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A B S T R A C T

Mixing-limited reactions are central to a wide range of processes in natural and engineered porous media.
Recent advances have shown that concentration gradients sustained by flow at the pore-scale influence
macroscopic reaction rates over a large range of reactive transport regimes. Yet, resolving concentration
gradients driven by fluid mixing at the pore-scale is challenging with current simulation methods. Here, we
introduce a computational methodology to resolve concentration gradients at the pore scale in mixing-limited
reactions. We consider a steady-state reactive transport problem characterized by reactive fluids flowing in
parallel in a porous material. Given a mesh representation of the pore space and a steady velocity field, we
solve the steady advection-diffusion equation for conservative scalar transport using a stabilized finite-element
method combined with mesh refinement adapted to local scalar gradients. Based on this solution and assuming
instantaneous reaction kinetics in the fluid, we infer the distribution of species involved in an irreversible
bi-molecular reaction. We validate the method by comparing our results for uniform flow with analytical
solutions and then apply it to simulate mixing-limited reactions in a three-dimensional random bead pack and
Berea sandstone sample. Chaotic flow within the pore space leads to sustained concentration gradients, which
are captured by our numerical framework. The results underscore the ability of the methodology to simulate
transverse mixing and mixing-limited reactions in complex porous media and to provide bottom-up numerical
data to improve the prediction of effective reaction rates at larger scales.
1. Introduction

Fluid flow through porous media controls the transport of dissolved
chemicals, pollutants, and biological compounds in a wide range of
natural and industrial porous systems (Dentz et al., 2011; Rolle and
Le Borgne, 2019). The complex network of interconnected pores can
lead to highly non-uniform flow patterns and, consequently, hetero-
geneous distributions of chemical concentrations (Dentz et al., 2023).
Understanding the dynamics of mixing at the pore level and its influ-
ence on reaction kinetics on larger scales is important for applications
such as the prediction of contaminant migration in groundwater (Rolle
and Le Borgne, 2019), production of oil-wet reservoirs by CO2 injec-
tion (Jiménez-Martínez et al., 2016), designing effective remediation
strategies in subsurface environments (e.g., Kitanidis and McCarty,
2012), and the optimization of transport processes in engineered porous
media (e.g., Johnson and Locascio, 2002).

∗ Corresponding author at: The Njord Centre, Departments of Geosciences and Physics, University of Oslo, Norway.
E-mail addresses: paimans@uio.no (P. Shafabakhsh), gaute.linga@mn.uio.no (G. Linga).

Solute mixing brings reactants together in a fluid, allowing chemical
reactions to occur. Since this process can be relatively slow in porous
media, a range of chemical reactions have kinetics with characteristic
times significantly shorter than typical mixing times (Li et al., 2006;
Valocchi et al., 2019). Such mixing-limited reactions result in a reaction
zone confined to an interface that acts as a boundary between segre-
gated reactants (e.g., Rolle et al., 2009; Bauer et al., 2008; Willingham
et al., 2008; Cirpka et al., 1999; Eckert et al., 2012; Hidalgo et al.,
2015; Perez et al., 2019). A range of reactive transport problems are
characterized by steady-state or slowly moving plumes, where mixing
occurs predominantly transverse to the flow direction in narrow mixing
fronts, typically on the millimeter scale (Rahman et al., 2005; Benekos
et al., 2006; Shafabakhsh et al., 2024a; Nambi et al., 2003; Jose and
Cirpka, 2004). The localization and size of such transverse mixing
zones are greatly influenced by the heterogeneous nature of geological
formations (Cirpka et al., 2015).
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At Darcy scale, most numerical studies of reactive transport em-
ploy a continuum-based approach in which solute concentrations are
integrated within a representative elementary volume (e.g., Katz et al.,
2011; Molins and Knabner, 2019; Porta et al., 2013, 2016; Boso and
Battiato, 2013). This approach uses hydrodynamic dispersion to repre-
sent the effect of unresolved pore-scale fluctuations in fluid velocities.
Although this macrodispersion framework is useful in describing the
spread of solute plumes, it tends to overpredict the rates of mixing-
limited reactions because of the persistence of incomplete mixing at the
pore scale (Raje and Kapoor, 2000; Gramling et al., 2002; Liedl et al.,
2005). This highlights the need for methodologies that can accurately
capture these pore-scale processes.

Substantial progress has been achieved to simulate the resulting
pore-scale concentration gradients by using different Lagrangian and
Eulerian simulation methods (Benson et al., 2017; Oostrom et al.,
2016). Lagrangian methods, which involve tracking individual solute
particles, have been applied in investigating mixing phenomena in
single- and multiphase flow systems (Guida et al., 2012; Minier et al.,
2014; Voronov et al., 2011; Sternagel et al., 2021; Klimenko, 2009;
Benson and Bolster, 2016; Ding et al., 2017; Benson et al., 2019;
Engdahl et al., 2019). A key benefit of Lagrangian methods is their
ability to accurately capture advection-dominated transport processes,
characterized by high Péclet number Pe (the ratio of diffusive to advec-
tive fluxes), without introducing numerical dispersion (Salamon et al.,
2006; Boso et al., 2013). However, the limitation is the requirement
for a large number of particles to effectively resolve concentration
gradients, leading to high computational costs (Noetinger et al., 2016).
Moreover, interpolation methods for computing concentrations based
on particle positions introduce a risk of over-smoothing concentration
fields, potentially degrading accuracy (Fernàndez-Garcia and Sánchez-
Vila, 2011). Eulerian simulation methods, on the other hand, solve
the advection–diffusion equation directly in a discretized domain Sole-
Mari et al. (e.g., 2022), Baek and Seo (e.g., 2017). To avoid spurious
oscillations in the resulting concentration fields, various stabilization
approaches have been proposed (Hughes, 1979; Brooks and Hughes,
1982). These may again introduce non-physical numerical dispersion
and smear out concentration gradients unless the spatial and temporal
resolution is high enough.

While mixing dynamics can be well resolved at the pore scale in
two-dimensional simulations (e.g., Acharya et al., 2007; Du et al.,
2023; Hejazi and Azaiez, 2013; Oostrom et al., 2016), this task is
much more challenging in three-dimensional porous media (e.g., Sole-
Mari et al., 2022). The additional degree of freedom induces chaotic
stretching and folding at the pore scale, which sustains concentration
gradients and incomplete mixing (Lester et al., 2014, 2016; Heyman
et al., 2020; Souzy et al., 2020; Heyman et al., 2021; Aquino et al.,
2023; Sanquer et al., 2024). Therefore, the transition towards three-
dimensional simulations is essential to capture the spatial variability
and heterogeneity of porous media, which cannot be adequately rep-
resented in two-dimensional models. The effects of chaotic mixing
on reactive processes are best evidenced when considering transverse
mixing in steady state mixing fronts (e.g. (Sanquer et al., 2024)). Yet,
there is, to our knowledge, currently no method or studies that directly
address how to properly and practically resolve chaotic mixing in 3D
pore-scale flows. Eulerian methods suffer from numerical dispersion
and numerical instabilities, while Lagrangian methods require a large
amount of particles to accurately resolve concentration gradients in
three dimensions. Methods that rely on temporal integration of the
governing equations (both Lagrangian and Eulerian) require a long
time to converge to the steady state of transverse mixing between two
continuously injected solutions. Using time-dependent solvers such as
OpenFoam, with a spatial resolution 𝛥𝑥 and time step 𝛥𝑡, requires
𝛥𝑥 ∼ 𝛥𝑡 ∼ Pe−1∕2 for stability as discussed e.g. by Martínez-Ruiz et al.
(2018). Considering that the diffusion time in the transverse direction
is 𝑡𝐷 ∼ Pe, this leads to the number of time steps 𝑁𝑡 ∼ 𝑡𝐷∕𝛥𝑡 ∼ Pe3∕2

−3 3
2

and problem size 𝑁 ∼ 𝛥𝑥 𝑁𝑡 ∼ Pe , resulting in high computational t
costs for advection-dominated transport. Hence, there is a critical need
for methodologies that can balance computational efficiency with the
ability to accurately capture the pore-scale gradients for simulating
mixing and reactions in 3D porous media.

To effectively resolve sharp concentration gradients, adaptive mesh
refinement strategies have been widely used for the transport of solutes
in porous media (Mansell et al., 2002), primarily in the context of
transient flow at the Darcy scale (Nilsson et al., 2005; Pau et al., 2009;
Cusini et al., 2019; Dell’Oca et al., 2018). Refinement criteria may be
based on both local gradients (Cusini et al., 2019) and a posteriori error
analysis (Dell’Oca et al., 2018). For advection-dominated conditions,
robust refinement strategies based on the Streamline-Upwind Petrov–
Galerkin method (Hughes, 1979; Brooks and Hughes, 1982) have been
developed (John and Novo, 2013). These techniques may provide new
opportunities to resolve sharp chemical gradients in complex three-
dimensional flow fields that arise at the pore scale in realistic porous
media.

