artificial

orbit data (shown in Figure 3) that approximates the sample of
29 thin and long streams studied by Ibata et al. (2024). To this
end we used the present day progenitor positions estimated by
Ibata et al. (2024), and integrated orbits within a universal
Navarro–Frenk–White (NFW) dark matter halo model
(Navarro et al. 1997) that very roughly approximates the
large-scale mass distribution in the Milky Way. The adopted
potential (Łokas & Mamon 2001) is

M g r R R rlog 1 , 2NFW 200F = - +[ ]( ) ( )

where M200 is the virial mass of the halo, g º
c c cln 1 1 1+ - + -( ( ) ( )) is a function of the halo concen-

tration c and R is the scale radius. We chose M200= 1012Me,
c= 10, and R= 20.0 kpc. The orbits consist of 100 phase-
space points at locations between ±1 Gyr from the current
progenitor location.
Figure 4 presents the results of our analysis in terms of exact

symbolic recovery and fit quality, evaluated using the R2

metric. This metric was determined by refitting candidate
expressions on noiseless test data and computing the median
across various random seeds.
As anticipated, our results underscore that utilizing more

realizations during the SR process significantly enhances model
accuracy and the likelihood of exact symbolic recovery. This
trend is particularly evident as noise levels rise, reinforcing our
findings of Section 3. Notably, at a 1% noise level, none of the
16 runs that analyzed stellar stream individually succeeded in
recovering the correct functional form. In contrast, when all 29
stellar streams were utilized, the correct functional form was
identified nearly half of the time, showcasing the advantages of
Class SR under noisy conditions.
We observe that the inability of our algorithm to recover the

exact symbolic expression in the presence of 10% noise can be
attributed to the fact that, under such high noise conditions, the
difference in fit quality between the expressions typically
identified by our algorithm and the true solution yields only a
minimal improvement in terms of reward, ΔR∼ 10−5. This
minute improvement, which corresponds to a difference in R2

Figure 2. Comparison of exact symbolic recovery rates and rate of accurate
expressions (having R2 > 0.999) between Class SR and standard SR on our
Class SR challenges using an SRBench-style benchmarking pipeline (La Cava
et al. 2021). This figure demonstrates the enhanced effectiveness of Class SR in
identifying common underlying functions across multiple data sets with
varying scale parameters, resulting in a higher success rate compared to the
traditional SR method exploiting only one data set at a time—especially in the
presence of noise.
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of approximately (10−6), is the sole metric available to guide
the algorithm, as it operates on a trial-and-error basis.
Unfortunately, such a small difference often remains unde-
tected due to it falling below the tolerance threshold of the free
constants optimization procedure. This scenario highlights a
known intrinsic limitation of purely empirical SR, where
degeneracies in the space of functional forms can go
undetected.

Excluding scenarios where noise levels render the numeri-
cally found expression indistinguishable from the true solution,
our Class SR algorithm typically converges toward the correct
functional form by exploring under 250,000 expressions,
despite the presence of multiple alternative functional forms
that provide a near-perfect fit to individual streams. Φ-SO
identifies an offset parameter specific to each stream (corresp-
onding to E i

t ) and a functional form parameterized by class
parameters common to all streams corresponding to ΦNFW.
These results show that our algorithm can effectively recover a
concise interpretable model for a Milky Way–like potential in
the form of an analytic expression based solely on stellar
positions and velocities without any prior information about the
system.

5. Discussion and Conclusions

We presented the first framework for discovering symbolic
analytical functions that simultaneously fit multiple data sets by
allowing for (possibly) unique data set–specific parameter
values. This new framework, which we dub “Class Symbolic
Regression” is built upon our earlier Φ-SO framework, which
already delivers state-of-the-art performances in symbolic
recovery in the presence of noise.

We demonstrated the efficacy of Class SR through simple
textbook physics examples that we compiled into a first Class
SR benchmark, finding better performance in exact symbolic
recovery over traditional SR, especially in noisy situations.
Additionally, we applied our method to a more complex
astrophysical scenario, successfully rediscovering an NFW
galaxy potential model from orbits approximating stellar
streams.

