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Introduction:  Spectral unmixing is the process of 

determining the components of a mineral mixture and 

their abundances based on their spectra. Many spectral 

unmixing algorithms have been developed, which 

range from simple linear models to more complex non-

linear models. In this work, we use a neural network 

approach to spectral unmixing and apply it to near-

infrared (NIR) spectra from the SuperCam instrument 

on the Mars 2020 rover [1]. 

We are using neural networks for unmixing 

because they are particularly adept at learning the non-

linearity of a given system. In the NIR spectral range, 

mixing is non-linear due largely to volume scattering 

(wherein incoming light interacts with multiple 

interfaces in a medium before being reflected out to a 

detector) [2]. Therefore, the expectation is that a neural 

network will be able to learn the non-linearity of the 

system better than traditional modeling approaches. 

Datasets: SuperCam is one of the science 

instruments on the Mars 2020 rover, with several 

capabilities for determining geochemistry and 

mineralogy. We are focusing on data from the infrared 

spectrometer, with a spectral range of ~1.3 to 2.6 µm 

and 256 spectral channels. There are many minerals 

with diagnostic absorptions in the SuperCam 

wavelength range, and there have been many NIR lab 

studies of those minerals and their mixtures that are 

relevant to Mars. 

Spectral library. Our spectral library is made up of 

NIR data measured at the Reflectance Laboratory at 

Brown University (RELAB, https://pds-

speclib.rsl.wustl.edu). Our current spectral library 

contains 26 Mars-relevant minerals (or, in machine 

learning terms, classes), including primary silicates, 

phyllosilicates, carbonates, sulfates, iron oxides, etc. 

There are approximately 200 single mineral spectra of 

grain sizes ranging from <45 to >250 µm, 300 binary 

mixtures, and 100 mixtures of three or more 

components. The library is not exhaustive and is 

currently being expanded. 

Neural Network Architecture: Our model is a 

basic multi-layer convolutional neural network (CNN) 

[3]. In CNNs, “kernels” of different sizes move across 

the spectra, allowing the network to consider nearby 

spectral channels concurrently when learning the 

features of the data. This approach is particularly 

useful with spectral data since absorption bands cover 

multiple spectral channels and the value of each 

channel is dependent on the channels around it. Not 

only does the network learn the features that are 

diagnostic of each mineral, but it importantly learns 

which features distinguish between different minerals. 

Our network consists of two 1D convolutional 

layers each with Rectified Linear Unit (ReLU) 

activations (where f(x) = x if x > 0, else f(x) = 0), 

batch normalization and max pooling layers, followed 

by two fully connected layers (every neuron in the 

layer is connected to every neuron in the next layer) 

with ReLU activations. 

The network is used for two tasks: classification 

(which minerals) and regression (their abundances). 

For the classification model, the final layer is a fully 

connected layer with a Sigmoid activation. This 

produces output values between 0 and 1 that represents 

the probability that a given class is present in the 

mixture. If the output probability for a class is greater 

than 0.5, we consider the model to have positively 

identified that class as being present. For the regression 

model, the final layer is a fully connected layer with no 

activation. We have not put any other restrictions on 

the regression model, e.g., forcing output values to be 

between 0 and 1 or add up to 1 (nor do we plan to in 

the future). 

Figure 1. Top row: classification network. Bottom row: 

regression network. The two networks are trained separately, 

but with the same training data. 

Data Augmentation: The key to our neural 

network is its training data. For the network to 

successfully learn how to identify mixtures, it needs to 

see many (many) examples of mixture spectra in the 

training process. It would require a great undertaking 
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to make all the possible mixtures of interest in the lab 

and measure them and we would still need more data 

to train with. Therefore, we use synthetic mixture data 

calculated from physics-based models to train our 

model and lab mixture data to test it. Specifically, we 

use the Hapke analytical model [2] to create the 

training data from single mineral spectra. The Hapke 

model we use only takes the incidence and emission 

angles of the measurements as inputs. Other 

parameters (e.g., porosity, grain size, roughness, etc.) 

are not included. This is the data generation process: 

1. Randomly select a spectrum from a random 

class (some minerals have more than one 

spectrum, typically a grain size variation). 

2. Repeat step 1 for as many components as 

desired in the mixture (2 or 3) and assign each 

component an abundance (summing to 1). 

3. Calculate a mixed spectrum. 

Training Process: We create a new set of 800 

random synthetic mixture spectra in every epoch to 

train the model. We run the model for 10,000 epochs 

and select the best model based on the multi-label 

accuracy (for classification) or root mean squared error 

(RMSE, units of % abundance, for regression) on the 

binary lab mixtures in our spectral library. 

Selection Criteria: We are being conservative in 

what we consider as “reliable” predictions from the 

model based on their performances on the lab spectra 

(~98% accuracy and ~7% abundance RMSE [4]). For 

classification, output probabilities greater than 0.5 are 

considered as positive identifications. We then pair 

those results with abundance predictions from the 

regression model greater than 15%.  

Application to SuperCam Data: Presented here 

are results from 5505 atmospherically corrected NIR 

spectra from sol 28 to 1142 with no saturation or 

power failures. For completeness, we have run our 

model on all spectra, regardless of potential shadowing 

of the targets. The figure below shows abundance 

results for carbonate, olivine, and low-Ca pyroxene 

superimposed on various spectral parameters 

(described in Figure 2). Our results show good 

agreement with the spectral parameters; for example, 

carbonate abundances increase as the 2.32 and 2.53 

band depths increase (top left), low-Ca pyroxene 

predictions have high LCPINDEX2 [5] values (bottom 

left), and olivine abundances increase as the slope from 

1.3 to 1.8 increases (bottom right).  
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Figure 2. Predicted model abundances superimposed on spectral parameters. Top left: carbonate; top right: olivine; bottom left: 

low-Ca pyroxene; bottom right: olivine. Spectral parameters, top row, x-axis: band depth at 2.23 µm; y-axis: band depth at 2.53 

µm; bottom row, x-axis: slope from 1.35 to 1.8 µm; y-axis: low-Ca pyroxene index from [5]. Same colormap for all plots. 
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