Here, we introduce a new methodology for simulating steady-state
mixing and reaction at the pore-scale in three-dimensional porous
media. The approach relies on accurately solving steady conservative
scalar transport in a porous domain, given a mesh representation of
the pore space and a steady velocity field within it. To simultaneously
achieve numerical stability and physically valid concentration fields,
a key step is the combination of numerical stabilization (using the
Streamwise-Upwind Petrov–Galerkin approach) and iterative refine-
ment based on local concentration gradients. This methodology offers
enhanced spatial resolution to capture detailed transverse mixing pro-
cesses, and accurate representation of concentration gradients, which
the existing modeling frameworks fail to adequately resolve at the pore-
scale. Based on the proposed refinement criterion, we provide scaling
estimates for the number of computational nodes needed to resolve
the mixing zone, which is qualitatively different in two and three
dimensions. We evaluate instantaneous reactions by post-processing
the resulting conservative concentration fields. The adaptability of this
methodology allows us to resolve pore-scale mixing in a wide range of
porous media systems, including chaotic flow through a bead pack and
flow in a natural rock sample of Berea sandstone.

2. Physical model

In the following, we present the considered physical model and
the modeling assumptions used. We describe both conservative and
reactive transport, as well as to how the two modes of transport can
be linked assuming instantaneous reaction kinetics.

2.1. Porous domain and velocity field

We consider a fluid domain 𝛺 ⊂ R3, schematically displayed in
Fig. 1, which represents the pore space within a solid porous matrix.
This pore space is filled with single-phase fluid. 𝛺 is contained within
a box of size 𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧. The boundary of 𝛺 is comprised of the inlet
boundary 𝛤in (at 𝑧 = 0, ref. Fig. 1), the outlet boundary 𝛤out (at 𝑧 = 𝐿𝑧),
and the pore wall boundary 𝛤wall, i.e. the surface of 𝛺 that separates
fluid and solid.

A steady fluid velocity field 𝐮(𝐱) is defined within 𝛺. Here, 𝐱 =
(𝑥, 𝑦, 𝑧) ∈ 𝛺 is the spatial coordinate and the velocity field is that of
an incompressible fluid, such that 𝛁 ⋅ 𝐮 = 0. Furthermore, we assume
that the solid is impermeable, i.e. 𝐮 ⋅ �̂� = 0 for 𝐱 ∈ 𝛤wall. Here, �̂� the
utward normal of 𝛺. For creeping flows typical to porous media, the
elocity field 𝐮(𝐱) will generally be well represented by the solution of

he Stokes equations (Feder et al., 2022) (see Appendix B).
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Fig. 1. Schematic representation of the single-phase fluid domain 𝛺 within a solid
porous matrix, and its boundaries. Here, the two fully miscible single-phase solutions
A (red solution) and B (blue solution) are separated by a sharp interface, and are
co-injected from the surface 𝛤in. This inlet condition corresponds to the Heaviside
step function Eq. (16) for the conserved composite species 𝛿, as indicated. 𝛤wall is the
boundary surface that separates fluid and solid, and 𝛤out is the surface at the bottom.

2.2. Advection–diffusion equation

We now consider the concentration 𝑐𝑖 of a given chemical species C𝑖
dissolved in a fluid that flows through a porous medium. The evolution
of 𝑐𝑖(𝐱, 𝑡) in space 𝐱 ∈ 𝛺 and time 𝑡, is described at the pore-scale by
the advection–diffusion equation
𝜕𝑐𝑖
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑐𝑖 −𝐷𝑖𝛁2𝑐𝑖 = 0, (1)

where 𝐷𝑖 is the diffusivity of the species. A Dirichlet boundary condi-
tion is supplied at the inlet boundary as

𝑐𝑖(𝐱, 𝑡) = 𝐶𝑖,0(𝐱) for 𝐱 ∈ 𝛤in, (2)

where the precise function 𝐶𝑖,0(𝐱) will be specified later. For the pore
walls, we also take the boundaries to be impermeable for the chemical
species, which when �̂� ⋅𝐮 = 0 is expressed by �̂� ⋅𝛁𝑐𝑖 = 0 for 𝐱 ∈ 𝛤wall. To
close the equations, we also choose the boundary condition �̂� ⋅ 𝛁𝑐𝑖 = 0
for 𝐱 ∈ 𝛤out , in this case representing no diffusive solute flux at the
outlet.

For constant injection rates, a steady transport regime will eventu-
ally be established. Here we consider a co-injection of two fluids with
different solute concentrations (e.g., Acharya et al., 2007) leading to a
non-trivial steady-state concentration 𝑐𝑖(𝐱) described by removing the
time-dependence in Eq. (1):

𝐮 ⋅ 𝛁𝑐𝑖 −𝐷𝑖𝛁2𝑐𝑖 = 0, for 𝐱 ∈ 𝛺, (3a)

𝑐𝑖(𝐱) = 𝐶𝑖,0(𝐱), for 𝐱 ∈ 𝛤in, (3b)

�̂� ⋅ 𝛁𝑐𝑖 = 0, for 𝐱 ∈ 𝛤wall ∪ 𝛤out . (3c)

2.3. System of advection–diffusion–reaction equations

When chemical reactions take place within the fluid, the concentra-
tion fields 𝑐𝑖 of the different species C𝑖 become coupled to each other.
Eq. (1) then generalizes to the advection–diffusion–reaction equation:
𝜕𝑐𝑖
𝜕𝑡

+ 𝐮 ⋅ 𝛁𝑐𝑖 −𝐷𝑖𝛁2𝑐𝑖 = 𝑅𝑖. (4)

Here, the chemical species C𝑖, 𝑖 ∈ {1,… , 𝑁} interchange mass through
the reaction terms 𝑅 . In principle, these terms could result from several
3

𝑖

reactions taking place in a complex reaction network (De Simoni et al.,
2007a). However, to demonstrate our approach, we consider a simple
bimolecular reaction for which pore-scale mixing plays an important
role (Valocchi et al., 2019).

2.4. Irreversible bi-molecular reaction

The simplest fluid–fluid reaction involving more than one species is
the irreversible bimolecular reaction:

A + B ⟶ C. (5)

This reaction has been well studied in porous media both in simula-
tions (e.g., Borgne et al., 2014; Kim, 2019) and in experiments (e.g.,
Willingham et al., 2008; Izumoto et al., 2023; d. Anna et al., 2014).
Here, mixing between two reactants A and B yields product C upon con-
tact between the two miscible fluids. The local reaction rate expressing
the creation of product C can be expressed by:

𝑅 = 𝑘𝑎𝑏, (6)

where 𝑘 is the reaction rate constant. The steady advection–diffusion–
reaction system corresponding to reaction (5) can be described by Eq. (4
and becomes:

𝐮 ⋅ 𝛁𝑎 −𝐷𝛁2𝑎 = −𝑅 (7a)

𝐮 ⋅ 𝛁𝑏 −𝐷𝛁2𝑏 = −𝑅 (7b)

𝐮 ⋅ 𝛁𝑐 −𝐷𝛁2𝑐 = 𝑅, (7c)

where 𝑎, 𝑏, and 𝑐 are the concentrations of the involved species, and
we have taken the diffusion coefficient 𝐷 to be equal for all species.

2.4.1. Inlet boundary conditions
We consider the idealized scenario of two miscible fluids containing,

respectively, species A and B, which mix within the porous domain
𝛺 (see Fig. 1). This scenario fixes the inlet boundary condition (2)
for the reaction (5). Both species have the same initial concentration
(normalized to 1, for simplicity), and the fluids are injected from two
different locations at the inlet boundary 𝛤in (i.e., co-flow injection).
The concentration of species C is equal to zero at the inlet boundary,
meaning that all production of C by construction occurs within the
domain. The boundary 𝛤in can be split into two subdomains separated
by a sharp interface, where either

(𝑎, 𝑏, 𝑐) = (1, 0, 0) or (0, 1, 0). (8)

In particular, in this work, we will approximate the inlet boundary
condition

𝑎(𝑥, 𝑦, 0) = 𝛩(𝑥), (9)

𝑏(𝑥, 𝑦, 0) = 1 − 𝛩(𝑥), (10)

where 𝛩(𝑥) is the Heaviside step function,

𝛩(𝑥) =

{

0 for 𝑥 < 0,
1 for 𝑥 ≥ 0.

(11)

2.4.2. Simplifications by identifying conserved and non-conserved quanti-
ties

From Eq. (7), we identify two conserved quantities 𝛿, 𝜓 and a non-
conserved quantity 𝜌:

𝛿 = 𝑎 − 𝑏, (12a)

𝜌 = 𝑎 + 𝑏, (12b)

𝜓 = 𝑐 − 𝜌∕2 (12c)

The reaction rate (6) can then be expressed as

𝑅 = 𝑘 (

𝜌2 − 𝛿2
)

. (13)

4
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Accordingly, Eqs. (7a) and (7b) can be expressed as:

𝐮 ⋅ 𝛁𝛿 −𝐷𝛁2𝛿 = 0, (14a)

𝐮 ⋅ 𝛁𝜌 −𝐷𝛁2𝜌 = 𝑘
2
(𝛿2 − 𝜌2), (14b)

𝐮 ⋅ 𝛁𝜓 −𝐷𝛁2𝜓 = 0. (14c)

The evolution Eqs. (14a) and (14c) for 𝛿, 𝜓 are linear and do not depend
on any other field but themselves, and can be solved independently.
Further, the evolution Eq. (14b) for 𝜌 depends only on the found
solution for 𝛿. Hence, Eqs. (14a)–(14c) can be solved sequentially,
with the only constraint that Eq. (14b) must be solved after Eq. (14a).
This approach is computationally beneficial, as it reduces the size of
the linear system resulting from a finite element discretization (see
Section 3.2) compared to a coupled solution of Eq. (7).