Regular SR, when applied to a single data set, often risks
overfitting to specific characteristics of an observation, such as
observational biases or transient events, and noise. In contrast,
our Class SR framework should facilitate the finding of
universal analytical laws that apply to a range of observations
within a single class of physical phenomena. This enables our
framework to model the underlying physics rather than the

specifics of individual observations, with data set–specific free
parameters modeling the unique aspects of each observation.
For instance, an application within galactic dynamics that we
intend to explore in a future contribution is the analysis of
galactic rotation curves. Here, a universal law derived through
Class SR could provide insights into the general behavior of
dark matter, whereas traditional SR, if applied to a single
galaxy, might merely find the specific attributes of that galaxy.
It should be noted that while Class SR might superficially

resemble regular SR applied to unbalanced data sets with data
set–specific parameters being akin to additional input variables,
this comparison is not entirely accurate. In Class SR, these
additional degrees of freedom represent unknown values that
must be determined, differentiating it as a distinct problem with
its own unique challenges.
A persistent issue in SR is model selection as the correct

expression can often be overlooked in favor of those that fit
better or are less complex (these concerns led to, e.g., the
development of single objective criterion; Bartlett et al. 2023b).
Our framework, by searching for expressions that fit multiple
data sets, effectively utilizes information about the physical
phenomena’s class structure. This approach significantly
mitigates model selection challenges, helping avoid incorrect
model choices influenced by data set–specific peculiarities. In
addition, exploiting multiple data sets with regular SR
techniques would require fitting the individual data sets
independently, and then identifying the solutions in common
between the objects, which may not be possible if the
measurements are uncertain, would be computationally ineffi-
cient and would result in lower performances in exact symbolic
recovery and fit quality alike in the presence of noise.
Finally, we note that after the first submission of our paper,

another Class SR approach built on Operon (Kommenda et al.
2020)—a genetic algorithm approach to SR—was applied to
supernovae photometry in Russeil et al. (2024).
In future work, we intend to improve on the machine-

learning aspects of our method to more effectively leverage
multiple data sets. As each data set might distinctly highlight
certain symbolic terms or subexpressions more prominently
than others, a promising strategy could be to periodically shift
the neural network’s training emphasis between data sets. This
technique could potentially refine the performance of Class SR
by sequentially learning different segments of the expression,
rather than attempting to learn the entire expression simulta-
neously, thereby facilitating the learning process.

Figure 3. Synthetic stellar stream data utilized by our algorithm to recover the Galactic potential. The left and middle panels display the spatial positions of stream
members relative to the Milky Way, while the right panel illustrates the kinetic energy of these members as a function of their radial distance from the Galactic center.
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Code Availability

The documented code for the Φ-SO algorithm, along with
demonstration notebooks, benchmark and results analysis
pipelines is accessible on GitHub at https://github.com/
WassimTenachi/PhySO ✎, complete with comprehensive
documentation. A frozen version related to this work on Class
Symbolic Regression is released under tag v1.1.0 (https://
github.com/WassimTenachi/PhySO/releases/tag/v1.1.0 ✎)
and deposited on Zenodo (doi:10.5281/zenodo.11663147;
Tenachi et al. 2024).

We offer to the community a convenient interface for using
our Class SR benchmark, running: pb = ClassProblem(i)
will instantiate challenge i ä{0, 1,...,7} of the Class bench-
mark presented in Table 1. This interface offers simple ways to
generate data points (via pb.generate_data_points)
and compare a canddiate expression to the target (via pb.
get_sympy).

In addition, we include challenge-by-challenge and run-by-
run performances results tables: see https://github.com/
WassimTenachi/PhySO/tree/v1.1.0/benchmarking/ClassBen
chmark/results for results pertaining to the Class SR bench-
mark and https://github.com/WassimTenachi/PhySO/tree/
v1.1.0/demos/class_sr/demo_milky_way_streams/results for
results pertaining to the stellar stream problem.

Finally, for the sake of result reproducibility, we offer a
straightforward method to replicate the outcomes presented in
Figure 2 by simply executing the following command:

python classbench_run.py --equation i --noise
n --n_reals Nr. This command will run PhySO on
challenge number i ä{0, 1,...,7} of the Class benchmark
presented in Table 1, employing a noise level of n ä[0, 1] and
exploiting Nr Î realizations. We also include the script we
used to estimate performances post-run : classbench_re-
sults_analysis.py
Similarly, we offer a straightforward method to replicate the

outcomes presented in Figure 3 by simply executing the
following command: python MW_streams_run.py
--noise n --frac_real fr. This command will run
PhySO on the stellar stream problem described in Section 4,
employing a noise level of n ä[0, 1] and exploiting a fraction
of fr ä[0, 1] realizations. Again, we include our results
analysis script: MW_streams_results_analysis.py
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