Following Eqs. (8) and (12), we find for the composite concentra-
tions at the inlet boundary:

𝛿 ∈ {−1, 1}, 𝜌 = 1, 𝜓 = 1∕2 for 𝐱 ∈ 𝛤in. (15)

For the specific inlet conditions considered herein, which divides the
inlet into two halves along the 𝑥 direction, we obtain from Eq. (10):

(𝑥, 𝑦, 0) = 2𝛩(𝑥) − 1, (16)

where 𝛩 is the Heaviside step function defined in Eq. (11).
Eq. (14a) shows that 𝛿 will stay within the interval [−1, 1] in the

entire domain, while Eq. (14b) shows that 𝜌 will tend to decay with
the distance away from the inlet boundary (as 𝜌 ≥ |𝛿|). Finally, with
the inlet condition 𝜓 = 1∕2, the only solution that can satisfy Eq. (14c)
s a trivial one, 𝜓 = 1∕2 everywhere in the domain. Hence, the
oncentration of product C can be calculated explicitly by solving

=
1 − 𝜌
2

, (17)

nd henceforth Eq. (14c) can be neglected.

.4.3. Instantaneous reaction
Mixing-limited reactions are characterized by a high Damköhler

umber (Da), defined as the ratio between the characteristic time of
luid motion to that of the chemical reaction. Considering a reaction
ith a first-order-kinetic constant (𝑘), the Damköhler number is

a = 𝑘𝑑2

𝐷
(18)

where 𝑑 is a characteristic pore size. We now assume that the reaction
occurs on time scales much smaller than the diffusive and advective
time scales, which corresponds to the limit of large Damköhler number
Da → ∞, i.e. instantaneous reaction. Taking 𝑘 → ∞ in Eq. (14b), we
then obtain:

𝜌 = |𝛿|. (19)

The concentration of reactants A, B, and product C can be readily
calculated using Eqs. (12) and (19) as:

𝑎 =
|𝛿| + 𝛿

2
, (20a)

𝑏 =
|𝛿| − 𝛿

2
, (20b)

𝑐 =
1 − |𝛿|

2
. (20c)

Thus, given that the reaction (5) is instantaneous and irreversible, the
ystem expressed by Eq. (7) is completely specified once the solution 𝛿
f Eq. (14a) is known. This property will be exploited in the ensuing
ections; in particular, we will solve the steady advection–diffusion
q. (14a) and use Eq. (20) to calculate the distribution of the species
nvolved in the reaction (5).
4
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2.5. Metrics of mixing and reaction

We investigate mixing and reaction at different Péclet numbers,
which characterizes the ratio of the diffusive and advective time scales
at the pore scale,

Pe = 𝑈𝑑
𝐷
, (21)

where 𝑑 is a characteristic pore size and 𝑈 the average flow speed. Fluid
mixing can be quantified by measuring different quantities related to
the concentration field, flux, transported mass, and reaction rate of the
product, as explored in previous studies (e.g., de Dreuzy et al., 2012;
Rolle et al., 2009; d. Anna et al., 2014; Alhashmi et al., 2015). Here we
summarize the main quantities used for measuring mixing and reaction
in the present study.

For quantifying conservative mixing, we use the scalar dissipation
rate, which has been used in several studies of fluid mixing in porous
media as a proxy for the mixing rate (e.g., Luo et al., 2008; Le Borgne
et al., 2010; Bolster et al., 2010; Chiogna et al., 2011; Jha et al., 2011;
Engdahl et al., 2013). Using 𝛿 as a conserved quantity, the conservative
scalar dissipation rate is defined as

𝐼 = ∫𝛺⟂(𝑧)
𝐷|𝛁𝛿|2d𝑥d𝑦, (22)

here the integral is taken over a cross section 𝛺⟂(𝑧) of 𝛺.
We quantify effective reaction rates using the total reaction rate in

ach cross-section. The latter can be estimated as (see Appendix D),

𝑐 =
d𝐽𝑐
d𝑧

. (23)

where 𝐽𝑐 is the total flux of 𝑐 through a cross-section 𝛺⟂(𝑧) of 𝛺,

𝐽𝑐 (𝑧) = ∫𝛺⟂(𝑧)
�̂� ⋅ 𝐣𝑐d𝑥d𝑦, (24)

nd the local flux 𝐣𝑐 is the sum of the advective and diffusive fluxes,

𝑐 = 𝐮𝑐 −𝐷𝛁𝑐. (25)

he total produced mass of C in each cross-section can be calculated as

𝑐 = ∫𝛺⟂(𝑧)
𝑐(𝐱) d𝑥d𝑦, (26)

hich is directly proportional to the evolving volume of the mixing
one.

. Computational method

.1. Overall workflow

The workflow consists of four distinct steps, as shown schematically
n Fig. 2. The prerequisites for the workflow are a computational
esh representing the fluid domain and a well-resolved velocity field
ithin it. Specifically, we assume that we have a three-dimensional

omputational mesh representation of the pore space 𝛺 (as discussed
n Section 2.1 and shown in Fig. 1). Computing pore-scale velocity
ields is in itself an active research topic and is not the focus of this
aper, and we refer to other resources for more specialized literature on
his topic (Indelman, 2001; Siena et al., 2015; Aramideh et al., 2018).
n this work, we primarily computed the velocity field by solving the
tokes equations with no-slip conditions on the solid boundaries and
lip conditions on the lateral side walls (see Appendix B).

The main step of the workflow is to solve the advection–diffusion
q. (14a) to calculate the concentration field of conserved species 𝛿
Fig. 2). As a consequence of the nonuniform concentration field that
e impose on the inlet boundary in the advection–diffusion equa-

ion, we obtain nontrivial steady concentration distributions within
he porous media. These distributions form the basis for subsequent
nalyses. Accurate determination of 𝛿 is achieved through an iterative
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Fig. 2. Workflow for simulation of transverse mixing and reaction in a porous geometry. (a) Starting with a computational mesh and a steady velocity field, (b) we solve the
advection–diffusion equation to compute the concentration field of the conserved species 𝛿. (c) An optional step of mesh refinement adapted to the mixing zone (interface between
reactive fluids) before (b) can be repeated iteratively. (d) Finally, we may compute spatial distributions of chemical species by post-processing analysis.
adaptive refinement procedure, which is described in Section 3.3.
Finally, in the post-processing phase, the conserved scalar field 𝛿 is
used to compute the spatial distribution of chemical species involved
in Eq. (5) within the porous media by solving the local Eq. (20).

3.2. Finite element scheme

The finite element method (FEM) offers a powerful approach for
solving partial differential equations like Eq. (14a). In the limit of large
Pe, Eq. (14a) becomes singularly perturbed (Roos, 2008) and naive
discretization approaches will typically fail to converge or lead to un-
physical oscillatory solutions unless very fine meshes are used (Elman
et al., 2014). To obtain meaningful and convergent results, various sta-
bilization techniques have been proposed (Roos, 2008). One such tech-
nique is the Streamwise-Upwind Petrov–Galerkin method (Brooks and
Hughes, 1982; Hughes, 1979), which modifies the standard Galerkin
finite element method by adding numerical diffusion in the streamline
direction (John et al., 2018; Elman et al., 2014).

The variational formulation corresponding to Eq. (14a) with
Streamwise-Upwind Petrov–Galerkin stabilization is given by the fol-
lowing. Find 𝛿 ∈  such that for all test functions 𝑣 ∈  :

∫𝛺
(𝐮ℎ ⋅ 𝛁𝛿)𝑣 d3𝐱 + ∫𝛺

𝐷𝛁𝛿 ⋅ 𝛁𝑣 d3𝐱 + ∫𝛺
𝜏(𝐮ℎ ⋅ 𝛁𝛿)(𝐮ℎ ⋅ 𝛁𝑣) d3𝐱 = 0. (27)

Here, we consider the function space  ⊂ 𝐻1(𝛺) and 𝜏 is a space-
dependent stabilization parameter. The latter is modeled according
to Elman et al. (2014, Eq. 3.44):

𝜏 = ℎ
2|𝐮ℎ|

𝛩
(

1 − Pe−1ℎ
)

, (28)

where ℎ represents the local mesh size, |𝐮ℎ| is the local magnitude of
the velocity vector 𝐮ℎ interpolated from the input velocity field 𝐮, and
𝛩(𝑥) is the Heaviside step function defined in Eq. (11). Further, the
element Péclet number is defined by Peℎ = |𝐮ℎ|ℎ∕(2𝐷).

As discussed below in Section 3.3, 𝐮 is typically defined on a coarser
mesh than 𝐮ℎ. In practice, we solved 𝐮 once with a higher-order (𝑃2)
finite element basis and used a piecewise constant representation (𝑃0)
of 𝐮ℎ, which we found to give the most robust convergence. With
adaptive mesh refinement in the interface region, the 𝑃0 representation
𝐮ℎ on the finer mesh approaches the 𝑃2 representation 𝐮 on the coarser
mesh. In our simulations, we used piecewise linear (𝑃1) elements for 𝛿
for robustness. Note that the form of Eq. (27) assumes this; for higher-
order elements, a diffusive term must be added to Eq. (27) (Elman et al.,
2014).
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3.3. Refinement criteria

To obtain accurate solutions of the scalar field 𝛿, it is critical to
combine the stabilization discussed above with mesh refinement. In
our case, the interface between the fluids is of particular interest as
it will form a layer of sharp change in 𝛿, and to extract physically valid
results it is imperative to add as little numerical diffusion as possible
to this zone. Thus we need a refinement strategy where we identify the
regions where 𝛿 exhibits significant variations and iteratively refine this
region. The large fraction of the mesh where 𝛿 is relatively constant,
even though the velocity field 𝐮 is complex, may remain coarse. In
the regime of pore-scale flows we are interested in, corresponding to
the Batchelor regime (Haynes and Vanneste, 2005; Heyman et al.,
2023), the length scale of velocity fluctuations is typically larger than
the length scale of concentration variations. Hence, we only need to
refine the mesh used for computing 𝛿, which justifies computing 𝐮 only
once and using an interpolated 𝐮ℎ (on a progressively finer mesh) as
discussed in Section 3.2.

We adopt a simple refinement criterion employed for mesh refine-
ment based on the product of the local mesh size ℎ and the magnitude
of the concentration gradient, |𝛁𝛿|, expressed as

ℎ|𝛁𝛿| < 𝛥𝛿 . (29)

where 𝛥𝛿 is a user specified tolerance that limits how much 𝛿 can
change over an element. In the simulations presented in Section 4, we
used a tetrahedral mesh representation of the domain and chose ℎ as
the longest edge in the associated tetrahedron. Every cell of the mesh
wherein the criterion Eq. (29) is not met, is marked for refinement
and subsequently divided according to the algorithm of Plaza and
Carey (1996) as implemented in FEniCS (Alnæs et al., 2015) (see
Section 3.4). We found the value 𝛥𝛿 = 0.2 to strike a good balance
between computational efficiency and the accuracy of the solution,
effectively placing most of the degrees of freedom in regions where the
concentration field changes drastically over short length scales.

3.4. Implementation

We solve the advection–diffusion Eq. (14a) in the form of Eq. (27)
using the FEniCS/DOLFIN framework (Alnæs et al., 2015). FEniCS is a
software collection for automating the solution of differential equations
using the FEM, and DOLFIN functions as the primary user interface to
FEniCS. Our FEniCS-based solver, named AdDiCTIF,1 is implemented

1 Advection-Diffusion-Chemistry in a Time-Independent Framework.
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Fig. 3. Flowchart of the steps to use the software package AdDiCTIF for steady-state simulation of transverse mixing and reaction.
in Python and C++, and available for use and further development in
a dedicated Git repository (Shafabakhsh and Linga, 2024). The code is
structured into distinct modules as shown in Fig. 3 for easy code reuse:

• The module ade_steady solves the advection–diffusion equa-
tion given the mesh and velocity field. To solve the linear system
resulting from discretizing Eq. (27), we use the (iterative) bi-
conjugate gradient method (bicgstab), with the Hypre Euclid
implementation of the ILU preconditioner (hypre_euclid).

• After solving the advection–diffusion equation and obtaining the
concentration field of 𝛿, the mesh may be refined by using
the module refine. This task may be repeated by executing
ade_steady and refine iteratively to progressively refine the
solution. The iteration is stopped at the latest when the criterion
Eq. (29) is met everywhere, and thus no cells are marked for
refinement.

• Subsequently, post-processing steps can be performed to analyze
and visualize the results. With the module postprocess_abc,
we compute the concentration fields of the components 𝑎, 𝑏, and
𝑐, based on sets of Eq. (20).

• Following this step, the module analyze_data interpolates the
solution into a Cartesian grid. This step enables easy analysis of
different cross-sections.

• Lastly, with module compute_averages we can compute the
averages of different indicators presented in Section 2.5 in each
cross-section.

4. Numerical simulations

To assess the performance of the method, we apply it to three
representative cases. To establish the validity of the approach, we
first consider the case of uniform flow, where approximate analytical
solutions can be obtained. This benchmark reveals differences between
refinement when going from two to three dimensions. Second, we con-
sider mixing and reaction through a three-dimensional monodisperse
spherical bead pack, which is a well-studied model system for porous
granular media (Heyman et al., 2020). Lastly, we consider mixing
and reaction in a three-dimensional natural porous rock sample. These
simulations highlight the ability of the model to effectively resolve and
quantify mixing in a broad range of domains. Notably, variations in
pore-scale geometry are known to impact the mixing dynamics, making
such evaluations crucial.

4.1. Uniform flow

To establish the convergence of the method with mesh refinement,
we first consider the case of uniform flow, for which approximate
solutions are available (Abramowitz et al., 1968; Sale and McWhorter,
2001; Kumar et al., 2009). For clarity, we give a brief derivation of
these solutions in the Appendix A. The uniform flow field is given by
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𝐮 = 𝑈 �̂�, where 𝑈 is a constant. To numerically approximate the inlet
boundary condition Eq. (16) on a discrete mesh, we use

𝛿(𝑥, 𝑦, 0) = erf
(𝑥
𝜖

)

, (30)

where 𝜖 is a smoothing length. In our simulations, we used 𝜖 = 10−3.
As presented in Appendix A, for a simple one-dimensional diffusion

equation, where 𝑧 assumes the role of a time coordinate, the solution
subject to Eq. (30) is given by

𝛿 ≃ erf

(

𝑥
√

4𝛼𝑧

)

, (31)

where 𝛼 = 𝐷∕𝑈 and the approximation is valid for 𝜖 → 0.
We consider a cubic domain of side lengths 𝐿 = 1, with an initial

mesh contained 2400 nodes. In Fig. 4a and Fig. 4b, we show the
calculated 𝛿 obtained for the uniform flow case when 𝛼 = 0.01 in a re-
fined mesh containing 489,024 nodes, achieved after eight refinement
iterations. The comparison between different iterations of refinement
is presented below. With the choice of 𝛼 and system size, we expect
longitudinal diffusion to be negligible everywhere except for a small
neighborhood around the inlet (𝑥 = 0) so that the analytical expression
(31) above should be applicable.

Fig. 4a shows the steady-state concentration distribution of con-
served species 𝛿. In Fig. 4b, the concentration profiles along the 𝑥-
direction at various heights are shown. The numerically obtained pro-
files (indicated by points) are compared to the approximate theory (31)
(represented by continuous lines). The agreement between the numer-
ical data and theory is very good, which serves as a first validation of
our simulations.

As a second test, we consider the conservative scalar dissipation
rate (Le Borgne et al., 2010) which is approximated in Appendix A for
the depth-averaged expression

𝐼𝑥(𝑧) ≃
2
√

2𝐷
√

𝜋(4𝐷𝑧 + 𝜖2)
. (32)

In Fig. 4c, we compare the calculated depth-averaged dissipation rate
for the uniform flow scenario with 𝛼 ∈ {0.01, 0.0025, 0.001, 0.00025} for
both our numerical models (represented by points) and the analytical
solution (32) (represented by continuous lines). The numerical data
closely follow the theoretical curves, particularly as 𝛼 is lowered.
The agreement between the model and the analytical solution can be
attributed to the fact that under conditions of low diffusivity (char-
acterized by low 𝛼 values), the longitudinal component of diffusion
has a vanishing contribution to the transport, in accordance with the
assumptions made in the analytical calculations above.

To achieve the desired level of precision, we performed an itera-
tive refinement process until no element were marked for refinement
according to our selected criterion Eq. (29). For all values of 𝛼, conver-
gence was reached after eight iterations, as shown in Fig. C.13a. The
detailed refinement process and its dependence on the smoothing scale
of the inlet profile, as well as the differences observed between two and
three dimensions, are discussed in detail in Appendix C.
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Fig. 4. (a) Numerically obtained steady-state concentration distribution of conserved scalar 𝛿 for uniform flow (𝛼 = 0.01). (b) The concentration profiles along the 𝑥-direction at
different heights 𝑧 comparing numerical data (dots) and the approximate analytical expression (lines, Eq. (31)). (c) Dissipation rate integrated over the cross-section for uniform
flow computed from numerical simulations (dots) compared to the analytical solutions (lines, Eq. (32)) for different dispersivities 𝛼.
Fig. 5a shows the convergence of the numerical dissipation rate
towards the analytical value with different iterations for the case of
𝛼 = 0.001, demonstrating the convergence of our numerical solution
towards the analytical solution with mesh refinement. We note that
the points for iterations larger than four are virtually indistinguishable,
despite an order of magnitude smaller mesh size. This result is due
to excessive refinement near the inlet having negligible effects down-
stream, and suggests that our refinement criterion could be limited,
for example, by increasing the inlet smearing scale 𝜖 or stopping the
refinement at a specified smallest mesh size ℎmin.

In Fig. 5b and Fig. 5c, we analyze the cross-sectional properties
of the product C for uniform flow with 𝛼 = 0.001 for different mesh
refinement iterations. The integrated mass, 𝑀𝑐 , is shown in Fig. 5b
and Fig. 5c shows the reaction rates 𝑐 calculated by Eq. (23). Both
cases are shown to approach the analytical solutions presented in Ap-
pendix E. The results confirm the importance of sufficient refinement,
showing that in this case sufficient resolution is achieved after around
4 refinement iterations. A slight decrease is noticeable near 𝑧 = 1 in the
numerical solution for reaction rate compared to the analytical solution
(Fig. 5c), which we interpret as a relic from an initially coarse mesh,
where the refinement procedure fails to identify that further refinement
is needed near the outlet.
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The excellent match between the numerical results of this section
and analytical solutions under uniform flow conditions shows the ro-
bustness of our approach in resolving concentration gradients. This
validation supports expanding our simulations to more complex porous
media.

4.2. Flow through a bead pack

We investigate conservative and reactive transport through a ran-
dom bead pack, which is an archetypical example of a granular porous
medium (Heyman et al., 2020; Turuban et al., 2019). The bead pack
was generated using the discrete element method code Yade (Smilauer
et al., 2023) to approximate a random close packing. 149 beads of
radius 𝑑 = 0.2 were placed inside a periodic box (in order to suppress
effects that may cause order in the bead pack), which was shrunk
until all the beads were locked in place and the linear size of the box
was 𝐿 = 1 ± 0.001. This procedure resulted in a porosity of 38%. To
avoid resolving extremely small elements near the cusp-shaped con-
tacts between beads (Turuban et al., 2019), smaller beads of diameter
0.2𝑑 were also inserted at bead contacts, mainly overlapping with the
large beads. The pore space between these grains was then meshed
with tetrahedral elements using gmsh (Geuzaine and Remacle, 2024),
resulting in a mesh containing approximately 465,000 nodes.
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Fig. 5. Effect of mesh refinement for the case of uniform flow, with 𝛼 = 0.001. (a) Convergence of the numerical dissipation rate towards the analytical value with each iteration.
(b) Mass per length of product C for different iterations of mesh refinement. (c) Integrated reaction rate of 𝐶 for different iterations.
Fig. 6. (a) Steady-state velocity field in a bead pack computed from the Stokes equations Appendix B. (b) The distribution of conserved species 𝛿 within the bead pack based on
the velocity field, with increasing Péclet number, Pe, from left to right. (c) The concentration 𝑐 of product C resulting from a first-order bimolecular reaction (5), computed using
the conservative solution of 𝛿, with the same Pe values as above.
To approximate the sharp inlet boundary condition (16) by a
smooth function to avoid over-refinement in the inlet region, we used

𝛿(𝑥, 𝑦, 0) = tanh

(

𝑥
√

2𝜖

)

, (33)

with 𝜖 = 10−2. This profile closely resembles that used for the uniform
flow (Eq. (30)). We verified that results are insensitive to the choice of
inlet profile as long as the gradient at the inlet is significantly higher
than gradients downstream.

Fig. 6a shows the steady velocity field obtained by solving the
Stokes equations (see Appendix B) within the domain. We computed
the concentration distribution of conservative species (Fig. 6b), and the
reactive product (Fig. 6c) for Pe ∈ {1.3 ⋅101, 1.3 ⋅102, 1.3 ⋅103}, estimated
from Eq. (21) where the characteristic length scale is taken as the bead
diameter 𝑑 and the mean velocity 𝑈 is normalized to 1. From Fig. 6b
it is clear that the mixing region within the bead pack, indicated by
intermediate values of 𝛿, narrows as Pe increases. This result highlights
the relatively higher influence of diffusion at lower Pe.

A representative part of (a) the initial mesh and (b) the mesh at the
final iteration for the flow in a sub-sample of the bead pack is displayed
in Fig. C.14, showing how mesh refinement captures the narrow mixing
zone. Fig. 7a shows the evolution of the total number of computational
degrees of freedom (mesh nodes) as a function of mesh refinement
iteration. For each value of Pe, the mesh refinement process culminates
at a specific iteration, i.e. when the criterion (29) is met in all cells.
The refinement stops after three, five, and six iterations for the three
considered Péclet numbers in increasing order. The number of nodes at
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which the refinement process saturates (𝑁sat) as a function of Pe values
is shown in Fig. 7b, consistent with a linear scaling 𝑁sat ∼ Pe.

This relation can be rationalized in light of the Batchelor scale that
sets the mixing scale in chaotic flows (Heyman et al., 2020). Stretching
and folding of fluid elements in the pore space lead to an exponential
elongation of fluid elements (Lester et al., 2016; Turuban et al., 2019;
Souzy et al., 2020) 𝜌 ∼ 𝑒𝜆𝑡∕𝑡𝑎 , where 𝜆 is the dimensionless Lyapunov
exponent and 𝑡𝑎 = 𝑑∕𝑈 is the advection time. The resulting constant
stretching rate implies that diffusion and compression equilibrate at the
Batchelor scale 𝑠𝐵 ∼

√

𝐷𝑑∕(𝜆𝑈 ). Thus, the width of the mixing inter-
face is expected to scale with 𝑠𝐵 ∼ 𝑑Pe−1∕2. As detailed in Appendix G, a
fixed number of nodes 𝑁⟂ is required to satisfy the refinement criterion
Eq. (29) in the direction perpendicular to the interface, leading to
ℎ ∼ 𝑠𝐵∕𝑁⟂. Assuming roughly isotropic elements yields a total number
of nodes 𝑁sat ∼ 𝑁⟂𝐴∕ℎ2, where 𝐴 is the area of the interface, which for
large Pe will only increase weakly with Pe. Thus, we find 𝑁sat ∼ 𝑁3

⟂Pe,
in particular 𝑁sat ∼ Pe, explaining the result of Fig. 7b. This scaling
highlights the effect of pore scale chaotic mixing on the enhancement of
concentration gradients and of the resulting required mesh refinement.

On a physical level, the steady Eq. (14a) reflects mass conserva-
tion, i.e. the flux of a conserved species 𝛿 is the same through each
cross-section 𝛺⟂(𝑧) of the domain transverse to the flow direction. To
ensure that our results are valid, this fundamental property should
be respected also numerically. Fig. 8 shows the average flux of 𝛿,
denoted as 𝐽𝛿 , for different iterations of mesh refinement for the three
considered Péclet numbers. The flux 𝐽𝛿 is here relatively constant,
fluctuating around 𝐽𝛿 ≃ −0.04, which is different from 0 because
the domain is not symmetric. The fluctuations in 𝐽 are of the order
𝛿
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Fig. 7. (a) Total number of nodes following mesh generation of each refinement iteration for flow through the bead pack. (b) Number of nodes 𝑁sat at which the refinement
saturates for different Pe, indicating a scaling 𝑁sat ∼ Pe. The red dashed line is the estimated linear relation as presented in Eq. (G.5) where 𝑁⟂ = 23, 𝜆 = 0.2, and 𝑑 = 0.2.
Fig. 8. Average flux of conserved species 𝛿 (𝐽𝛿) at Pe equal to (a) 1.3 ⋅ 101, (b) 1.3 ⋅ 102, and (c) 1.3 ⋅ 103 for different iterations of mesh refinement in the case of flow through a
bead pack.
< 0.005, which must be compared to the total flux of velocity, which
by construction is 𝐽 ≃ 1 (since the mean velocity 𝑈 = 1). The relatively
consistent values of the average 𝐽𝛿 for each value of Pe demonstrate
that mass conservation is well respected. Furthermore, the fluctuations
in 𝐽𝛿 decay with increasing refinement for all Pe values. This result
suggests that the deviations from mass conservation originate from an
imperfect input velocity field due to the fact that the solution method
(FEM) only weakly satisfies the divergence-free condition (Eq. (B.2)).
Altogether, these results establish confidence in our simulations.

To further investigate mixing-limited reactions inside the bead pack,
we examine the distribution of the reaction product C for different
refinement iterations within the bead pack for flow with Pe = 1.3 ⋅ 103.
Figs. 9a and 9b show the integrated mass 𝑀𝑐 (Eq. (26)) and reaction
rate (Eq. (23)) of product C in each cross-section along the 𝑧-direction,
respectively. We verify that refinement iterations increase the accuracy
of the distribution of 𝑐 and its reaction dynamics in the bead pack.
In Supplementary Information (Movies S1–S6), we provide videos of
the spatial distribution of 𝛿 and 𝑐 in cross sections moving along the
𝑧-direction in the bead pack.

The simulations of this section provide insights into the behavior of
solute mixing under conditions of chaotic flow through a bead pack.
The adaptive mesh refinement method successfully captures the intri-
cate patterns of mixing and reaction at the pore scale, demonstrating its
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efficiency in handling complex geometries. These results advance our
understanding of how chaotic flow regimes influence solute dispersion
and reaction rates, providing a robust framework for future studies in
granular porous media.

4.3. Application in natural rock: Berea sandstone sample

Finally, we demonstrate the applicability of the method to scenarios
involving a natural rock with a more complex and rough pore space
and show the ability of the method to predict and analyze solute
transport in a real-world heterogeneous environment. We consider flow
through a Berea sandstone sample with a porosity of 24% and with
a dimensionless pore size 𝑑 = 0.15, a value close to the size of the
beads, 𝑑 = 0.2, in the bead pack simulations. A subsample of the
digitized rock was taken from the ‘‘11 sandstones’’ dataset available
through the Digital Rocks Portal (Neumann et al., 2020), and meshed
using CGAL (The CGAL Project, 2023). The initial tetrahedral mesh con-
tained approximately 1.3 million nodes. Fig. 10a shows the steady-state
velocity field obtained by numerically solving the Stokes equations
(see Appendix B) in this domain. We added thin slabs of fluid at the
inlet and outlet of the rock sample (see 10b) to make sure that the
mesh consisted of a single connected entity. For the solute transport
simulation, we chose Pe = 100, calculated using Eq. (21), in which
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Fig. 9. Mass of reaction product C integrated over the cross-section at varying distances 𝑧 from the inlet for flow through a bead pack with Pe = 1.3 ⋅ 103 for different iterations.
(b) Corresponding integrated reaction rates of 𝑐 over the cross-section for different iterations of mesh refinement.
Fig. 10. (a) Steady-state velocity field 𝐮 in a Berea sandstone sample obtained by solving Stokes equations. (b) Concentration of conserved species 𝛿 based on the velocity field 𝐮
for Pe = 100. (c) The concentration 𝑐 of product C is calculated assuming an instantaneous first-order bimolecular reaction (5), and computed based on the conservative solution
of 𝛿.
𝑑 = 0.15, corresponding to the average pore size, and 𝑈 = 1 is the
mean normalized velocity. Fig. 10b shows the distribution of conserved
species 𝛿 obtained using our numerical simulations. Fig. 10c shows
the concentration 𝑐 of product C assuming the first-order instantaneous
reaction (5).

Analyzing the mass (Eq. (26)) and flux (Eq. (25)) of the different
species within cross-sections perpendicular to the direction of flow is
useful to understand the dynamics of reactive mixing through rock.
Fig. 11a shows the integrated cross-sectional mass derived from the av-
eraged concentration profiles for species A, B, and C. The concentration
distributions were calculated using Eqs. (20a)–(20c), respectively. As
expected, due to the reaction, we observe a general decreasing trend in
reactant species concentrations 𝑎 and 𝑏, while product concentration 𝑐
increases. Fig. 11b shows the average cross-sectional flux of the species,
including the conservative component 𝛿. The fluxes of 𝑎 and 𝑏 decrease
as they are consumed in the reaction, while accordingly the flux of 𝑐
shows an increase. The flux for the conservative component 𝛿 remains
constant, indicating that mass conservation is satisfied numerically.

The iterative mesh refinement process for the Berea sandstone
required four iterations to satisfy the criterion Eq. (29), as shown in
Fig. H.16a. It is important to note that a finer initial mesh reduces the
number of iterations required to satisfy the mesh criteria Eq. (29). For
example, in the case of uniform flow in Section 4.1, a higher number
of iterations was required for the refinement process to saturate as the
initial mesh was coarser. However, the final mesh size is relatively
insensitive to the initial mesh size, as it is typically at least an order
of magnitude higher.

The analysis of the parallel performance of our method, including
the scaling of Berea sandstone simulations on an in-house computing
10
server, is provided in Appendix H. This analysis examines the solution
time as a function of the number of CPU cores and evaluates the impact
of mesh size on scalability. For the mixing and transport beyond the
Representative Elementary Volume (REV) scale, we can estimate the
number of nodes 𝑁sat required to reach the mesh refinement criterion
in the entire domain as the function of Pe. The computational costs
increase proportionally with 𝑁sat , depending on the flow regime. The
relation between 𝑁sat and Pe for a 2D and 3D uniform flow is estimated
as Eqs. (F.9) and (F.10) respectively, and for a 3D chaotic flow is
estimated as Eq. (G.5).

5. Conclusion

We have introduced a computational workflow for quantifying so-
lute mixing and mixing-limited reactions in porous media, with a focus
on numerically resolving transverse mixing and concentration gradients
at the pore scale. The presented simulations advance knowledge in
solute transport and mixing by validating the accuracy of the numerical
method through comparisons with analytical solutions, capturing the
complex dynamics of chaotic flow using adaptive mesh refinement, and
demonstrating the practical application of the methodology to hetero-
geneous porous media. Dynamic refinement of the mesh in regions with
sharp concentration gradients, ensures high resolution that is computa-
tionally efficient and feasible. In contrast to the time-dependent models
where the number of required nodes evolves as 𝑁 ∼ Pe3 (see above),
we find 𝑁 ∼ Pe with our method. The key elements of our method
are to combine stabilization techniques and an iterative refinement
procedure to obtain highly resolved concentration fields in steady state
mixing fronts. Our method takes as input a mesh representing the
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Fig. 11. Cross-sectional (a) total mass per length and (b) integrated flux of different species for flow through a Berea sandstone sample.
discretized fluid domain and a steady-state velocity field. Through
several numerical tests and examples, we have demonstrated that it
constitutes an accurate and robust tool for investigating mixing and
reaction phenomena at the pore scale, including in natural rock. We
have thus illustrated and rationalized how the degree of required mesh
refinement depends on the complexity and topology of the flow. In
particular, the transition to chaotic flow in three dimensions leads to a
significant enhancement of concentration gradients, which is captured
by our mesh refinement technique. Our implementation of the method-
ology, based on the finite element method through the open-source
FEniCS framework (Alnæs et al., 2015), is openly available from our
Git repository (Shafabakhsh and Linga, 2024).

The presented methodology and accompanying code could become
a useful tool for the porous media community in uncovering how
microstructure influences effective mixing and reaction rates across
different types of porous media. These highly resolved simulations
open new perspectives to investigate how chaotic mixing dynamics
observed in rock and granular media (Lester et al., 2016; Heyman
et al., 2020, 2021; Aquino et al., 2023) influences fluid–fluid and fluid–
solid reactions. To address this point, future study should consider
larger system sizes and different injection scenarios to robustly extract
asymptotic quantities.

Future work should include modeling the effects of finite reaction
kinetics (Bandopadhyay et al., 2017), which will require numerically
solving the nonlinear Eq. (14b). In this context, for fast, but finite
reactions, the concentration distributions for infinite reaction kinetics
(20) will provide good initial guesses for iterative nonlinear solvers
(e.g. using Newton’s method). Finally, our simulation methodology
can be extended to arbitrarily complex chemical reaction networks, as
long as we are assuming instantaneous reactions in the fluid phase.
For example, an implementation of the reaction network considered
by De Simoni et al. (2007b) is already available in the module post-
process_crn of AdDiCTIF (Shafabakhsh and Linga, 2024). The
influence of fluid mixing on more complex reactions (e.g., Steefel et al.,
2013; Huppert and Neufeld, 2014; Soltanian et al., 2016; Kampman
et al., 2014) and heterogeneous reactions occurring at fluid–solid inter-
faces (Roller, 2002; Liu and Mostaghimi, 2018) are important prospects
for further investigation.
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Appendix A. Analytical solutions for uniform flow

The advection–diffusion equation (1) for 𝛿 (i.e., Eq. (14a)) simplifies
to

𝑈 𝜕𝛿
𝜕𝑧

= 𝐷𝛁2𝛿 = 𝐷
[

𝜕2𝛿
𝜕𝑥2

+ 𝜕2𝛿
𝜕𝑧2

]

, (A.1)

where in the last equality, we used the fact that the system is invariant
in the 𝑦 direction through the boundary condition Eq. (30). Neglecting
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diffusion along 𝑧 (which is acceptable for advection-dominated flows)
esults in
𝜕𝛿
𝜕𝑧

= 𝛼 𝜕
2𝛿
𝜕𝑥2

, (A.2)

where 𝛼 = 𝐷∕𝑈 . Eq. (A.2) is easily identified as a simple one-
dimensional diffusion equation, where 𝑧 assumes the role of a time
coordinate. The solution subject to Eq. (30) is given by

𝛿 = erf

(

𝑥
√

4𝛼𝑧 + 𝜖2

)

≃ erf

(

𝑥
√

4𝛼𝑧

)

, (A.3)

where the last approximation is valid for 𝜖 → 0.
We consider the conservative scalar dissipation rate defined by

Eq. (22), and using Eq. (31), we approximate

𝐼 ≃ 𝐷
|

|

|

|

𝜕𝛿
𝜕𝑥

|

|

|

|

2
= 4𝐷
𝜋(4𝐷𝑧 + 𝜖2)

exp
(

− 2𝑥2

4𝐷𝑧 + 𝜖2

)

. (A.4)

This equation yields to the depth-averaged expression

𝑥(𝑧) = 𝐷
⟨

|𝛁𝛿|2
⟩

𝑥 ≃ 𝐷
⟨

|

|

|

|

𝜕𝛿
𝜕𝑥

|

|

|

|

2⟩

𝑥
(A.5)

= 4𝐷
𝜋(4𝐷𝑧 + 𝜖2)

√

𝜋
2
(4𝐷𝑧 + 𝜖2) =

2
√

2𝐷
√

𝜋(4𝐷𝑧 + 𝜖2)
. (A.6)

ppendix B. Stokes equations for creeping flow

The Stokes equations governing steady, viscosity-dominated incom-
ressible fluid flow in the pore space are given by:

𝛁2𝐮 = −𝛁𝑝 + 𝐟 (B.1)

⋅ 𝐮 = 0, (B.2)

efined on a domain 𝛺 (see Fig. 1). Here, 𝜇 is the dynamic viscosity of
he fluid, 𝑝 is the fluid pressure, and 𝐟 = 𝑓 �̂� is a body force (e.g., grav-
ty). In our computations, we impose the boundary conditions

𝑝 = 0 for 𝐱 ∈ 𝛤in ∪ 𝛤out (B.3a)

𝐮 = 𝟎 for 𝐱 ∈ 𝛤wall ⧵ 𝛤box, (B.3b)

⋅ �̂� = 0, �̂� ⋅
(

𝛁𝐮 + 𝛁𝐮𝑇
)

× �̂� = 𝟎 for 𝐱 ∈ 𝛤box. (B.3c)

Here, 𝛤box refers to the lateral boundary planes of the domain 𝛺, where
e through Eq. (B.3c) apply a free-slip condition (instead of a no-slip

ondition Eq. (B.3b)) to limit their effects on the flow (Sole-Mari et al.,
022). The velocity field is obtained by solving Eqs. (B.1)–(B.3).

ppendix C. Progression of mesh refinement

Fig. C.12 shows an example of two-dimensional mesh refinement
rogression for the case of uniform flow (Section 4.1). After the fourth
teration, the refinement modifies only the mesh near the inlet (𝑥 ≃ 𝑧 ≃
) due to the sharp gradient in concentration in that area.

To achieve the desired level of precision, we performed the iterative
efinement process described in Section 3.3, until no elements were
arked for refinement according to the selected criterion of Eq. (29).

ig. C.13a shows how the total number of mesh nodes depends on the
efinement iteration for the uniform flow, comparing discretizations
n two and three dimensions. For all four values of 𝛼, the conver-
ence criterion is fully reached after eight iterations. A longitudinal
wo-dimensional cross-section of the mesh throughout the iterative
efinement process is shown in Fig. C.12 of Appendix C.

The refinement process can be strongly influenced by the choice
f a finite smoothing scale 𝜖 of the inlet profile and we demonstrate
hat the dependence is qualitatively different in three dimensions than
n two dimensions. With a very short transition length 𝜖 in the inlet
ondition Eq. (30), relatively more refinement is required near the
nlet (as supported in Appendix C). The number of mesh nodes 𝑁sat
t which the refinement process saturates in Fig. C.13a is plotted as a
12
unction of 𝛼 in Fig. C.13b. In particular, we find that 𝑁sat scales with 𝛼
differently in two and three dimensions, as shown by the superimposed
lines in Fig. C.13b. This result is in accordance to theoretical estimates
Eqs. (F.9) and (F.10) derived in Appendix F based on the known
approximate solution (31). The difference in the slope underscores that
refinement in three dimensions needs special care compared with two
dimensions, especially as the prefactor in three dimensions Eq. (F.10)
depends on 𝜖, whereas it does not in two dimensions Eq. (F.9).

Appendix D. Calculation of the reaction rate integrated over a
cross-section

Here, we calculate the total rate 𝑐 integrated over a cross-section
of product formation for the instantaneous reaction (5). In the steady
state, the advection–diffusion–reaction Eq. (7c) can be written as

𝑅 = 𝛁 ⋅ 𝐣𝑐 , (D.1)

where 𝐣𝑐 is defined by Eq. (25). We may decompose 𝐣𝑐 = �̂�𝑗𝑐,𝑧 + 𝐣𝑐,⟂,
here 𝑗𝑐,𝑧 = �̂� ⋅ 𝐣𝑐 represents the flux component in the 𝑧-direction
nd 𝐣𝑐,⟂ is the flux in the plane perpendicular to the 𝑧-axis. Now, using
⋅𝐣𝑐 = 𝜕𝑧𝑗𝑐,𝑧+𝛁⟂ ⋅𝐣𝑐,⟂, where 𝛁⟂ = �̂�𝜕𝑥+�̂�𝜕𝑦, we can determine the total

eaction rate of the product C within each cross-section perpendicular
o the flow:

𝑐 = ∫𝛺⟂

𝑅d𝑥d𝑦 = ∫𝛺⟂

(

𝜕𝑧𝑗𝑐,𝑧 + 𝛁⟂ ⋅ 𝐣𝑐,⟂
)

d𝑥d𝑦 (D.2)

=
d𝐽𝑐
d𝑧

+ ∮𝛤⟂
�̂�⟂ ⋅ 𝐣𝑐,⟂d𝑠 (D.3)

ere, 𝛤⟂ is the boundary of the cross-sectional domain 𝛺⟂(𝑧), and
̂⟂ is the outward normal vector to 𝛺⟂ in the plane perpendicular to
he 𝑧-direction. The last term of the surface integral was converted to

line integral using the divergence theorem. Using Eq. (25), along
⟂, we have �̂� ⋅ 𝐣𝑐 = −𝐷�̂� ⋅ 𝛁𝑐 = −𝐷𝑛𝑧𝜕𝑧𝑐 − 𝐷

√

1 − 𝑛2𝑧�̂�⟂ ⋅ 𝛁⟂𝑐 =

−𝐷𝑛𝑧𝜕𝑧𝑐 +
√

1 − 𝑛2𝑧�̂�⟂ ⋅ 𝐣𝑐,⟂ = 0, that is, �̂�⟂ ⋅ 𝐣𝑐,⟂ = 𝐷𝑛𝑧𝜕𝑧𝑐∕
√

1 − 𝑛2𝑧,
where 𝑛𝑧 = �̂� ⋅ �̂�. The integral is then given by

∮𝛤⟂
�̂�⟂ ⋅ 𝐣𝑐,⟂d𝑠 = 𝐷∮𝛤⟂

𝑛𝑧
√

1 − 𝑛2𝑧
𝜕𝑧𝑐 d𝑠. (D.4)

For the advection-dominated flows we are interested in, the last integral
is not expected to contribute significantly, which we also verified
numerically (see below). Therefore, the total reaction rate of product C
in each perpendicular cross-section can be estimated by Eq. (23).

Fig. D.15 shows the comparison of the calculated reaction rates
of product C, computed using Eq. (23) or Eq. (D.2) directly, for flow
through a bead pack with Pe = 1.3 ⋅ 103 at the sixth iteration. Both
plots exhibit a consistent trend, indicating agreement in the overall
behavior predicted by the two approaches. The reaction rate derived
from Eq. (D.2) shows higher fluctuations, attributed to direct integra-
tion of the concentration gradient. However, the reaction rate com-
puted from Eq. (23) is calculated from the derivative of the average
flux at each interface derived from the interpolated data, resulting in a
smoother profile.

Appendix E. Mass and reaction rate of product C for uniform flow

Here, we present the analytical solution of the mass and the reaction
rate of product formation for uniform flow. Following Eq. (26), the total
mass 𝑀𝑐 of product C per cross-section normal to the 𝑧 direction is:

𝑀𝑐 (𝑧) = ∫

∞

−∞
𝑐(𝑥, 𝑧)d𝑥 (E.1)

where 𝑐(𝑥, 𝑧) can be obtained from Eqs. (20c) and (31) as

𝑐(𝑥, 𝑧) =
1 − |𝛿|

= 1
[

1 − erf

(

|𝑥|
√

)]

. (E.2)

2 2 4𝛼𝑧
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Fig. C.12. Generated meshes during iterative refinement for uniform flow with 𝛼 = 0.01.
Fig. C.13. (a) Total number of nodes following mesh generation of each iteration for uniform flow in two and three dimensions. (b) Number of nodes 𝑁sat at which the refinement
saturates for different 𝛼. The red and blue curves are the best fit for two and three dimensions cases respectively based on estimates in Appendix F. The rightmost points do not
follow the predicted scaling, as 𝛼 and thus longitudinal gradients are too high for the analytical solution to apply.
Exploiting the symmetry 𝑐(𝑥, 𝑧) = 𝑐(−𝑥, 𝑧), we may consider only 𝑥 > 0:

𝑀𝑐 (𝑧) = 2∫

∞

0
𝑐(𝑥, 𝑧)d𝑥 (E.3)

= ∫

∞

0

[

1 − erf

(

𝑥
√

4𝛼𝑧

)]

d𝑥. (E.4)

By defining 𝜉 = 𝑥∕
√

4𝛼𝑧 and substituting for Eq. (E.4), the analytical
solution for the mass of C is:

𝑀𝑐 (𝑧) =
√

4𝛼𝑧∫

∞

0
(1 − erf (𝜉))𝑑𝜉 (E.5)

=
√

4𝛼𝑧
𝜋

(E.6)

To obtain the reaction rate in uniform flow from Eq. (23), we first
need to calculate the flux of product C along the 𝑧 direction. Following
Eq. (25), we have:

𝐽𝑐 =
∞
𝑗𝑐,𝑧d𝑥 =

∞
(

𝑢𝑧𝑐 −𝐷𝜕𝑧𝑐
)

d𝑥 = 𝑈𝑀𝑐 −𝐷
d𝑀𝑐 , (E.7)
13

∫−∞ ∫−∞ d𝑧
where 𝑈 is the constant velocity (𝐮 = 𝑈 �̂�). By substituting Eq. (E.6) for
𝑀𝑐 , the flux can be estimated as

𝐽𝑧 ≃ 𝑈
√

4𝛼𝑧
𝜋

−𝐷
√

𝛼
𝜋𝑧
. (E.8)

The analytical solution of reaction rate for this case is:

𝑐 =
d𝐽𝑐
d𝑧

= 𝑈
√

𝛼
𝜋𝑧

(

1 + 𝛼
2𝑧

)

. (E.9)

Appendix F. Estimating 𝑵𝐬𝐚𝐭 for uniform flow

Based on the known analytical solution, we can estimate the number
of nodes 𝑁sat required to reach the mesh refinement criterion in the
entire domain. The analytical solution, including an initial smearing
length scale 𝜖, is given by modifying Eq. (31):

𝛿(𝑥, 𝑧) = erf

(

𝑥
√

)

. (F.1)

4𝛼(𝑧 + 𝑧0)
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Fig. C.14. The same zoom-in at the (a) initial mesh and (b) the mesh at the final iteration of refinement for flow with Pe = 1.3 ⋅ 103 in a bead pack..
Fig. D.15. Comparison of reaction rates of product C computed from Eqs. (23) and
(D.2) at varying distances 𝑧 from the inlet for flow through a bead pack with
Pe = 1.3 ⋅ 103 for mesh refinement at the sixth iteration.

Here, we have assumed that the interface is centered at 𝑥0 = 0.
Moreover, 𝑧0 is related to 𝜖 by

𝛿(𝑥, 0) = erf

(

𝑥
√

4𝛼𝑧0

)

= erf
(𝑥
𝜖

)

⟹ 𝜖 =
√

4𝛼𝑧0. (F.2)

Assuming that gradients in 𝛿 are always contained in the domain 𝑥 ∈
[−𝐿𝑥∕2, 𝐿𝑥∕2], we know that a fixed number of cells 𝑁𝑥 ≃ 2∕𝛥𝛿 is
required across the interface to satisfy the criterion Eq. (29). (For our
numerical examples, we have 𝑁𝑥 ≃ 2∕0.2 = 10.) On the other hand, the
width of the interface depends on 𝑧:

𝑤𝑥(𝑧) ∝
√

𝛼(𝑧 + 𝑧0). (F.3)
14
F.1. Scaling

We approximate the 𝑥-dependence of 𝛿(𝑥, 𝑧) by a linear function for
𝑥 ∈ (−𝑤𝑥(𝑧)∕2, 𝑤𝑥(𝑧)∕2) and constant (±1) otherwise. The local element
density, at a given height position 𝑧, will be set by the local grid size
limited by gradients in the 𝑥 direction:

𝜙(𝑧) = 1
𝛥𝑥(𝑧)

≃
𝑁𝑥
𝑤𝑥

∼
𝑁𝑥

√

𝛼(𝑧 + 𝑧0)
. (F.4)

To estimate the prefactor of 𝑤𝑥, we may use the maximum slope of 𝛿,
i.e. |𝜕𝑥𝛿| = (𝜋𝛼(𝑧 + 𝑧0))−1∕2, which yields

𝑤𝑥(𝑧) ≃
𝑁𝑥𝛥𝛿
|𝜕𝑥𝛿|

≃
√

4𝜋𝛼(𝑧 + 𝑧0) ≡ 𝛽
√

𝛼(𝑧 + 𝑧0). (F.5)

Now, since the grid size should be equal in all directions, we may esti-
mate the number of nodes𝑁sat by integrating over 𝑑 spatial dimensions:

𝑁sat ≃ ∫ d𝑑𝐱𝜙𝑑 (𝑧) ≃ 𝑁𝑑
𝑥

𝑑
∏

𝑖=2
∫

𝐿𝑥𝑖

0
d𝑥𝑖 ∫

𝑤𝑥(𝑧)∕2

−𝑤𝑥(𝑧)∕2
d𝑥𝑤−𝑑 (𝑧) (F.6)

= 𝑁𝑑
𝑥

𝑑
∏

𝑖=2
∫

𝐿𝑥𝑖

0
d𝑥𝑖𝑤−𝑑+1(𝑧) =

𝑁𝑑
𝑥𝐿𝑦,𝑑

(

𝛽
√

𝛼
)𝑑−1 ∫

𝐿𝑧

0
d𝑧(𝑧 + 𝑧0)−(𝑑−1)∕2

(F.7)

=
𝑁𝑑
𝑥𝐿𝑦,𝑑

(

𝛽
√

𝛼
)𝑑−1 ∫

𝐿𝑧+𝑧0

𝑧0
d𝑧𝑧−(𝑑−1)∕2, (F.8)

where 𝐿𝑦,𝑑 = 1 if 𝑑 = 2 and 𝐿𝑦 if 𝑑 = 3. The integral behaves differently
depending on dimensionality 𝑑. We will handle these cases separately.

• In the case 𝑑 = 2, we find

𝑁sat =
2𝑁2

𝑥

𝛽
√

𝛼

(

√

𝐿𝑧 + 𝑧0 −
√

𝑧0
)

≃
2𝑁2

𝑥
𝛽

√

𝐿𝑧
𝛼
, (F.9)

where we have taken the limit 𝜖 → 0 in the last step.
• For 𝑑 = 3, on the other hand, the latter limit is divergent:

𝑁sat =
𝑁3
𝑥𝐿𝑦
𝛽2𝛼

ln
|

|

|

|

1 +
𝐿𝑧
𝑧0

|

|

|

|

≃
𝑁3
𝑥𝐿𝑦
𝛽2𝛼

ln
|

|

|

|

4𝛼𝐿𝑧
𝜖2

|

|

|

|

. (F.10)

We observe that the scaling both with 𝜖 and 𝛼 is very different depend-
ing on 𝑑.
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Fig. H.16. (a) Total number of degrees of freedom (mesh nodes) as a function of refinement iteration for the case of flow through a Berea sandstone sample. (b) Scaling test:
Simulation time as a function of the number of CPU cores for different iterations.
Appendix G. Estimating 𝑵𝐬𝐚𝐭 for chaotic flow

We consider an interface (narrow mixing zone) in three dimensions,
whose length can be described by 𝓁(𝑧). The area of this interface is
approximately

𝐴 ≃ ∫

𝐿𝑧

0
𝓁(𝑧)d𝑧 (G.1)

Across the interface, the number of nodes 𝑁⟂ needed to satisfy the
refinement criterion Eq. (29), will be independent of the value of Pe,

𝑁⟂ ∼ 2
𝛥𝛿
. (G.2)

However, the thickness of the interface is approximately given by the
Batchelor scale,

𝑠𝐵 ∼ 𝑑
√

𝐷
𝑈𝑑𝜆

∼ 𝑑
√

𝜆
Pe−1∕2, (G.3)

where 𝜆 is the non-dimensional Lyapunov exponent and 𝑈 is a charac-
teristic velocity. Neglecting over-refinement in the inlet region (which
can be achieved by choosing a reasonable 𝜖) and coalescence of the in-
terface with itself, the local mesh size is thus everywhere approximately
given by

ℎ ∼
𝑠𝐵
𝑁⟂

. (G.4)

The estimated total number of nodes is thus

𝑁sat ∼
𝑁⟂𝐴
ℎ2

∼ 𝑁3
⟂
𝐴
𝑠2𝐵

∼
𝑁3

⟂𝜆𝐴

𝑑2
Pe. (G.5)

We expect that coalescence, increasingly at lower Pe, will contribute
to lower (absolute) concentration gradients and effectively smaller 𝐴.
Hence, the effective slope will be slightly higher than 𝑁 ∼ Pe.

Appendix H. Computational time and CPU cores

To test the parallel performance of the method, we consider the scal-
ing of the Berea sandstone simulations on an in-house computing server
with 4 × 18 × 2 Intel(R) Xeon(R) Gold 6254 CPUs 3.10 GHz running
Ubuntu 20.04 and FEniCS version 2019.2.0.13.dev0. Fig. H.16b
represents the solution time as a function of the number of CPU cores
employed for different iterations. We observe that the simulation time
decreases for all iterations as we increase the number of CPU cores.
However, the scalability of our code is limited for iterations three and
15
four, in which the mesh size is bigger, especially when we increase the
number of CPU cores beyond 32. This result may reflect a reduction in
mesh quality as many refinement iteration steps are performed.

Appendix I. Supplementary material

Supplementary material includes the videos showing the spatial
distribution of 𝛿 and 𝑐 in cross sections moving along the 𝑧-direction in
the bead pack and Berea sample (movies S1–S7).

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.advwatres.2024.104791.
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